首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In common with many neurons, adrenal chromaffin cells possess distinct voltage-dependent and voltage-independent pathways for Ca(2+) channel regulation. In this study, the voltage-independent pathway was revealed by addition of naloxone and suramin to remove tonic blockade of Ca(2+) currents via opioid and purinergic receptors due to autocrine feedback inhibition. This pathway requires the Ca(2+)-binding protein neuronal calcium sensor-1 (NCS-1). The voltage-dependent pathway was pertussis toxin-sensitive, whereas the voltage-independent pathway was largely pertussis toxin-insensitive. Characterization of the voltage-independent inhibition of Ca(2+) currents revealed that it did not involve protein kinase C-dependent signaling pathways but did require the activity of a Src family tyrosine kinase. Two structurally distinct Src kinase inhibitors, 4-amino-5-(4-methylphenyl)7-(t-butyl)pyrazolo[3,4-d] pyrimidine (PP1) and a Src inhibitory peptide, increased the Ca(2+) currents, and no further increase in Ca(2+) currents was elicited by addition of naloxone and suramin. In addition, the Src-like kinase appeared to act in the same pathway as NCS-1. In contrast, addition of PP1 did not prevent a voltage-dependent facilitation elicited by a strong pre-pulse depolarization indicating that this pathway was independent of Src kinase activity. PPI no longer increased Ca(2+) currents after addition of the P/Q-type channel blocker omega-agatoxin TK. The alpha(1A) subunit of P/Q-type Ca(2+) channels was immunoprecipitated from chromaffin cell extracts and found to be phosphorylated in a PP1-sensitive manner by endogenous kinases in the immunoprecipitate. A high molecular mass (around 220 kDa) form of the alpha(1A) subunit was detected by anti-phosphotyrosine, suggesting a possible target for Src family kinase action. These data demonstrate a voltage-independent mechanism for autocrine inhibition of P/Q-type Ca(2+) channel currents in chromaffin cells that requires Src family kinase activity and suggests that this may be a widely distributed pathway for Ca(2+) channel regulation.  相似文献   

2.
The insulin and the endothelin type A (ETA) receptor both can couple into the heterotrimeric G protein alpha(q/11) (Galpha(q/11)), leading to Galpha(q/11) tyrosine phosphorylation, phosphatidylinositol 3-kinase activation, and subsequent stimulation of glucose transport. In this study, we assessed the potential role of Src kinase in ET-1 signaling to glucose transport in 3T3-L1 adipocytes. Src kinase inhibitor PP2 blocked ET-1-induced Src kinase activity, Galpha(q/11) tyrosine phosphorylation, and glucose transport stimulation. To determine which Src family kinase member was involved, we microinjected anti-c-Src, -c-Fyn, or -c-Yes antibody into these cells and found that only anti-c-Yes antibody blocked GLUT4 translocation (70% decreased). Overexpression or microinjection of a dominant negative mutant (K298M) of Src kinase also inhibited ET-1-induced Galpha(q/11) tyrosine phosphorylation and GLUT4 translocation. In co-immunoprecipitation experiments, we found that beta-arrestin 1 associated with the ETA receptor in an agonist-dependent manner and that beta-arrestin 1 recruited Src kinase to a molecular complex that included the ETA receptor. Microinjection of beta-arrestin 1 antibody inhibited ET-1- but not insulin-stimulated GLUT4 translocation. In conclusion, 1) the Src kinase Yes can induce tyrosine phosphorylation of Galpha(q/11) in response to ET-1 stimulation, and 2) beta-arrestin 1 and Src kinase form a molecular complex with the ETA receptor to mediate ET-1 signaling to Galpha(q/11) with subsequent glucose transport stimulation.  相似文献   

3.
Antagonism of voltage-dependent K+ (Kv) currents in pancreatic beta-cells may contribute to the ability of glucagon-like peptide-1 (GLP-1) to stimulate insulin secretion. The mechanism and signaling pathway regulating these currents in rat beta-cells were investigated using the GLP-1 receptor agonist exendin 4. Inhibition of Kv currents resulted from a 20-mV leftward shift in the voltage dependence of steady-state inactivation. Blocking cAMP or protein kinase A (PKA) signaling (Rp-cAMP and H-89, respectively) prevented the inhibition of currents by exendin 4. However, direct activation of this pathway alone by intracellular dialysis of cAMP or the PKA catalytic subunit (cPKA) could not inhibit currents, implicating a role for alternative signaling pathways. A number of phosphorylation sites associated with phosphatidylinositol 3 (PI3)-kinase activation were up-regulated in GLP-1-treated MIN6 insulinoma cells, and the PI3 kinase inhibitor wortmannin could prevent antagonism of beta-cell currents by exendin 4. Antagonists of Src family kinases (PP1) and the epidermal growth factor (EGF) receptor (AG1478) also prevented current inhibition by exendin 4, demonstrating a role for Src kinase-mediated trans-activation of the EGF tyrosine kinase receptor. Accordingly, the EGF receptor agonist betacellulin could replicate the effects of exendin 4 in the presence of elevated intracellular cAMP. Downstream, the PKCzeta pseudosubstrate inhibitor could prevent current inhibition by exendin 4. Therefore, antagonism of beta-cell Kv currents by GLP-1 receptor activation requires both cAMP/PKA and PI3 kinase/PKCzeta signaling via trans-activation of the EGF receptor. This represents a novel dual pathway for the control of Kv currents by G protein-coupled receptors.  相似文献   

4.
The epithelial Na(+) channel (ENaC) regulates epithelial salt and water reabsorption, processes that require significant expenditure of cellular energy. To test whether the ubiquitous metabolic sensor AMP-activated kinase (AMPK) regulates ENaC, we examined the effects of AMPK activation on amiloride-sensitive currents in Xenopus oocytes and polarized mouse collecting duct mpkCCD(c14) cells. Microinjection of oocytes expressing mouse ENaC (mENaC) with either active AMPK protein or an AMPK activator inhibited mENaC currents relative to controls as measured by two-electrode voltage-clamp studies. Similarly, pharmacological AMPK activation or overexpression of an activating AMPK mutant in mpkCCD(c14) cells inhibited amiloride-sensitive short circuit currents. Expression of a degenerin mutant beta-mENaC subunit (S518K) along with wild type alpha and gamma increased the channel open probability (P(o)) to approximately 1. However, AMPK activation inhibited currents similarly with expression of either degenerin mutant or wild type mENaC. Single channel recordings under these conditions demonstrated that neither P(o) nor channel conductance was affected by AMPK activation. Moreover, expression of a Liddle's syndrome-type beta-mENaC mutant (Y618A) greatly enhanced ENaC whole cell currents relative to wild type ENaC controls and prevented AMPK-dependent inhibition. These findings indicate that AMPK-dependent ENaC inhibition is mediated through a decrease in the number of active channels at the plasma membrane (N), presumably through enhanced Nedd4-2-dependent ENaC endocytosis. The AMPK-ENaC interaction appears to be indirect; AMPK did not bind ENaC in cells, as assessed by in vivo pull-down assays, nor did it phosphorylate ENaC in vitro. In summary, these results suggest a novel mechanism for coupling ENaC activity and renal Na(+) handling to cellular metabolic status through AMPK, which may help prevent cellular Na(+) loading under hypoxic or ischemic conditions.  相似文献   

5.
G protein-coupled receptors (GPCRs) such as angiotensin II, bradykinin and endothelin-1 (ET-1) are critically involved in the regulation of adrenal function, including aldosterone production from zona glomerulosa cells. Whereas, substantial data are available on the signaling mechanisms of ET-1 in cardiovascular tissues, such information in adrenal glomerulosa cells is lacking. Bovine adrenal glomerulosa (BAG) cells express receptors for endothelin-1 (ET-1) and their stimulation caused phosphorylation of Src (at Tyr416), proline-rich tyrosine kinase (Pyk2 at Tyr402), extracellularly regulated signal kinases (ERK1/2), and their dependent proteins, p90 ribosomal S6 kinase (RSK-1) and CREB. ET-1 elicited these responses predominantly through activation of a Gi-linked cascade with a minor contribution from the Gq/PKC pathway. Whereas, selective inhibition of EGF-R kinase with AG1478 caused complete inhibition of EGF-induced ERK/RSK-1/CREB activation, it caused only partial reduction (30–40%) of such ET-1-induced responses. Consistent with this, inhibition of matrix metalloproteinases (MMPs) with GM6001 reduced ERK1/2 activation by ET-1, consistent with partial involvement of the MMP-dependent EGF-R activation in this cascade. Activation of ERK/RSK-1/CREB by both ET-1 and EGF was abolished by inhibition of Src, indicating its central role in ET-1 signaling in BAG cells. Moreover, the signaling characteristics of ET-1 in cultured BAG cells closely resembled those observed in clonal adrenocortical H295R cells. The ET-1-induced proliferation of BAG and H295 R cells was much smaller than that induced by Ang II or FGF. These data demonstrate that ET-1 causes ERK/RSK-1/CREB phosphorylation predominantly through activation of Gi and Src, with a minor contribution from MMP-dependent EGF-R transactivation.  相似文献   

6.
We examined the effect of angiotensin II (ANG II) on epithelial Na(+) channel (ENaC) in the rat cortical collecting duct (CCD) with single-channel and the perforated whole cell patch-clamp recording. Application of 50 nM ANG II increased ENaC activity, defined by NP(o) (a product of channel numbers and open probability), and the amiloride-sensitive whole cell Na currents by twofold. The stimulatory effect of ANG II on ENaC was absent in the presence of losartan, suggesting that the effect of ANG II on ENaC was mediated by ANG II type 1 receptor. Moreover, depletion of intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM failed to abolish the stimulatory effect of ANG II on ENaC but inhibiting protein kinase C (PKC) abolished the effect of ANG II, suggesting that the effect of ANG II was the result of stimulating Ca(2+)-independent PKC. This notion was also suggested by the experiments in which stimulation of PKC with phorbol ester derivative mimicked the effect of ANG II and increased amiloride-sensitive Na currents in the principal cell, an effect that was not abolished by treatment of the CCD with BAPTA-AM. Also, inhibition of NADPH oxidase (NOX) with diphenyleneiodonium chloride abolished the stimulatory effect of ANG II on ENaC and application of superoxide donors, pyrogallol or xanthine and xanthine oxidase, significantly increased ENaC activity. Moreover, addition of ANG II or H(2)O(2) diminished the arachidonic acid (AA)-induced inhibition of ENaC in the CCD. We conclude that ANG II stimulates ENaC in the CCD through a Ca(2+)-independent PKC pathway that activates NOX thereby increasing superoxide generation. The stimulatory effect of ANG II on ENaC may be partially the result of blocking AA-induced inhibition of ENaC.  相似文献   

7.
Recent studies demonstrate that endothelin-1 (ET-1) constricts human pulmonary arteries (PA). In this study, we examined possible mechanisms by which ET-1 might constrict human PA. In smooth muscle cells freshly isolated from these arteries, whole cell patch-clamp techniques were used to examine voltage-gated K(+) (K(V)) currents. K(V) currents were isolated by addition of 100 nM charybdotoxin and were identified by current characteristics and inhibition by 4-aminopyridine (10 mM). ET-1 (10(-8) M) caused significant inhibition of K(V) current. Staurosporine (1 nM), a protein kinase C (PKC) inhibitor, abolished the effect of ET-1. Rings of human intrapulmonary arteries (0.8-2 mm OD) were suspended in tissue baths for isometric tension recording. ET-1-induced contraction was maximal at 10(-8) M, equal to that induced by K(V) channel inhibition with 4-aminopyridine, and attenuated by PKC inhibitors. These data suggest that ET-1 constricts human PA, possibly because of myocyte depolarization via PKC-dependent inhibition of K(V). Our results are consistent with data we reported previously in the rat, suggesting similar mechanisms may be operative in both species.  相似文献   

8.
The amiloride-sensitive epithelial sodium channel (ENaC), a plasma membrane protein mediates sodium reabsorption in epithelial tissues, including the distal nephron and colon. Syntaxin1A, a trafficking protein of the t-SNARE family has been reported to inhibit ENaC in the Xenopus oocyte expression and artificial lipid bilayer systems. The present report describes the regulation of the epithelial sodium channel by syntaxin1A in a human cell line that is physiologically relevant as it expresses both components and also responds to aldosterone stimulation. In order to evaluate the physiological significance of syntaxin1A interaction with natively expressed ENaC, we over-expressed HT-29 with syntaxin1A constructs comprising various motifs. Unexpectedly, we observed the augmentation of amiloride-sensitive currents with wild-type syntaxin1A full-length construct (1-288) in this cell line. Both gammaENaC and neutralizing syntaxin1A antibodies blocked native expression as amiloride-sensitive sodium currents were inhibited while munc18-1 antibody reversed this effect. The coiled-coiled domain H3 (194-266) of syntaxin1A inhibited, however the inclusion of the transmembrane domain to this motif (194-288) augmented amiloride sensitive currents. More so, data suggest that ENaC interacts with multiple syntaxin1A domains, which differentially regulate channel function. This functional modulation is the consequence of the physical enhancement of ENaC at the cell surface in cells over-expressed with syntaxin(s). Our data further suggest that syntaxin1A up-regulates ENaC function by multiple mechanisms that include PKA, PLC, PI3 and MAP Kinase (p42/44) signaling systems. We propose that syntaxin1A possesses distinct inhibitory and stimulatory domains that interact with ENaC subunits, which critically determines the overall ENaC functionality/regulation under distinct physiological conditions.  相似文献   

9.
We recently discovered that the constitutively active Src tyrosine kinase can enhance hyperpolarization-activated, cyclic nucleotide-gated (HCN) 4 channel activity by binding to the channel protein. To investigate the mechanism of modulation by Src of HCN channels, we studied the effects of a selective inhibitor of Src tyrosine kinase, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), on HCN4 and its mutant channels expressed in HEK 293 cells by using a whole cell patch-clamp technique. We found that PP2 can inhibit HCN4 currents by negatively shifting the voltage dependence of channel activation, decreasing the whole cell channel conductance, and slowing activation and deactivation kinetics. Screening putative tyrosine residues subject to phosphorylation yielded two candidates: Tyr(531) and Tyr(554). Substituting HCN4-Tyr(531) with phenylalanine largely abolished the effects of PP2 on HCN4 channels. Replacing HCN4-Tyr(554) with phenylalanine did not abolish the effects of PP2 on voltage-dependent activation but did eliminate PP2-induced slowing of channel kinetics. The inhibitory effects of HCN channels associated with reduced Src tyrosine activity is confirmed in HL-1 cardiomyocytes. Finally, we found that PP2 can decrease the heart rate in a mouse model. These results demonstrate that Src tyrosine kinase enhances HCN4 currents by shifting their activation to more positive potentials and increasing the whole cell channel conductance as well as speeding the channel kinetics. The tyrosine residue that mediates most of Src's actions on HCN4 channels is Tyr(531).  相似文献   

10.
CK2 is a ubiquitous, pleiotropic, and constitutively active Ser/Thr protein kinase that controls protein expression, cell signaling, and ion channel activity. Phosphorylation sites for CK2 are located in the C terminus of both beta- and gamma-subunits of the epithelial Na(+) channel (ENaC). We examined the role of CK2 on the regulation of both endogenous ENaC in native murine epithelia and in Xenopus oocytes expressing rENaC. In Ussing chamber experiments with mouse airways, colon, and cultured M1-collecting duct cells, amiloride-sensitive Na(+) transport was inhibited dose-dependently by the selective CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB). In oocytes, ENaC currents were also inhibited by TBB and by the structurally unrelated inhibitors heparin and poly(E:Y). Expression of a trimeric channel lacking both CK2 sites (alphabeta(S631A)gamma(T599A)) produced a largely attenuated amiloride-sensitive whole cell conductance and rendered the mutant channel insensitive to CK2. In Xenopus oocytes, CK2 was translocated to the cell membrane upon expression of wt-ENaC but not of alphabeta(S631A)gamma(T599A)-ENaC. Phosphorylation by CK2 is essential for ENaC activation, and to a lesser degree, it also controls membrane expression of alphabetagamma-ENaC. Channels lacking the Nedd4-2 binding motif in beta-ENaC (R561X, Y618A) no longer required the CK2 site for channel activity and siRNA-knockdown of Nedd4-2 eliminated the effects of TBB. This implies a role for CK2 in inhibiting the Nedd4-2 pathway. We propose that the C terminus of beta-ENaC is targeted by this essential, conserved pleiotropic kinase that directs its constitutive activity toward many cellular protein complexes.  相似文献   

11.
Aldosterone-induced serum- and glucocorticoid-inducible kinase isoform 1 (SGK1) contributes to the regulation of the epithelial sodium channel (ENaC), the activity of which is critical for long term blood pressure control. Aldosterone-induced SGK1 is thought to enhance ENaC surface expression by phosphorylating Nedd4-2 and thereby preventing ENaC retrieval and degradation. In outside-out membrane patches of Xenopus laevis oocytes heterologously expressing ENaC, amiloride-sensitive ENaC currents were enhanced by phosphatase inhibitors and were dependent on cytosolic Mg(2+). This indicates that a kinase is involved in channel regulation. Indeed, recombinant constitutively active SGK1, included in the pipette solution, caused a sustained 2- to 3-fold increase of ENaC currents. Deletion of the C terminus of alphaENaC largely reduced the stimulatory effect of SGK1, whereas stimulation by SGK1 did not require the presence of the C termini of the beta- or gamma-subunits. Replacing the serine residue Ser(621) of the SGK1 consensus motif in the C terminus of the alpha-subunit by an alanine specifically abolished the stimulatory effect of SGK. Our findings indicate that SGK1 can stimulate ENaC activity independently of an inhibition of Nedd4-2-mediated channel retrieval. This defines a novel regulatory pathway likely to be relevant for aldosterone-induced stimulation of ENaC in vivo.  相似文献   

12.
Particulate atmospheric pollutants interact with the human airway epithelium, which releases cytokines, chemokines, and EGF receptor (EGFR) ligands leading to proinflammatory responses. There is little information concerning the short-term effects of EGFR activation by extracellular ligands on ionic regulation of airway surface lining fluids. We identified in the membrane of human epithelial bronchial cells (16HBE14o(-) line) an endogenous calcium- and voltage-dependent, outwardly rectifying small-conductance chloride channel (CACC), and we examined the effects of EGF on CACC activity. Ion channel currents were recorded with the patch-clamp technique. In cell-attached membrane patches, CACC were activated by exposure of the external surface of the cells to physiological concentrations of EGF without any change in cytosolic Ca(2+) concentration ([Ca(2+)](i)) and inhibited by tyrphostin AG-1478 (an inhibitor of EGFR that also blocks EGF-dependent Src family kinase activation). EGF activation of c-Src protein in 16HBE14o(-) cells was observed, and the signaling pathway elicited by EGFR was blocked by tyrphostin AG-1478. In excised inside-out membrane patches CACC were activated by exposure of the cytoplasmic face of the channels to the human recombinant Src(p60(c-src)) kinase with endogenous or exogenous ATP and inhibited by lambda-protein phosphatase. Secretion of EGFR ligands by epithelial airway cells exposed to pollutants would then elicit a rapid and direct ionic response of CACC mediated by EGFR activation via a Src kinase family-dependent signaling pathway.  相似文献   

13.
Epithelial Na+ channels (ENaC) are inhibited by the cystic fibrosis transmembrane conductance regulator (CFTR) upon activation by protein kinase A. It is, however, still unclear how CFTR regulates the activity of ENaC. In the present study we examined whether CFTR interacts with ENaC by interfering with the Nedd4- and ubiquitin-mediated endocytosis of ENaC. Various C-terminal mutations were introduced into the three alpha-, beta-, and gamma-subunits of the rat epithelial Na+ channel, thereby eliminating PY motifs, which are important binding domains for the ubiquitin ligase Nedd4. When expressed in Xenopus oocytes, most of the ENaC stop (alpha-H647X, beta-P565X, gamma-S608X) or point (alpha-P671A, beta-Y618A, gamma-P(624-626)A) mutations induced enhanced Na+ currents when compared with wild type alpha,beta,gamma-rENaC. However, ENaC currents formed by either of the mutant alpha-, beta-, or gamma-subunits were inhibited during activation of CFTR by forskolin (10 micromol/l) and 3-isobutyl-1-methylxanthine (1 mmol/l). Antibodies to dynamin or ubiquitin enhanced alpha,beta,gamma-rENaC whole cell Na+ conductance but did not interfere with inhibition of ENaC by CFTR. Another mutant, beta-T592M,T593A-ENaC, also showed enhanced Na+ currents, which were down-regulated by CFTR. Moreover, activation of ENaC by extracellular proteases and xCAP1 does not disturb CFTR-dependent inhibition of ENaC. We conclude that regulation of ENaC by CFTR is distal to other regulatory limbs and does not involve Nedd4-dependent ubiquitination.  相似文献   

14.
Exposure of C6 glioma cells to endothelin-1 (ET-1) caused dose-dependent (10(-11) M to 10(-7) M) increments in intracellular calcium concentration ([Ca2+]i) and c-fos mRNA expression (4.5-fold) that were abolished by the endothelinA receptor antagonist, BQ610, and by inhibition of phospholipase C with U73122. ET-1 stimulated c-fos mRNA expression was also inhibited by protein kinase C inhibition (chelerythrine) and by the MAP kinase kinase inhibitor PD98059, but not by inhibitors of tyrosine kinases, protein kinase A type I or II, calmodulin kinase II, or calcium channel blockade. C6 cells treated with ET-1 demonstrated a significant increase in MAP kinase activity as evidenced by Western blotting. These results indicate a mechanism of long-term signaling by ET-1 involving an ET(A) receptor-mediated, phospholipase C(beta)-linked pathway that is dependent on protein kinase C and MAP kinase activation.  相似文献   

15.
Classical cadherin adhesion molecules can function as adhesion-activated cell-signaling receptors. One key target for cadherin signaling is the lipid kinase phosphoinositide (PI) 3-kinase, which is recruited to cell-cell contacts and activated by E-cadherin. In this study, we sought to identify upstream factors necessary for E-cadherin to activate PI 3-kinase signaling. We found that inhibition of tyrosine kinase signaling blocked recruitment of PI 3-kinase to E-cadherin contacts and abolished the ability of E-cadherin to activate PI 3-kinase signaling. Tyrosine kinase inhibitors further perturbed several parameters of cadherin function, including cell adhesion and the ability of cells to productively extend nascent cadherin-adhesive contacts. Notably, the functional effects of tyrosine kinase blockade were rescued by expression of a constitutively active form of PI 3-kinase that restores PI 3-kinase signaling. Finally, using dominant negative Src mutants and Src-null cells, we identified Src as one key upstream kinase in the E-cadherin/PI 3-kinase-signaling pathway. Taken together, our findings indicate that tyrosine kinase activity, notably Src signaling, can contribute positively to cadherin function by supporting E-cadherin signaling to PI 3-kinase.  相似文献   

16.
The epithelial Na(+) channel (ENaC) functions as a pathway for epithelial Na(+) transport, contributing to Na(+) homeostasis and blood pressure control. Vasopressin increases ENaC expression at the cell surface through a pathway that includes cAMP and cAMP-dependent protein kinase (PKA), but the mechanisms that link PKA to ENaC are unknown. Here we found that cAMP regulates Na(+) transport in part by inhibiting the function of Nedd4-2, an E3 ubiquitin-protein ligase that targets ENaC for degradation. Consistent with this model, we found that cAMP inhibited Nedd4-2 by decreasing its binding to ENaC. Moreover, decreased Nedd4-2 expression (RNA interference) or overexpression of a dominant negative Nedd4-2 construct disrupted ENaC regulation by cAMP. Nedd4-2 was a substrate for phosphorylation by PKA in vitro and in cells; three Nedd4-2 residues were phosphorylated by PKA and were required for cAMP to inhibit Nedd4-2 (relative functional importance Ser-327 > Ser-221 > Thr-246). Previous work found that these residues are also phosphorylated by serum and glucocorticoid-inducible kinase (SGK), a downstream mediator by which aldosterone regulates epithelial Na(+) transport. Consistent with a functional interaction between these pathways, overexpression of SGK blunted ENaC stimulation by cAMP, whereas inhibition of SGK increased stimulation. Conversely, cAMP agonists decreased ENaC stimulation by SGK. The data suggest that cAMP regulates ENaC in part by phosphorylation and inhibition of Nedd4-2. Moreover, Nedd4-2 is a central convergence point for kinase regulation of Na(+) transport.  相似文献   

17.
Lu X  Li Y 《Developmental biology》1999,208(1):233-243
The Src family of nonreceptor tyrosine kinases has been implicated in many signal transduction pathways. However, due to a possible functional redundancy in vertebrates, there is no genetic loss-of-function evidence that any individual Src family member has a crucial role for receptor tyrosine kinase (RTK) signaling. Here we show that an extragenic suppressor of Raf, Su(Raf)1, encodes a Drosophila Src family gene Src42A. Characterization of Src42A mutations shows that Src42A acts independent of Ras1 and that it is, unexpectedly, a negative regulator of RTK signaling. Our study provides the first evidence that Src42A defines a negative regulatory pathway parallel to Ras1 in the RTK signaling cascade. A possible model for Src42A function is discussed.  相似文献   

18.
Collecting duct (CD)-derived endothelin-1 (ET-1) acting via endothelin B (ETB) receptors promotes Na(+) excretion. Compromise of ET-1 signaling or ETB receptors in the CD cause sodium retention and increase blood pressure. Activity of the epithelial Na(+) channel (ENaC) is limiting for Na(+) reabsorption in the CD. To test for ETB receptor regulation of ENaC, we combined patch-clamp electrophysiology with CD-specific knockout (KO) of endothelin receptors. We also tested how ET-1 signaling via specific endothelin receptors influences ENaC activity under differing dietary Na(+) regimens. ET-1 significantly decreased ENaC open probability in CD isolated from wild-type (WT) and CD ETA KO mice but not CD ETB KO and CD ETA/B KO mice. ENaC activity in WT and CD ETA but not CD ETB and CD ETA/B KO mice was inversely related to dietary Na(+) intake. ENaC activity in CD ETB and CD ETA/B KO mice tended to be elevated under all dietary Na(+) regimens compared with WT and CD ETA KO mice, reaching significance with high (2%) Na(+) feeding. These results show that the bulk of ET-1 inhibition of ENaC activity is mediated by the ETB receptor. In addition, they could explain the Na(+) retention and elevated blood pressure observed in CD ET-1 KO, CD ETB KO, and CD ETA/B KO mice consistent with ENaC regulation by ET-1 via ETB receptors contributing to the antihypertensive and natriuretic effects of the local endothelin system in the mammalian CD.  相似文献   

19.
Small G proteins in the Rho family are known to regulate diverse cellular processes, including cytoskeletal organization and cell cycling, and more recently, ion channel activity and activity of phosphatidylinositol 4-phosphate 5-kinase (PI(4)P 5-K). The present study investigates regulation of the epithelial Na(+) channel (ENaC) by Rho GTPases. We demonstrate here that RhoA and Rac1 markedly increase ENaC activity. Activation by RhoA was suppressed by the C3 exoenzyme. Inhibition of the downstream RhoA effector Rho kinase, which is necessary for RhoA activation of PI(4)P 5-K, abolished ENaC activation. Similar to RhoA, overexpression of PI(4)P 5-K increased ENaC activity suggesting that production of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in response to RhoA-Rho kinase signaling stimulates ENaC. Supporting this idea, inhibition of phosphatidylinositol 4-kinase, but not the RhoA effector phosphatidylinositol 3-kinase and MAPK cascades, markedly attenuated RhoA-dependent activation of ENaC. RhoA increased ENaC activity by increasing the plasma membrane levels of this channel. We conclude that RhoA activates ENaC via Rho kinase and subsequently activates PI(4)P 5-K with concomitant increases in PI(4,5)P(2) levels promoting channel insertion into the plasma membrane.  相似文献   

20.
Members of the epidermal growth factor (EGF) family of ligands and their receptors regulate migration and growth of intestinal epithelial cells. However, our understanding of the signal transduction pathways determining these responses is incomplete. In this study we tested the hypothesis that p38 is required for EGF-stimulated intestinal epithelial monolayer restitution. EGF-stimulated migration in a wound closure model required continuous presence of ligand for several hours for maximal response, suggesting a requirement for sustained signal transduction pathway activation. In this regard, prolonged exposure of cells to EGF activated p38 for up to 5 h. Furthermore genetic or pharmacological blockade of p38 signaling inhibited the ability of EGF to accelerate wound closure. Interestingly p38 inhibition was associated with increased EGF-stimulated ERK1/ERK2 phosphorylation and cell proliferation, suggesting that p38 regulates the balance of proliferation/migration signaling in response to EGF receptor activity. Activation of p38 in intestinal epithelial cells through EGF receptor was abolished by blockade of Src family tyrosine kinase signaling but not inhibition of phosphatidylinositol 3-kinase or protein kinase C. Taken together, these data suggest that Src family kinase-dependent p38 activation is a key component of a signaling switch routing EGF-stimulated responses to epithelial cell migration/restitution rather than proliferation during wound closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号