首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study was designed to examine the antisteroidogenic action of prostaglandin (PG) F2 alpha on ovine luteal cells in vitro. Purified populations of large and small steroidogenic luteal cells were treated with lipoproteins, luteinizing hormone (LH), and/or PGF2 alpha. To investigate the involvement of the protein kinase C (PKC) pathway in hormone action, luteal cells were made PKC-deficient by treatment for 12 h with 1 microM phorbol-12-myristate-13-acetate. Progesterone production by nonstimulated large and LH-stimulated small luteal cells was significantly increased by treatment with high- and low-density lipoprotein (HDL, 5-fold increase; LDL, 2-fold increase). PGF2 alpha inhibited (p less than 0.0001) progesterone production by HDL-stimulated large luteal cells in a dose-dependent manner, with 60 nM causing maximal inhibition. No effect of PGF2 alpha (20nM-20 microM) was found on production of progesterone by HDL-stimulated, PKC-deficient large cells or by LH- and HDL-stimulated small luteal cells. These results suggest that PGF2 alpha has a direct antisteroidogenic effect on the large luteal cell that is mediated through the PKC second messenger pathway.  相似文献   

2.
In this study we evaluated whether the early conceptus secretes a factor that blocks the action of prostaglandin (PG) F2 alpha on cultured ovine large luteal cells. PGF2 alpha inhibited progesterone production by lipoprotein-stimulated large luteal cells and this anti-steroidogenic action was blocked in a dose-dependent manner by conceptus proteins secreted from Day 15 embryos. Purified ovine trophoblast protein-1 (oTP-1) did not exhibit the anti-PGF2 alpha activity, but secreted conceptus proteins devoid of oTP-1 did prevent the anti-steroidogenic effects of PGF2 alpha. This activity does not appear to be a nonspecific effect of protein since neither serum albumin nor thyroglobulin, gamma globulin, insulin, LH, secreted ovine endometrial proteins, or heat-inactivated secreted conceptus proteins had this action. After molecular-sizing chromatography we found a high- and a low-molecular weight fraction with luteal protective activity. Neither of the secreted conceptus protein fractions blocked the binding of 3H-PGF2 alpha to large luteal cells. However, conceptus proteins did block the anti-steroidogenic action of phorbol ester and calcium ionophore on large luteal cells, suggesting that secreted conceptus proteins act after activation of the free calcium/protein kinase C intracellular effector pathways. Thus, the early ovine conceptus secretes a luteal protective protein(s) that may be important for maintaining the corpus luteum during early pregnancy; however, the physiologic significance of this luteal protective protein(s) cannot be stated without further investigation.  相似文献   

3.
The possible influence of an activator of protein kinase C, the tumor-promoting phorbol ester, PMA (phorbol-12-myristate-13-acetate), upon small bovine luteal cell steroidogenesis was investigated in vitro, PMA had no significant effect on basal and dibutyryl cyclic AMP (dbcAMP)-stimulated progesterone production but markedly modulated the LH-stimulated progesterone and cAMP productions. PMA potentiated the LH-stimulated cAMP accumulation whatever the dose of LH used. It also potentiated the LH-induced progesterone production in the presence of low doses of LH. Paradoxically, in the presence of maximal or submaximal effective doses of LH, PMA exerted a time- and dose-dependent inhibition of progesterone synthesis. Diacylglycerol was able to mimic the effects of PMA on LH-induced steroidogenesis. These observations suggest that the Ca2+- and phospholipid-dependent protein kinase C can modulate the regulation by LH of small bovine luteal cell steroidogenesis at a step before the synthesis of cAMP. They also suggest that the interaction between LH and its receptor is able to trigger a negative regulatory signal which would be only expressed for high doses of LH and in the presence of an activator of PKC.  相似文献   

4.
Corpora lutea from cyclic ewes were dissociated by collagenase and trypsin/EGTA treatments, and enriched fractions of small and large luteal cells were prepared on gradients of Ficoll. These fractions were incubated separately or remixed before incubation. Colchicine, cytochalasin B and the calcium channel-blocker verapamil significantly reduced progesterone production by both small and large luteal cell fractions, while isoprenaline stimulated an increase in progesterone production by large luteal cell fractions only. When fractions of small and large luteal cells were remixed, no more and no less progesterone was produced than would have been predicted from equivalent fractions incubated separately. There was therefore no evidence of synergism between small and large luteal cells in the production of progesterone. Prostaglandin F-2 alpha, which can inhibit LH-stimulated progesterone production by ovine luteal tissue in vitro, had no effect on LH-stimulated progesterone production by small luteal cell fractions, but significantly inhibited that by enriched fractions of large luteal cells. Since large luteal cell fractions were contaminated with small luteal cells, which are probably responsible for the progesterone-secretory response of these fractions to LH, it was concluded that the inhibition of LH-stimulated progesterone production by small luteal cells is dependent on the presence of large luteal cells. Oxytocin added to large and small luteal cell fractions did not affect progesterone production by either fraction. It was therefore concluded that the inhibitory action of PGF-2 alpha on LH-stimulated progesterone production may require the interaction of large and small luteal cells, but that oxytocin is not likely to be an intermediary in this interaction.  相似文献   

5.
Follicular fluid from large follicles of cows was extracted with charcoal and filtered through an Amicon XM-50 membrane. The XM-50 filtrate was further fractionated on a column of Fractogel TSK HW-40 (s) using Krebs-Ringer-phosphate buffer (1/100th dilution), pH 7.2, as an eluant. Two fractions (1 and 2) were obtained. Inhibition of progesterone secretion by small luteal cells was associated with the XM-50 filtrate and Fraction 2. Whole follicular fluid, the XM-50 retentate and Fraction 1 had no significant inhibitory activity. Fraction 2, which contained about 1/100,000th of the original follicular fluid proteins, inhibited the LH- or (Bu)2cAMP-induced progesterone production during a 2-h incubation. This inhibition was dose-dependent. Fraction 2 also inhibited LH-induced cAMP accumulation, but did not affect the conversion of pregnenolone to progesterone or the basal progesterone production. The molecular weight of the inhibitory factor was estimated to be less than 10,000 and its ability to inhibit steroidogenesis was lost after digestion with protease but retained after heating for 60 min at 75 degrees C. These results demonstrate that bovine follicular fluid contains a heat-stable factor likely to be a polypeptide and which suppresses the steroidogenic response of small luteal cells to LH. The action of this inhibitory factor could involve both an inhibition of the LH-induced synthesis of cAMP and an inhibition of the action of cAMP.  相似文献   

6.
Enriched fractions of small and large luteal cells were incubated for 2 h with 1 or 10 microM calcium ionophore, A23187: unstimulated secretion of progesterone and viability in small cells were not affected but these measures were decreased (P less than 0.01) for unstimulated large cells and were significantly correlated (P less than 0.05). This effect in large cells was independent of extracellular calcium. Therefore, incubations of the two cell types were made in the presence of increasing concentrations of a protein kinase C activator, phorbol 12-myristate 13-acetate (TPA). Secretion of progesterone and viability were not augmented in unstimulated small cells, but TPA prevented (P less than 0.05) the full stimulation of secretion of progesterone by LH. Secretion of progesterone in unstimulated large cells was inhibited (P less than 0.01) by TPA (100 nM and 10 microM), although viability was unaffected. The non-tumour promoting phorbol ester, 4 alpha-phorbol didecanoate, had no effect on large cells. Extracellular calcium was not required for the observed effect of TPA. Sphingosine, an agent inhibitory to protein kinase C activity, inhibited (P less than 0.01) secretion of progesterone in small and large cells, and also reduced (P less than 0.01) cell viability. These values were significantly correlated (P less than 0.05) in both cell types. The above observations suggest that protein kinase C may invoke negative regulation on progesterone production in unstimulated large and hormone-stimulated small luteal cells of sheep. Since sphingosine significantly reduced viability in small and large cells and ionophore selectively inhibited viability in large cells, the ability of these agents to influence calcium-mediated intracellular regulation of steroidogenesis is still uncertain.  相似文献   

7.
To examine the effect of purified LH on development and function of luteal cells, 27 ewes were assigned to: (1) hypophysectomy plus 2 micrograms ovine LH given i.v. at 4-h intervals from Days 5 to 12 of the oestrous cycle (oestrus = Day 0; Group H + LH; N = 7); (2) hypophysectomy with no LH replacement (Group N-LH; N = 6); (3) control (no hypophysectomy) plus LH replacement as in Group H + LH (Group S + LH; N = 7); (4) control with no LH treatment (Group S-LH; N = 7). Blood samples were collected at 4-h intervals throughout the experiment to monitor circulating concentrations of LH, cortisol and progesterone. On Day 12 of the oestrous cycle corpora lutea were collected and luteal progesterone concentrations, unoccupied receptors for LH and number and sizes of steroidogenic and non-steroidogenic luteal cell types were determined. Corpora lutea from ewes in Group H-LH were significantly smaller (P less than 0.05), had lower concentrations of progesterone, fewer LH receptors, fewer small luteal cells and fewer non-steroidogenic cells than did corpora lutea from ewes in Group S-LH. The number of large luteal cells was unaffected by hypophysectomy, but the sizes of large luteal cells, small luteal cells and fibroblasts were reduced. LH replacement in hypophysectomized ewes maintained luteal weight and the numbers of small steroidogenic and non-steroidogenic luteal cells at levels intermediate between those observed in ewes in Groups L-LH and S-LH. In Group H + LH ewes, luteal and serum concentrations of progesterone, numbers of luteal receptors for LH, and the sizes of all types of luteal cells were maintained. Numbers of small steroidogenic and non-steroidogenic cells were also increased by LH in hypophysectomized ewes. In Exp. II, 14 ewes were assigned to: (1) sham hypophysectomy with no LH replacement therapy (Group S-LH; N = 5); (2) sham hypophysectomy with 40 micrograms ovine LH given i.v. at 4-h intervals from Day 5 to Day 12 of the oestrous cycle (Group S + LH; N = 5); and (3) hypophysectomy plus LH replacement therapy (Group H + LH; N = 4). Experimental procedures were similar to those described for Exp. I. Treatment of hypophysectomized ewes with a larger dose of LH maintained luteal weight, serum and luteal progesterone concentrations and the numbers of steroidogenic and non-steroidogenic luteal cells at control levels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Peripheral blood samples were collected daily (Days 1-10 after ovulation) and analysed for progesterone content. Luteal tissue was collected on Day 10 after the LH surge, or Day 10 after hCG injection from cyclic and superovulated ewes, respectively. The tissue was enzymically dispersed and an aliquant was utilized for measurement of cell diameters, and staining for 3 beta-hydroxy-delta 5-steroid dehydrogenase-delta 5, delta 4-isomerase activity (3 beta-HSD). The remaining cell preparation was separated into small (10-22 micron) and large (greater than 22 micron) cell fractions by elutriation. Small and large cell suspensions were incubated (37 degrees C, 2 h) in the presence or absence or ovine LH (100 ng/ml) or dbcAMP (2 mM) and progesterone content of the medium was measured. Superovulation did not affect circulating progesterone concentrations, when expressed per mg luteal tissue recorded; basal progesterone production by small or large luteal cells; the unresponsiveness of large luteal cells to ovine LH or dbcAMP; the ratio of small:large cells recovered by dissociation the mean diameter of total cells; or the mean diameter of large cells. However, the mean cell diameter and LH stimulation of progesterone production by small cells were greater (P less than 0.05) in luteal tissue collected from superovulated than in that from cyclic ewes. These differences appear to be an amplification of basic function. Therefore, we conclude that corpora lutea obtained from superovulated ewes can be used to study functional aspects of small and large cells.  相似文献   

9.
The mechanisms responsible for the increased basal rates of progesterone secretion from large steroidogenic luteal cells (LLC) relative to small steroidogenic luteal cells (SLC) have not been clearly defined. To determine if protein kinase A (PKA) is tonically active in LLC, the adenylate cyclase activator forskolin and a specific PKA inhibitor (PKI) were utilized in a 2 x 2 factorial treatment with each steroidogenic cell type. Progesterone and cAMP production were quantified after the different treatments. In addition, the effects of the treatments on the concentrations and relative phosphorylation status of the steroidogenic acute regulatory (STAR) protein in the two cell types were determined as a measure of PKA activity. Treatment with PKI blocked forskolin-induced increases in progesterone secretion by SLC without affecting the production of cAMP. The treatment of LLC with PKI significantly decreased basal progesterone secretion in the presence or absence of forskolin, indicating that the high level of steroidogenesis in this cell type requires PKA activity. There were no differences in the steady-state concentrations of STAR protein in either cell type after treatment. However, the percentage of relative STAR phosphorylation was higher in the LLC than in SLC, and PKI treatment significantly decreased the phosphorylation of STAR in the LLC. The relative phosphorylation status of STAR and the concentrations of progesterone in the media were significantly correlated with the treatments in both cell types. The amount of progesterone secreted per picogram of cAMP was higher in the LLC than in the SLC, and this was accompanied by a significant increase in the ratio of relative STAR phosphorylation to the steady-state concentration of STAR protein. These data are compatible with the theory that LLC are constitutively steroidogenic, partly because they have tonically active PKA. In addition, the phosphorylation of STAR appears to be a primary activity of PKA in both types of ovine steroidogenic luteal cells.  相似文献   

10.
A series of studies was conducted to evaluate the effects of phorbol esters and a diacylglycerol analog on basal and hormone-stimulated steroidogenesis in granulosa cells from the largest preovulatory follicle of the domestic hen. Agents that previously have been shown to activate protein kinase C, such as the tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate (PMA), and the synthetic diacylglycerol analog, 1-oleoyl-2-acetylglycerol (OAG), suppressed luteinizing hormone (LH)-induced progesterone (PMA at levels of 10 and 100 ng/tube; OAG at levels of 10 and 25 micrograms/tube), and androgen (10 and 100 ng PMA; 25 micrograms OAG) production, but had no effect on basal levels of either steroid. Furthermore, PMA decreased the ability of vasoactive intestinal peptide to induce steroidogenesis, suggesting that protein kinase C activation may generally modulate the activity of hormones that act via the adenylyl cyclase/cyclic 3',5'-adenosine monophosphate (cAMP) second messenger system. In further support of this proposal was the finding that PMA and OAG decreased the production of cAMP in response to LH, and attenuated the steroidogenic response in granulosa cells exposed to 10 mM 8-bromo-cAMP. By contrast, the induction of calcium mobilization using a calcium ionophore (A23187; 0.5-2.0 microM) stimulated progesterone and androgen production without increasing intracellular levels of cAMP, and this stimulatory effect on steroidogenesis was not inhibited by the presence of 100 ng PMA/tube. From these data, we suggest that the activation of protein kinase C in granulosa cells of the hen may provide a physiological mechanism by which receptor-mediated steroidogenesis, involving the adenylyl cyclase second messenger system, is modulated.  相似文献   

11.
Control of steroidogenesis in small and large bovine luteal cells   总被引:1,自引:0,他引:1  
Evidence was cited to show that: (1) prostacyclin (PGI2) plays a luteotrophic role in the bovine corpus luteum and that products of the lipoxygenase pathway of arachidonic acid metabolism, especially 5-hydroxyeicosatetraenoic acid play luteolytic roles; (2) oxytocin of luteal cell origin plays a role in development, and possibly in regression, of the bovine corpus luteum; and (3) luteal cells arise from two sources; the characteristic small luteal cells at all stages of the oestrous cycle and pregnancy are of theca cell origin; the large cells are of granulosa cell origin early in the cycle, but a population of theca-derived large cells appears later in the cycle. Results of in vitro studies with total dispersed cells and essentially pure preparations of large and small luteal cells indicate that: (1) the recently described Ca2+-polyphosphoinositol-protein kinase C second messenger system is involved in progesterone synthesis in the bovine corpus luteum; (2) activation of protein kinase C is stimulatory to progesterone synthesis in the small luteal cells; (3) activation of protein kinase C has no effect on progesterone synthesis in the large luteal cells; and (4) protein kinase C exerts its luteotrophic effect in total cell preparations, in part at least, by stimulating the production of prostacyclin. The protein kinase C system may cause down regulation of LH receptors in the large cells.  相似文献   

12.
We studied the effects of calcium (Ca2+) ions in progesterone (P) production by separated small and large luteal cells. Corpora lutea were collected from 31 heifers between days 10 and 12 of the estrous cycle. Purified small and large cells were obtained by unit gravity sedimentation and flow cytometry. P accumulation in cells plus media was determined after incubating 1 x 10(5) small and 5 x 10(3) large cells for 2 and 4 h respectively. Removal of Ca2+ from the medium did not influence basal P production in the small cells (P greater than 0.05). However, stimulation of P by luteinizing hormone (LH), prostaglandin E2 (PGE2), 8-bromo-cyclic 3',5' adenosine monophosphate (8-Br-cAMP) and prostaglandin F2 alpha (PGF2 alpha) was impaired (P less than 0.05) by low Ca2+ concentrations. LH and PGE2-stimulated cAMP production was not altered by low extracellular Ca2+ concentrations, and PGF2 alpha had no effect on cAMP. In contrast, basal as well as LH and forskolin-stimulated P production were attenuated (P less than 0.05) in Ca2(+)-deficient medium in the large cells. However, P production stimulated by 8-Br-cAMP was not altered in Ca2(+)-deficient medium. Steroidogenesis in large cells was also dependent on intracellular Ca2+, since 8-N, N-diethylamineocytyl-3,4,5-trimethoxybenzoate (TMB-8), an inhibitor of intracellular Ca2+ release and/or action, suppressed (P less than 0.05) basal, LH and 8-Br-cAMP stimulated P. In contrast, basal P in small cells was not altered by TMB-8; whereas LH-stimulated P was reduced 2-fold (P less than 0.05). The calcium ionophore, A23187, inhibited LH-stimulated P in small cells and both basal and agonist-stimulated P in large cells. These studies show that basal P production in small cells does not require Ca2+ ions, while hormone-stimulated P production in small cells and both basal and hormone-stimulated P in large cells do require Ca2+. The inhibitory effect of Ca2+ ion removal was exerted prior to the generation of cAMP in the large cells, but distal to cAMP generation in hormone-stimulated small cells. The calmodulin/protein kinase C antagonist, W-7, also inhibited both basal and hormone-stimulated P production in both small and large luteal cells, indicating that P production in luteal cells also involves Ca2(+)-calmodulin/protein kinase C-dependent mechanisms.  相似文献   

13.
The rate-limiting step in luteal biosynthesis of progesterone consists of cleavage of the side chain of cholesterol by mitochondrial cytochrome P450 side-chain cleavage enzyme (P450scc) to form pregnenolone. Luteal mRNA encoding P450scc, quantitated on selected days of the 16-day ovine estrous cycle, was similar on days 3 and 6, increased by 2-fold on day 9 (P < 0.05) and remained elevated on day 15. Levels of P450scc mRNA on day 15 of pregnancy were not different from those found on any day of the cycle (P < 0.05). To determine whether levels of mRNA encoding P450scc are hormonally regulated, ewes on day 10 of the estrous cycle were injected with hCG or prostaglandin F2 (PGF2). P450scc mRNA was not increased for up to 36 h after injection of hCG, nor decreased within 8 h after injection of PGF2 (P < 0.05). An assay for P450scc activity was developed which utilized ovine small and large luteal cells in the presence of 22R-hydroxycholesterol and ovine high density lipoprotein. Enzyme activity was quantitated by measurement of progesterone production. In small luteal cells activation of the protein kinase A (PKA) second-messenger system by treatment with LH resulted in 910% increase in progesterone production without altering activity of P450scc. Activation of the protein kinase C (PKC) second-messenger system with phorbol 12-myristate 13-acetate caused a 51% reduction in progesterone secretion from large luteal cells but did not alter activity of P450scc. These findings suggest that in mature luteal tissue steady state levels of mRNA encoding P450scc, and enzyme activity are independent of acute regulation by activation of PKA or PKC second-messenger systems.  相似文献   

14.
Preparations of small and large steroidogenic cells from enzymatically dispersed ovine corpora lutea were utilized to study the in vitro effects of luteinizing hormone (LH) and prostaglandins (PG) E1, E2 and I2. Cells were allowed to attach to culture dishes overnight and were incubated with either LH (100 ng/ml), PGE1, PGE2, or PGI2 (250 ng/ml each). The secretion of progesterone by large cells was stimulated by all prostaglandins tested (P less than 0.05) while the moderate stimulation observed after LH treatment was attributable to contamination of the large cell population with small cells. Prostaglandins E1 and E2 had no effect on progesterone secretion by small cells, while LH was stimulatory at all times (0.5 to 4 hr) and PGI2 was stimulatory by 4 hr. Additional studies were conducted to determine if the effects of PGE2 upon steroidogenesis in large cells were correlated with stimulated activity of adenylate cyclase. In both plated and suspended cells PGE2 caused an increase (P less than 0.05) in the rate of progesterone secretion but had no effect upon the activity of adenylate cyclase or cAMP concentrations within cells or in the incubation media. Exposure of luteal cells to forskolin, a nonhormonal stimulator of adenylate cyclase, resulted in marked increases in all parameters of cyclase activity but had no effect on progesterone secretion. These data suggest that the actions of prostaglandins E1, E2 and I2 are directed primarily toward the large cells of the ovine corpus luteum and cast doubt upon the role of adenylate cyclase as the sole intermediary in regulation of progesterone secretion in this cell type.  相似文献   

15.
Although the corpus luteum (CL) is not known as a target tissue for thyrotropin (TSH), this hormone increases progesterone production by porcine luteal cells cultured in vitro. In this study we investigated the optimal conditions for TSH-stimulated progesterone secretion as well as the involvement of protein kinase A (PKA) and protein kinase C (PKC) in the mechanism of TSH action on porcine luteal cells. To study the PKA and PKC signaling mechanisms, luteal cells collected from mature CL were incubated with the inhibitor of PKA and potent activators of both kinases: PKA-forskolin and PKC-phorbol ester 12-myriistate-13-acetate (PMA). The PKA inhibitor totally suppressed progesterone production in TSH alone, forskolin alone and in TSH plus forskolin-stimulated luteal cells. Forskolin increased basal (P < 0.05) and TSH-stimulated (P < 0.05) progesterone secretion and cAMP accumulation (P < 0.05). Forskolin and PMA added together to control (non-TSH-treated) luteal cells had an additive effect on progesterone production. In TSH-treated cells, the effect of PMA was statistically significant but did not show an additive effect with forskolin. Further PMA did not affect cAMP accumulation in control and TSH-treated luteal cells. Treatment of control and TSH-treated luteal cells with forskolin and PMA together showed the same increase in cAMP accumulation as with forskolin alone. This is the first demonstration that TSH acts on luteal cell steroidogenesis by activation of the cAMP/PKA second messenger system and also that the PKC signaling pathway may be involved in luteal TSH action on the corpus luteum.  相似文献   

16.
Highly purified preparations of small and large bovine luteal cells were utilized to examine the effects of prostaglandins F2 alpha (PGF2 alpha), E2 (PGE2) and I2 (PGI2) analog on progesterone production. Corpora lutea were obtained from Holstein heifers between days 10 and 12 of the estrous cycle. Purified small and large cells were obtained by unit gravity sedimentation and flow cytometry. Progesterone accumulation was determined in 1 x 10(5) small and 5 x 10(3) large cells after 2 and 4 h incubations respectively. Progesterone synthesis was increased (p less than 0.05) in the small cells by the increasing levels of PGF2 alpha, PGE2, carba-PGI2 and LH. PGF2 alpha, but not PGE2 or carba-PGI2 increased (p less than 0.05) LH-stimulated progesterone production. There was no interaction of various combinations of prostaglandins on progesterone production in the small cells. In the large cells, PGF2 alpha had no effect on basal progesterone production. However, it inhibited LH-stimulated progesterone synthesis. In contrast, PGE2 and carba-PGI2 stimulated (p less than 0.05) basal progesterone production in the large cells. In the presence of LH, high levels of carba-PGI2 inhibited (p less than 0.05) progesterone synthesis. The PGE2 and PGI2-stimulated progesterone production in the large luteal cells was also inhibited in the presence of PGF2 alpha. These data suggest all of the prostaglandins used exert a luteotropic action in the small cells. In the large cells only PGE2 and carba-PGI2 are luteotropic, while PGF2 alpha exerts a luteolytic action. The effects of the prostaglandins in the small and large luteal cells suggest that their receptors are present in both cell types.  相似文献   

17.
Fields MJ  Fields PA 《Theriogenology》1996,45(7):1295-1325
The corpus luteum, one of the biological clocks of the estrous cycle and pregnancy, is known foremost for its production of progesterone that blocks the pituitary release of gonadotropins and prepares the uterus for a pregnancy. The cellular sources of this progesterone are the steroidogenic small and large luteal cells. Other luteal cells that are not steroidogenic, but are believed to have an important role in the function of this gland are the fibroblast, macrophages and endothelial cells. The most prominent luteal cell is the large steroidogenic cell characterized by an abundance of smooth endoplasmic reticulum and densely packed spherical mitochondria that are indicative of its contribution to most of the circulating progesterone believed to be constitutively secreted and not under the control of LH. Other distinguishing features of the large luteal cell are the presence of rough endoplasmic reticulum, prominent Golgi, and secretory granules that are indicative of endocrine cells. This cell undergoes dynamic changes across the estrous cycle and pregnancy, believed to reflect a change in progesterone and protein secretion that will eventually influence a successful pregnancy or another ovulation if pregnancy fails. The morphological characteristics of the bovine luteal cells are the focus of this review.  相似文献   

18.
The second messengers mediating hormonal regulation of the corpus luteum are incompletely defined, particularly for the primary luteolytic hormone prostaglandin F2 alpha (PGF2 alpha). In this study, hormonally induced changes in free intracellular calcium concentrations were measured in individual small and large ovine luteal cells by using computer-assisted microscopic imaging of fura-2 fluorescence. This technique could readily detect transient increases in free calcium concentrations within both small and large luteal cells after treatment with 1 microM of the calcium ionophore, A23187. Treatment with PGF2 alpha (1 microM) caused a dramatic increase in free calcium concentrations in large (before = 73 +/- 2 nM; 2 min after PGF2 alpha = 370 +/- 21 nM; n = 33 cells) but not in small (before = 66 +/- 4 nM; 2 min after PGF2 alpha = 69 +/- 8 nM; n = 12 cells) luteal cells. The magnitude and timing of the calcium response was dose- and time-dependent. The PGF2 alpha-induced increase in free intracellular calcium is probably due to influx of extracellular calcium, since inclusion of inorganic calcium channel blockers (100 microM manganese or cobalt) attenuated the response to PGF2 alpha and removal of extracellular calcium eliminated the response. In contrast to PGF2 alpha, luteinizing hormone (LH) (100 ng/ml) caused no change in intracellular levels of free calcium in small or large luteal cells, even though this dose of LH stimulated (p less than 0.01) progesterone production by small luteal cells. Therefore, alterations in free calcium concentrations could be the intracellular second message mediating the luteolytic action of PGF2 alpha in the large ovine luteal cell.  相似文献   

19.
Preparations of small and large steroidogenic cells from enzymatically dispersed ovine corpora lutea were utilized to study the invitro effects of luteinizing hormone (LH) and prostaglandins (PG) E1, E2 and I2. Cells were allowed to attach to culture dishes overnight and were incubated with either LH (100 ng/ml), PGE2, PGE2, or PGI2 (250 ng/ml each). The secretion of progesterone by large cells was stimulated by all prostaglandins tested (P < 0.05) while the moderate stimulation observed after LH treatment was attributable to contamination of the large cell population with small cells. Prostaglandins E1 and E2 had no effect on progesterone secretion by small cells, while LH was stimulatory at all times (0.5 to 4 hr) and PGI2 was stimulatory by 4 hr. Additional studies were conducted to determine if the effects of PGE2 upon steroidogenesis in large cells were correlated with stimulated activity of adenylate cyclase. In both plated and suspended cells PGE2 caused an increase (P < 0.05) in the rate of progesterone secretion but had no effect upon the activity of adenylate cyclase or cAMP concentrations within cells or in the incubation media. Exposure of luteal cells to forskolin, a nonhormonal stimulator of adenylate cyclase, resulted in marked increases in all parameters of cyclase activity but had no effect on progesterone secretion. These data suggest that the actions of prostaglandins E1, E2 and I2 are directed primarily toward the large cells of the ovine corpus luteum and cast doubt upon the role of adenylate cyclase as the sole intermediary in regulation of progesterone secretion in this cell type.  相似文献   

20.
Ovine luteal tissue contains two distinct steroidogenic cell types, small (8-20 microns) and large (greater than 20 microns), which differ based on morphological and biochemical criteria. Unstimulated small cells secrete low levels of progesterone, respond to LH or dibutyryl cAMP (dbcAMP) with enhanced secretion of progesterone, and contain most of the receptors for LH. The unstimulated large cells, conversely, secrete high levels of progesterone, have few, if any, receptors for LH, and do not respond to LH or dbcAMP with increased progesterone secretion. The lack of response to dbcAMP by large cells was investigated. Large cells incubated in the presence of cholesterol, ram serum, or 25-hydroxycholesterol did not demonstrate substrate limitation. Hormone-independent stimulation of adenylate cyclase by cholera toxin or forskolin resulted in increased adenylate cyclase activities (P less than 0.01), cAMP accumulation (P less than 0.05), and the binding of endogenous cAMP (P less than 0.05) by type I cAMP-dependent protein kinase in both small and large cells. These treatments were accompanied by enhanced secretion of progesterone (P less than 0.05) in small cells. In contrast, large cells did not respond with an increase in progesterone secretion under these conditions. These observations suggest that the high rate of secretion of progesterone in unstimulated large cells is not regulated by cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号