共查询到20条相似文献,搜索用时 15 毫秒
1.
Sensitivity analysis for matched case-control studies 总被引:1,自引:0,他引:1
P R Rosenbaum 《Biometrics》1991,47(1):87-100
A sensitivity analysis in an observational study indicates the degree to which conclusions would be altered by hidden biases of various magnitudes. A method of sensitivity analysis previously proposed for cohort studies is extended for use in matched case-control studies with multiple controls, where slightly different derivations and calculations are required. Also discussed is a sensitivity analysis for case-control studies that have two distinct types of controls, say hospital and neighborhood controls, where the two types may be affected by different biases. For illustration, the method is applied to five case-control studies, including a study of herniated lumbar disc in which there are three types of cases, and a study of breast cancer with two types of controls. 相似文献
2.
Power calculations for matched case-control studies 总被引:4,自引:0,他引:4
W D Dupont 《Biometrics》1988,44(4):1157-1168
Power calculations are derived for matched case-control studies in terms of the probability po of exposure among the control patients, the correlation coefficient phi for exposure between matched case and control patients, and the odds ratio psi for exposure in case and control patients. For given Type I and Type II error probabilities alpha and beta, the odds ratio that can be detected with a given sample size is derived as well as the sample size needed to detect a specified value of the odds ratio. Graphs are presented for paired designs that show the relationship between sample size and power for alpha = .05, beta = .2, and different values of po, phi, and psi. The sample size needed for designs involving M matched control patients can be derived from these graphs by means of a simple equation. These results quantify the loss of power associated with increasing correlation between the exposure status of matched case and control patients. Sample size requirements are also greatly increased for values of po near 0 or 1. The relationship between sample size, psi, phi, and po is discussed and illustrated by examples. 相似文献
3.
Exact inference for matched case-control studies 总被引:1,自引:0,他引:1
In an epidemiological study with a small sample size or a sparse data structure, the use of an asymptotic method of analysis may not be appropriate. In this paper we present an alternative method of analyzing data for case-control studies with a matched design that does not rely on large-sample assumptions. A recursive algorithm to compute the exact distribution of the conditional sufficient statistics of the parameters of the logistic model for such a design is given. This distribution can be used to perform exact inference on model parameters, the methodology of which is outlined. To illustrate the exact method, and compare it with the conventional asymptotic method, analyses of data from two case-control studies are also presented. 相似文献
4.
Sample size for individually matched case-control studies 总被引:4,自引:0,他引:4
The standard formulas used to calculate sample size for an individually matched case-control study assume a constant probability of exposure throughout the pool of possible controls. We propose new formulas that allow for heterogeneity in the probability of exposure among controls in different matched sets. Since matching factors are suspected of being confounders, they are expected to divide the total population into subgroups with different proportions exposed. Thus, the assumption of homogeneity of exposure among controls, made by the currently used formulas, is inconsistent with the assumptions used to design a matched study. The proposed formulas avoid this inconsistency. We present an example to illustrate how heterogeneity can affect the required sample size. 相似文献
5.
Background
Infectious disease of livestock continues to be a cause of substantial economic loss and has adverse welfare consequences in both the developing and developed world. New solutions to control disease are needed and research focused on the genetic loci determining variation in immune-related traits has the potential to deliver solutions. However, identifying selectable markers and the causal genes involved in disease resistance and vaccine response is not straightforward. The aims of this study were to locate regions of the bovine genome that control the immune response post immunisation. 195 F2 and backcross Holstein Charolais cattle were immunised with a 40-mer peptide derived from foot-and-mouth disease virus (FMDV). T cell and antibody (IgG1 and IgG2) responses were measured at several time points post immunisation. All experimental animals (F0, F1 and F2, n = 982) were genotyped with 165 microsatellite markers for the genome scan.Results
Considerable variability in the immune responses across time was observed and sire, dam and age had significant effects on responses at specific time points. There were significant correlations within traits across time, and between IgG1 and IgG2 traits, also some weak correlations were detected between T cell and IgG2 responses. The whole genome scan detected 77 quantitative trait loci (QTL), on 22 chromosomes, including clusters of QTL on BTA 4, 5, 6, 20, 23 and 25. Two QTL reached 5% genome wide significance (on BTA 6 and 24) and one on BTA 20 reached 1% genome wide significance.Conclusions
A proportion of the variance in the T cell and antibody response post immunisation with an FDMV peptide has a genetic component. Even though the antigen was relatively simple, the humoral and cell mediated responses were clearly under complex genetic control, with the majority of QTL located outside the MHC locus. The results suggest that there may be specific genes or loci that impact on variation in both the primary and secondary immune responses, whereas other loci may be specifically important for early or later phases of the immune response. Future fine mapping of the QTL clusters identified has the potential to reveal the causal variations underlying the variation in immune response observed. 相似文献6.
7.
8.
The paper demonstrates how existing theory to assess spatial clustering based on second-moment properties of a labelled point process can be adapted to matched case-control studies. The null hypothesis that cases are a random sample from the superposition of cases and controls is replaced by the hypothesis that each case is a random sample from the set consisting of itself and its k matched controls. We compare the proposed test with other tests of spatial clustering, and describe an application to data on childhood diabetes in Yorkshire, England. 相似文献
9.
A new estimator of the common odds ratio in one-to-one matched case-control studies is proposed. The connection between this estimator and the James-Stein estimating procedure is highlighted through the argument of estimating functions. Comparisons are made between this estimator, the conditional maximum likelihood estimator, and the estimator ignoring the matching in terms of finite sample bias, mean squared error, coverage probability, and length of confidence interval. In many situations, the new estimator is found to be more efficient than the conditional maximum likelihood estimator without being as biased as the estimator that ignores matching. The extension to multiple risk factors is also outlined. 相似文献
10.
11.
K F Hirji 《Biometrics》1991,47(2):487-496
A recently developed algorithm for generating the distribution of sufficient statistics for conditional logistic models can be put to a twofold use. First, it provides an avenue for performing inference for matched case-control studies that does not rely on the assumption of a large sample size. Second, joint distributions generated by this algorithm can be used to make comparisons of various inferential procedures that are free from Monte Carlo sampling errors. In this paper, these two features of the algorithm are utilized to compare small-sample properties of the exact, mid-P value, and score tests for a conditional logistic model with two unmatched binary covariates. Both uniparametric and multiparametric tests, performed at a nominal significance level of .05, were studied. It was found that the actual significance levels of the mid-P test tend to be closer to the nominal level when compared with those of the other two tests. 相似文献
12.
Semiparametric methods for evaluating risk prediction markers in case-control studies 总被引:1,自引:0,他引:1
The performance of a well-calibrated risk model for a binary disease outcome can be characterized by the population distribution of risk and displayed with the predictiveness curve. Better performance is characterized by a wider distribution of risk, since this corresponds to better risk stratification in the sense that more subjects are identified at low and high risk for the disease outcome. Although methods have been developed to estimate predictiveness curves from cohort studies, most studies to evaluate novel risk prediction markers employ case-control designs. Here we develop semiparametric methods that accommodate case-control data. The semiparametric methods are flexible, and naturally generalize methods previously developed for cohort data. Applications to prostate cancer risk prediction markers illustrate the methods. 相似文献
13.
Anderson CA Pettersson FH Clarke GM Cardon LR Morris AP Zondervan KT 《Nature protocols》2010,5(9):1564-1573
This protocol details the steps for data quality assessment and control that are typically carried out during case-control association studies. The steps described involve the identification and removal of DNA samples and markers that introduce bias. These critical steps are paramount to the success of a case-control study and are necessary before statistically testing for association. We describe how to use PLINK, a tool for handling SNP data, to perform assessments of failure rate per individual and per SNP and to assess the degree of relatedness between individuals. We also detail other quality-control procedures, including the use of SMARTPCA software for the identification of ancestral outliers. These platforms were selected because they are user-friendly, widely used and computationally efficient. Steps needed to detect and establish a disease association using case-control data are not discussed here. Issues concerning study design and marker selection in case-control studies have been discussed in our earlier protocols. This protocol, which is routinely used in our labs, should take approximately 8 h to complete. 相似文献
14.
Logistic regression methods for retrospective case-control studies using complex sampling procedures
There are a number of possible designs for case-control studies. The simplest uses two separate simple random samples, but an actual study may use more complex sampling procedures. Typically, stratification is used to control for the effects of one or more risk factors in which we are interested. It has been shown (Anderson, 1972, Biometrika 59, 19-35; Prentice and Pyke, 1979, Biometrika 66, 403-411) that the unconditional logistic regression estimators apply under stratified sampling, so long as the logistic model includes a term for each stratum. We consider the case-control problem with stratified samples and assume a logistic model that does not include terms for strata, i.e., for fixed covariates the (prospective) probability of disease does not depend on stratum. We assume knowledge of the proportion sampled in each stratum as well as the total number in the stratum. We use this knowledge to obtain the maximum likelihood estimators for all parameters in the logistic model including those for variables completely associated with strata. The approach may also be applied to obtain estimators under probability sampling. 相似文献
15.
Attributable risk estimation from matched case-control data 总被引:2,自引:0,他引:2
A methodology is proposed for obtaining summary estimators, variances, and confidence intervals for attributable risk measures from data obtained through a case-control study design where one or more controls have been matched to each case. The sampling design for obtaining these data is conceptualized as a simple random sample of cases being equivalent to a simple random sample of matched sets. By combining information across the strata determined by the matched sets, this approach provides all of the benefits associated with the Mantel-Haenszel procedure for the estimators of attributable risk among the exposed and population attributable risk. Asymptotic variances are derived under the assumption that the frequencies of the unique response patterns follow the multinomial distribution. Simulation results indicate that these methods fare very well with respect to bias and coverage probability. 相似文献
16.
Evaluation of exact and asymptotic interval estimators in logistic analysis of matched case-control studies. 总被引:1,自引:0,他引:1
We compare six methods for constructing confidence intervals for a single parameter in stratified logistic regression. Three of these are based on inversion of standard asymptotic tests--namely, the Wald, the score, and the likelihood ratio tests. The other three are based on the exact distribution of the sufficient statistic for the parameter of interest. These include the traditional exact method of constructing confidence intervals, and two others, the mid-P and mean-P methods, which are modifications of this procedure that aim at reducing the conservative bias of the exact method. Using efficient algorithms, the six methods are compared by determination of their exact coverage levels in a series of conditional sample spaces. An incident case-control study of lung cancer in women is used to further illustrate the differences among the various methods. Computation of coverage functions is seen as a useful graphical diagnostic tool for assessing the appropriateness of different methods. The mid-P and the score methods are seen to have better coverage properties than the other four. 相似文献
17.
18.
Accessibility of high-throughput genotyping technology allows genome-wide association studies for common complex diseases. This paper addresses two challenges commonly facing such studies: (i) searching an enormous amount of possible gene interactions and (ii) finding reproducible associations. These challenges have been traditionally addressed in statistics while here we apply computational approaches--optimization and cross-validation. A complex risk factor is modeled as a subset of single nucleotide polymorphisms (SNPs) with specified alleles and the optimization formulation asks for the one with the maximum odds ratio. To measure and compare ability of search methods to find reproducible risk factors, we propose to apply a cross-validation scheme usually used for prediction validation. We have applied and cross-validated known search methods with proposed enhancements on real case-control studies for several diseases (Crohn's disease, autoimmune disorder, tick-borne encephalitis, lung cancer, and rheumatoid arthritis). Proposed methods are compared favorably to the exhaustive search: they are faster, find more frequently statistically significant risk factors, and have significantly higher leave-half-out cross-validation rate. 相似文献
19.