首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amount of light scattered by a mitochondrial suspension depends on matrix volume (Tedeschi, H., and Harris, D.L. (1955) Arch. Biochem. Biophys. 58, 52-67), a correlation which has been extensively exploited for qualitative studies of solute transport across the inner membrane. To obtain reliable, quantitative estimates of solute transport, it is first necessary to characterize the factors determining mitochondrial light scattering. We show that the dependence of absorbance on mitochondrial concentration can be linearized, resulting in an intrinsic light scattering parameter which is independent of the concentration and source of mitochondria. We show that the absorbance osmotic curve is segmentally linear, exhibiting discontinuities which disappear irreversibly following preswelling. In contrast, direct measurements reveal matrix volume to be reversibly and linearly dependent on inverse osmolality. This divergence is a consequence of the fact that the optical technique samples total particle volume, including contributions from folded membranes and trapped medium. These contributions are minimized by structural components, such as intermembrane connections and the outer membrane, which contribute to efficient packaging of the mitochondrion. When these structures are broken, the mitochondrion cannot return to its native state. We observe that the swelling-induced, irreversible transition from efficient packaging to a random packing state begins at a matrix volume of 1.9 microliter/mg and is complete at 3.1 microliter/mg. These findings complicate the interpretation of light scattering results but do not appear to present an insurmountable obstacle to the quantitative application of this technique to transport kinetics.  相似文献   

2.
Decrease of transport of some polyols in sickle cells   总被引:1,自引:0,他引:1  
This paper reports the results of kinetic studies on the inward net-flux of small non-electrolytes (ethylene glycol, glycerol and erythritol) in sickle cells as compared to normal erythrocytes. Net transport rates were evaluated by turbidimetric measurements for ethylene glycol and glycerol and by hematocrit monitoring for erythritol. A 2-fold and 4-fold reduction in the permeability coefficient for ethylene glycol and glycerol, respectively, were found in sickle cells as compared to normal erythrocytes. In contrast, no significant changes in erythritol transport kinetics were observed. The dependence of glycerol permeability on temperature, pH and oxygenation is the same in both types of cells. A significant correlation was observed between glycerol permeability and cell density only for sickle cells. The results indicate that irreversible modifications of membrane proteins, responsible for the glycerol and ethylene glycol transport, do occur in sickle cells.  相似文献   

3.
The kinetics of osmotically induced changes in vesicular volume and internal solute concentration were analyzed for membrane vesicles containing fixed quantity of impermeable osmoticum in the lumen. The kinetic curves of the concentration and volume changes were shown to be dissimilar. The average durations of these two processes may differ by several tens of percents, depending on the extent and polarity of the initially imposed osmotic gradient. For vesicles containing identical solutes in the internal and external solutions, the problem is analyzed of how the concentration and volume changes are manifested in changes of the effective scattering cross-section of the vesicle. The light scattering changes, directed oppositely to volume changes, were found to coincide roughly with the kinetics of volume changes. The analysis shows that calculations of water permeability coefficient should be based on average duration of volume changes rather than the duration of concentration changes. The replacement in calculations of the first parameter with the second one may result in overestimation of water permeability by a factor of 1.5. This might be relevant to the reported discrepancies in water permeability values determined by the osmotic and isotope methods. Although the allowance for 1.5-fold overestimation cannot fully account for the differences observed, it significantly lowers the discrepancy between these estimates in some cases. The opposite signs of light scattering and volume changes originate from the presence of two components in the optical path of the vesicle, i.e., the membrane and the lumenal solution.  相似文献   

4.
The reflection coefficient (sigma) and permeability (P) of urea and ethylene glycol were determined by fitting the equations of Kedem and Katchalsky (1958) to the change in light scattering produced by adding a permeable solute to a red cell suspension. The measurements incorporated three important modifications: (a) the injection artifact was eliminated by using echinocyte cells; (b) the use of an additional adjustable parameter (Km), the effective dissociation constant at the inner side of the membrane; (c) the light scattering is not directly proportional to cell volume (as is usually assumed) because refractive index and scattering properties of the cell depend on the intracellular permeable solute concentration. This necessitates calibrating for known changes in refractive index (by the addition of dextran) and cell volume (by varying the NaCl concentration). The best fit was for sigma = 0.95, Po = 8.3 X 10(-4) cm/s, and Km = 100 mM for urea and sigma = 1.0, Po = 3.9 X 10(-4) cm/s, and Km = 30 mM for ethylene glycol. The effects of the inhibitors copper, phloretin, p- chloromercuriphenylsulfonate, and 5,5'-dithiobis (2-nitro) benzoic acid on the urea, ethylene glycol, and water permeability were determined. The results suggest that there are three separate, independent transport systems: one for water, one for urea and related compounds, and one for ethylene glycol and glycerol.  相似文献   

5.
Abscisic acid is shown to enhance the permeability of crude egg lecithin and asolectin bilayers to water, urea and erythritol although it exhibits no effect on pure synthetic (phosphatidylethanolamine-free) dimyristoylphosphatidylcholine bilayers. Addition of dipalmitoylphosphatidylethanolamine to dimyristoylphosphatidylcholine bilayers at 10 or 20 membrane mole percent makes the membrane permeability responsive to abscisic acid. An abscisic acid-phosphatidylethanolamine interaction is also described for liposome aggregation. Both abscisic acid-induced permeability and aggregation changes are pH dependent with the undissociated form of the hormone exhibiting a greater effect than the dissociated, charged form. Enhancement of erythritol permeability is greater with the physiologically active cis-trans ABA isomer than with the inactive trans-trans isomer.  相似文献   

6.
Rubashkin AA 《Tsitologiia》2011,53(8):687-689
The dynamic model of membrane transport, which describes the changing of ion contents in the cell, cell volume and membrane potential, for the first time, is applied to analysis of the apoptotic processes. It is shown that increasing of permeability of K+, and Cl(-)-channels, decreasing of permeability of Na+ together with degradation of Na+/K+ pump, KCC and NC cotransporters lead to decreasing of cell U937 volume and plasma membrane depolarization at apoptosis induced by staurosporine in concentration 1 microM. The experimental data using at calculations was published in paper (Yurinskaya et al., 2010).  相似文献   

7.
Membrane cholesterol in porcine and bovine erythrocytes was elevated up to 165% of its normal value by incubation of the cells in cholesterol/phosphatidylcholine dispersions with or without serum. This alteration of membrane lipid composition brought about only a minor (10-40%) decrease of the permeability to glycerol, erythritol and to organic acids penetrating by non-ionic diffusion, although additional cholesterol had actually been incorporated into the lipid bilayer, as indicated by determinations of cell surface area from the critical hemolytic volume, in combination with quantitative evaluation of freeze-etch electron micrographs. On the basis of this finding and of the previously demonstrated (Grunze, M. and Deuticke, B. (1974) Biochim. Biophys. Acta 356, 125-130) considerable increase of permeability in cholesterol-depleted cells, it is proposed that in the erythrocyte membrane a pronounced "specific" reduction of permeability by cholesterol occurs only up to a molar ratio cholesterol/polar lipid of 0.6. At higher ratios cholesterol affects permeability only slightly, owing to an "unspecific" rigidifying effect on the membrane lipid phase.  相似文献   

8.
The permeabilities of sarcoplasmic reticulum vesicle membrane for various ions and neutral molecules were measured by following the change in light scattering intensity due to the osmotic volume change of the vesicles. 4-Acetoamido-4'-isothiocyanostilbene-2,2'-disulfonate (SITS), which is a potent inhibitor for the anion permeability of red blood cells membrane, inhibited the permeability of sarcoplasmic reticulum for anions such as Cl-, Pi and methanesulfonate, while it slightly increased that for cations and neutral molecules such as Na+, K+, choline and glycerol. Binding of 5 mumol SITS/g protein was necessary for the inhibition of anion permeability. These results suggest the existence of a similar anion transport system in sarcoplasmic reticulum membrane as revealed in red blood cell membrane.  相似文献   

9.
The regulatory decrease in the volume of principal cells of collecting ducts to hypoosmotic shock has been investigated experimentally and using the mathematical modeling. A mathematical model of the response of collecting duct principal cells to hypotonic shock has been constructed on the basis of the experimental time course of changes in cell volume measured by the fluorescent dye Calcein. It was shown that the regulatory decrease in volume under hypotonic conditions occurs via a marked release of osmolytes and is accompanied by a decrease in water permeability of the cell membrane. The mathematical modeling of transmembrane transport processes allowed us to quantitatively estimate the changes in membrane water permeability, which decreased tenfold, from 2 x 10(-1) cm/s to 2 x 10(-2) cm/s. It was also shown that the effective regulatory decrease in the volume of collecting duct principal cells in hypotonic medium results from a significant increase in membrane permeability for K+, Cl-, and organic anions.  相似文献   

10.
Radiation inactivation was used to estimate the molecular size of a Na(+)-dependent amino acid transport system in Ehrlich ascites cell plasma membrane vesicles. Na(+)-dependent alpha-aminoisobutyric acid uptake was measured after membranes were irradiated at -78.5 degrees C in a cryoprotective medium. Twenty-five percent of the transport activity was lost at low radiation doses (less than 0.5 Mrad), suggesting the presence of a high molecular weight transport complex. The remaining activity (approximately 75% of total) decreased exponentially with increasing radiation dose, and a molecular size of 347 kDa was calculated for the latter carrier system. Vesicle permeability and intravesicular volume were measured to verify that losses in transport activity were due to a direct effect of radiation on the transporter and not through indirect effects on the structural integrity of membrane vesicles. Radiation doses 2-3-fold higher than those required to inactivate amino acid transport were needed to cause significant volume changes (greater than 15%). Vesicle permeability was unchanged by the irradiation. The structural integrity of plasma membrane vesicles was therefore maintained at radiation doses where there was a dramatic decrease in amino acid transport. The relationship between the fragmentation of a 120-130-kDa peptide, a putative component of the Na(+)-dependent amino acid carrier [McCormick, J. I., & Johnstone, R. M. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 7877-7881], and loss of transport activity in irradiated membranes was also examined. Peptide loss was quantitated by Western blot analysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The loss of cell volume is a fundamental feature of apoptosis. We have previously shown that DNA degradation and caspase activity occur only in cells which have shrunken as a result of potassium and sodium efflux (Bortner, C. D., Hughes, F. M., Jr., and Cidlowski, J. A. (1997) J. Biol. Chem. 272, 32436-32442). Furthermore, maintaining a normal intracellular potassium concentration represses the cell death process by inhibiting the activity of apoptotic nucleases and suppressing the activation of effector caspases (Hughes, F. M., Jr., Bortner, C. D. Purdy, G. D., and Cidlowski, J. A. (1997) J. Biol. Chem. 272, 30567-30576). We have now investigated the relationship between cell shrinkage, ion efflux, and changes in the mitochondrial membrane potential, in addition to the role of caspases in these apoptotic events. Treatment of Jurkat cells with a series of inducers which act via distinct signal transduction pathways, resulted in all of the cell death characteristics including loss of cell viability, cell shrinkage, K(+) efflux, altered mitochondrial membrane potential, and DNA fragmentation. Interestingly, only cells which shrunk had a loss of mitochondrial membrane potential and the other apoptotic characteristics. Treatment of Jurkat cells with an anti-Fas antibody in the presence of the general caspase inhibitor z-VAD, abrogated these features. In contrast, when Jurkat cells were treated with either the calcium ionophore A23187 or thapsigargin, z-VAD failed to prevent cell shrinkage, K(+) efflux, or changes in the mitochondrial membrane potential, while effectively inhibiting DNA degradation. Treatment of Jurkat cells with various apoptotic agents in the presence of either the caspase-3 inhibitor DEVD, or the caspase-8 inhibitor IETD also blocked DNA degradation, but failed to prevent other characteristics of apoptosis. Together these data suggest that the cell shrinkage, K(+) efflux, and changes in the mitochondrial membrane potential are tightly coupled, but occur independent of DNA degradation, and can be largely caspase independent depending on the particular signal transduction pathway.  相似文献   

12.
A diffusion chamber similar to that proposed by J.J. McGrath (J. Microsc., in press) was constructed which allows microscopic observation of osmotically induced volume changes of individual cells in small (microliter) sample volumes. The cells are kept fixed in position in the upper compartment of the chamber by means of a highly permeable membrane and exposed to a step-like change in concentration generated in the lower compartment. An electrical conductivity probe in the upper compartment was used to monitor the temporal change of salt concentration as experienced by the cells. The rise from isotonic to hypertonic can be approximated by an exponential function. Its time constant of tau = 2.08 sec seems to be mainly determined by the change in flushing solution as tau = 1.48 sec was measured with no membrane installed. With human lymphocytes, no loss of cell volume was detected before 5 sec, i.e., when 95% of the final concentration was reached extracellularly. A step change can hence be assumed when modeling exosmosis for determining the lymphocyte membrane permeability. The equations for coupled transport of water and salt were solved numerically and fitted to the experimental data. The results were also compared to various other transport models described in the literature. Human lymphocytes are almost ideally semipermeable with a hydraulic reference permeability of Lp = 4.23 X 10(-4) cm/sec (3.13 X 10(-3) micron X atm-1 X sec-1) at T = 23 degrees C. The temperature and concentration dependence are described by an activation energy Ea = 14.3 kJ/mol and a concentration coefficient alpha 2 = 0.261 osmol/kg. An osmotically inactive volume fraction of 36.9% was determined from the final cell volumes reached asymptotically after shrinkage.  相似文献   

13.
The effect of membrane morphology on the cooperativity of the ordered-fluid, lipid phase transition has been investigated by comparing the transition widths in extended, multibilayer dispersons of dimyristoyl phosphatidyl-choline, and also of dipalmitoyl phosphatidylcholine, with those in the small, single-bilayer vesicles obtained by sonication. The electron spin resonance spectra of three different spin-labelled probes, 2,2,6,6-tetramethylpiperdine-N-oxyl, phosphatidylcholine and stearic acid, and also 90 degrees light scattering and optical turbidity measurements were used as indicators of the phase transition. In all cases the transition was broader in the single-bilayer vesicles than in the multibilayer dispersions, corresponding to a decreased cooperativity on going to the small vesicles. Comparison of the light scattering properties of centrifuged and uncentrifuged, sonicated vesicles suggests that these are particularly sensitive to the presence of intermediate-size particles, and thus the spin label measurements are likely to give a more reliable measure of the degree of cooperativity of the small, single-bilayer vesicles. Application of the Zimm and Bragg theory ((1959) J. Chem. Phys. 31, 526-535) of cooperative transitions to the two-dimensional bilayer system shows that the size of the cooperative unit, 1/square root sigma, is a measure of the mean number of molecules per perimeter molecule, in a given region of ordered or fluid lipid at the centre of the transition. From this result it is found that it is the vesicle size which limits the cooperativity of the transition in the small, single-bilayer vesicles. The implications for the effect of membrane structure and morphology on the cooperativity of phase transitions in biological membranes, and for the possibility of achieving lateral communication in the plane of the membrane, are discussed.  相似文献   

14.
The mechanisms governing the solubilization by Triton X-100, octyl glucoside, and sodium cholate of large unilamellar liposomes prepared by reverse-phase evaporation were investigated. The solubilization process is described by the three-stage model previously proposed for these detergents [Lichtenberg, D., Robson, R.J., & Dennis, E.A.(1983) Biochim. Biophys. Acta 737, 285-304]. In stage I, detergent monomers are incorporated into the phospholipid bilayers until they saturate the liposomes. At that point, i.e., stage II, mixed phospholipid-detergent micelles begin to form. By stage III, the lamellar to micellar transition is complete and all the phospholipids are present as mixed micelles. The turbidity of liposome preparations was systematically measured as a function of the amount of detergent added for a wide range of phospholipid concentrations (from 0.25 to 20 mM phospholipid). The results allowed a quantitative determination of RSat, the effective detergent to lipid molar ratios in the saturated liposomes, which were 0.64, 1.3, and 0.30 for Triton X-100, octyl glucoside, and sodium cholate, respectively. The corresponding ratios in the mixed micelles, RSol, were 2.5, 3.8, and 0.9 mol of detergent/mol of phospholipid. The monomer concentrations of the three detergents in the aqueous phase were also determined at the lamellar to micellar transitions (0.18, 17, and 2.8 mM, respectively). These transitions were also investigated by 31P NMR spectroscopy, and complete agreement was found with turbidity measurements. Freeze-fracture electron microscopy and permeability studies in the sublytic range of detergent concentrations indicated that during stage I of solubilization detergent partitioning between the aqueous phase and the lipid bilayer greatly affects the basic permeability of the liposomes without significantly changing the morphology of the preparations. A rough approximation of the partition coefficients was derived from the turbidity and permeability data (K = 3.5, 0.09, and 0.11 mM-1 for Triton X-100, octyl glucoside, and sodium cholate, respectively). It is concluded that when performed systematically, turbidity measurements constitute a very convenient and powerful technique for the quantitative study of the liposome solubilization process by detergents.  相似文献   

15.
We have proposed that glucose-6-phosphatase (EC 3.1.3.9) is a two-component system consisting of (a) a glucose-6-P-specific transporter which mediates the movement of the hexose phosphate from the cytosol to the lumen of the endoplasmic reticulum (or cisternae of the isolated microsomal vesicle), and (b) a nonspecific phosphohydrolase-phosphotransferase localized on the luminal surface of the membrane (Arion, W.J., Wallin, B.K., Lange, A.J., and Ballas, L.M. (1975) Mol. Cell. Biochem. 6, 75-83). Additional support for this model has been obtained by studying the interactions of D-mannose-6-P and D-mannose with the enzyme of untreated (i.e. intact) and taurocholate-disrupted microsomes. An exact correspondence was shown between the mannose-6-P phosphohydrolase activity at low substrate concentrations and the permeability of the microsomal membrane to EDTA. The state of intactness of the membrane influenced the kinetics of mannose inhibition of glucose-6-P hydrolysis; uncompetitive and noncompetitive inhibitions were observed for intact and disrupted microsomes, respectively. The apparent Km for glucose-6-P was smaller with intact preparations at mannose concentrations above 0.3 M. Mannose significantly inhibited total glucose-6-P utilization by intact microsomes, whereas D-glucose had a stimulatory effect. Both hexoses markedly enhanced the rate of glucose-6-P utilization by disrupted microsomes. The actions of mannose on the glucose-6-phosphatase of intact microsomes fully support the postulated transport model. They are predictable consequences of the synthesis and accumulation of mannose-6-P in the cisternae of microsomal vesicles which possess a nonspecific, multifunctional enzyme on the inner surface and a limiting membrane permeable to D-glucose, D-mannose, glucose-6-P, but impermeable to mannose-6-P. The latency of the mannose-6-P phosphohydrolase activity is proposed as a reliable, quantitative index of microsomal membrane integrity. The inherent limitations of the use of EDTA permeability for this purpose are discussed.  相似文献   

16.
Passive transport of ions and metabolites across the peribacteroid membrane (PBM) was investigated on symbiosome preparations isolated from the broad bean (Vicia faba L.) root nodules and suspended in a potassium-free medium. Optical density of the symbiosome suspension at 546 nm was monitored as an indicator of light-scattering changes. Depolarization of the PBM with tetraphenylphosphonium cation (TPP+) caused an increase in light scattering of symbiosome suspension. This effect was enhanced after adding a K+ ionophore valinomycin to the incubation medium. A similar effect was observed after supplementing the symbiosome suspension with nigericin, a K+/H+ antiporter. Similar experiments on bacteroid suspensions prepared from isolated symbiosomes did not reveal any appreciable changes in light scattering in the presence of the same membrane-active substances. The light scattering by symbiosome suspensions decreased after adding malate or succinate, while the subsequent addition of centimolar concentrations of K+ substantially accelerated this process. Light scattering by the symbiosome suspension was insensitive to the addition of glutamate, a substance normally impermeant through the PBM of legume root nodules. These results suggest that the changes in light scattering by symbiosomes reflect the osmotically induced changes of symbiosome volume. These volume changes were assigned to alteration of the peribacteroid space (PBS). The incubation of symbiosomes in a potassium-free medium acidified their the PBS; this acidification was accelerated by valinomycin, carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), and nigericin, and it was abolished in the presence of comparatively high concentrations of K+ in the incubation medium. The results indicate a relatively high permeability of the PBM to K+ ions.  相似文献   

17.
We reported increased water permeability and a low urea reflection coefficient in Xenopus oocytes expressing urea transporter UT-B (former name UT3), suggesting that water and urea share a common aqueous pathway (Yang, B., and Verkman, A. S. (1998) J. Biol. Chem. 273, 9369-9372). Although increased water permeability was confirmed in the Xenopus oocyte expression system, it has been argued (Sidoux-Walter, F., Lucien, N., Olives, B., Gobin, R., Rousselet, G., Kamsteeg, E. J., Ripoche, P., Deen, P. M., Cartron, J. P., and Bailly, P. (1999) J. Biol. Chem. 274, 30228-30235) that UT-B does not transport water when expressed at normal levels in mammalian cells such as erythrocytes. To quantify UT-B-mediated water transport, we generated double knockout mice lacking UT-B and the major erythrocyte water channel, aquaporin-1 (AQP1). The mice had reduced survival, retarded growth, and defective urinary concentrating ability. However, erythrocyte size and morphology were not affected. Stopped-flow light scattering measurements indicated erythrocyte osmotic water permeabilities (in cm/s x 0.01, 10 degrees C): 2.1 +/- 0.2 (wild-type mice), 2.1 +/- 0.05 (UT-B null), 0.19 +/- 0.02 (AQP1 null), and 0.045 +/- 0.009 (AQP1/UT-B null). The low water permeability found in AQP1/UT-B null erythrocytes was also seen after HgCl(2) treatment of UT-B null erythrocytes or phloretin treatment of AQP1 null erythrocytes. The apparent activation energy for UT-B-mediated water transport was low, <2 kcal/mol. Estimating 14,000 UT-B molecules per mouse erythrocyte, the UT-B-dependent P(f) of 0.15 x 10(-4) cm/s indicated a substantial single channel water permeability of UT-B of 7.5 x 10(-14) cm(3)/s, similar to that of AQP1. These results provide direct functional evidence for UT-B-facilitated water transport in erythrocytes and suggest that urea traverses an aqueous pore in the UT-B protein.  相似文献   

18.
In order to predict optimal cooling rates for cryopreservation of cells, the cell-specific membrane hydraulic permeability and corresponding activation energy for water transport need to be experimentally determined. These parameters should preferably be determined at subzero temperatures in the presence of ice. There is, however, a lack of methods to study membrane properties of cells in the presence of ice. We have used Fourier transform infrared spectroscopy to study freezing-induced membrane dehydration of mouse embryonic fibroblast (3T3) cells and derived the subzero membrane hydraulic permeability and the activation energy for water transport from these data. Coulter counter measurements were used to determine the suprazero membrane hydraulic permeability parameters from cellular volume changes of cells exposed to osmotic stress. The activation energy for water transport in the ice phase is about three fold greater compared to that at suprazero temperatures. The membrane hydraulic permeability at 0 °C that was extrapolated from suprazero measurements is about five fold greater compared to that extrapolated from subzero measurements. This difference is likely due to a freezing-induced dehydration of the bound water around the phospholipid head groups. Using Fourier transform infrared spectroscopy, two distinct water transport processes, that of free and membrane bound water, can be identified during freezing with distinct activation energies. Dimethylsulfoxide, a widely used cryoprotective agent, did not prevent freezing-induced membrane dehydration but decreased the activation energy for water transport.  相似文献   

19.
Recent reports suggest the expression of aquaporin (AQP)-type water channels in mitochondria from liver (AQP8) (Calamita, G., Ferri, D., Gena, P., Liquori, G. E., Cavalier, A., Thomas, D., and Svelto, M. (2005) J. Biol. Chem. 280, 17149-17153) and brain (AQP9) (Amiry-Moghaddam, M., Lindland, H., Zelenin, S., Roberg, B. A., Gundersen, B. B., Petersen, P., Rinvik, E., Torgner, I. A., and Ottersen, O. P. (2005) FASEB J. 19, 1459-1467), where they were speculated to be involved in metabolism, apoptosis, and Parkinson disease. Here, we systematically examined the functional consequence of AQP expression in mitochondria by measurement of water and glycerol permeabilities in mitochondrial membrane preparations from rat brain, liver, and kidney and from wild-type versus knock-out mice deficient in AQPs -1, -4, or -8. Osmotic water permeability, measured by stopped-flow light scattering, was similar in all mitochondrial preparations, with a permeability coefficient P(f) approximately 0.009 cm/s. Glycerol permeability was also similar ( approximately 5 x 10(-6) cm/s) in the various preparations. HgCl(2) slowed osmotic equilibration comparably in mitochondria from wild-type and AQP-deficient mice, although the slowing was explained by altered mitochondrial size rather than reduced P(f). Immunoblot analysis of mouse liver mitochondria failed to detect AQP8 expression, with liver homogenates from wild-type/AQP8 null mice as positive/negative controls. Our results provide evidence against functionally significant AQP expression in mitochondria, which is consistent with the high mitochondrial surface-to-volume ratio producing millisecond osmotic equilibration, even when intrinsic membrane water permeability is not high.  相似文献   

20.
Summary Using14C-erythritol, we measured net as well as unidirectional erythritol fluxes. Up to near saturation, net and unidirectional fluxes were virtually identical and linearly related to the erythritol concentration in the medium (isotonic saline). No saturation of the transfer system was observed. At 20°C, a maximum of 60 to 70% of the erythritol flux could be inhibited by glucose, phlorizin, or a combination of both substances. Dinitrofluorobenzene and HgCl2 also reduce erythritol permeability. These findings confirm the earlier conclusion of F. Bowyer and W. F. Widdas that the glucose transport system is involved in erythritol permeation. Glycerol partially inhibits the glucose-phlorizin-sensitive component of erythritol flux, but not the glucose-phlorizin-insensitive component. Apparently glycerol has a slight affinity to that portion of the glucose transport system which is involved in erythritol transfer, whereas the glucosephlorizin-insensitive fraction of erythritol movements is not identical with the glycerol system. This latter inference is supported by the observation that, in contrast to glycerol permeability, erythritol permeability is insensitive to variations of pH or to the addition of copper. The apparent activation energy of the glucose-phlorizin-sensitive and-insensitive fractions of erythritol permeation are 22.2 and 20.7 kcal/mole, respectively. These values are not significantly different from one another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号