首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang F  Dai X  Wang Y 《Molecular & cellular proteomics : MCP》2012,11(7):M111.016915-M111.016915-8
5-Aza-2'-deoxycytidine (5-Aza-CdR), a nucleoside analog that can inhibit DNA cytosine methylation, possesses potent antitumorigenic activities for myeloid disorders. Although 5-Aza-CdR is known to be incorporated into DNA and inhibit DNA (cytosine-5)-methyltransferases, the precise mechanisms underlying the drug's antineoplastic activity remain unclear. Here we utilized a mass spectrometry-based quantitative proteomic method to analyze the 5-Aza-CdR-induced perturbation of protein expression in Jurkat-T cells at the global proteome scale. Among the ≈ 2780 quantified proteins, 188 exhibited significant alteration in expression levels upon a 24-hr treatment with 5 μm 5-Aza-CdR. In particular, we found that drug treatment led to substantially reduced expression of farnesyl diphosphate synthase (FDPS) and farnesyl diphosphate farnesyltransferase (FDFT1), two important enzymes involved in de novo cholesterol synthesis. Consistent with this finding, 5-Aza-CdR treatment of leukemia (Jurkat-T, K562 and HL60) and melanoma (WM-266-4) cells led to a marked decrease in cellular cholesterol content and pronounced growth inhibition, which could be rescued by externally added cholesterol. Exposure of these cells to 5-Aza-CdR also led to epigenetic reactivation of dipeptidyl peptidase 4 (DPP4) gene. Additionally, suppression of DPP4 expression with siRNA induced elevated protein levels of FDPS and FDFT1, and increased cholesterol biosynthesis in WM-266-4 cells. Together, the results from the present study revealed, for the first time, that 5-Aza-CdR exerts its cytotoxic effects in leukemia and melanoma cells through epigenetic reactivation of DPP4 gene and the resultant inhibition of cholesterol biosynthesis in these cells.  相似文献   

2.
Genome-wide DNA methylation patterns are frequently deregulated in cancer. There is considerable interest in targeting the methylation machinery in tumor cells using nucleoside analogs of cytosine, such as 5-aza-2′-deoxycytidine (5-azadC). 5-azadC exerts its antitumor effects by reactivation of aberrantly hypermethylated growth regulatory genes and cytoxicity resulting from DNA damage. We sought to better characterize the DNA damage response of tumor cells to 5-azadC and the role of DNA methyltransferases 1 and 3B (DNMT1 and DNMT3B, respectively) in modulating this process. We demonstrate that 5-azadC treatment results in growth inhibition and G2 arrest—hallmarks of a DNA damage response. 5-azadC treatment led to formation of DNA double-strand breaks, as monitored by formation of γ-H2AX foci and comet assay, in an ATM (ataxia-telangiectasia mutated)-dependent manner, and this damage was repaired following drug removal. Further analysis revealed activation of key strand break repair proteins including ATM, ATR (ATM-Rad3-related), checkpoint kinase 1 (CHK1), BRCA1, NBS1, and RAD51 by Western blotting and immunofluorescence. Significantly, DNMT1-deficient cells demonstrated profound defects in these responses, including complete lack of γ-H2AX induction and blunted p53 and CHK1 activation, while DNMT3B-deficient cells generally showed mild defects. We identified a novel interaction between DNMT1 and checkpoint kinase CHK1 and showed that the defective damage response in DNMT1-deficient cells is at least in part due to altered CHK1 subcellular localization. This study therefore greatly enhances our understanding of the mechanisms underlying 5-azadC cytotoxicity and reveals novel functions for DNMT1 as a component of the cellular response to DNA damage, which may help optimize patient responses to this agent in the future.  相似文献   

3.
4.
Retinoic acid receptor beta (RARbeta) is thought to be involved in suppressing cell growth and tumorigenicity. Many premalignant and malignant cells exhibit a reduced RARbeta expression. However, in some of these cells (e.g. H157 human squamous cell carcinoma cells), RARbeta can be induced by retinoids (e.g. all-trans-retinoic acid, ATRA) because its promoter contains a retinoic acid response element. To examine the hypothesis that RARbeta induction is important for inhibition of cell proliferation by retinoids, we blocked ATRA-induced RARbeta expression in H157 cells using a retroviral vector harboring multiple copies of antisense RARbeta2 sequences. Antisense RARbeta-transfected cells showed not only decreased expression of ATRA-induced RARbeta protein but also reduced ATRA-induced RARE binding activity and transactivation. Importantly, all antisense RARbeta transfectants of H157 cells were less responsive than vector-transfected cells to the growth inhibitory effects of the retinoids ATRA and Ch55 in vitro. These results demonstrate that RARbeta induction may play an important role in mediating growth inhibitory effects of retinoids in cancer cells.  相似文献   

5.
6.
Metabolic labeling and detection with a methylated lysine-specific antibody confirm lysine methylation of RAR alpha in mammalian cells. We previously reported Lys (347) trimethylation of mouse retinoic acid receptor alpha (RAR alpha) in the ligand binding domain (LBD) that affected ligand sensitivity of the dissected LBD. Here we report two monomethylated residues, Lys (109) and Lys (171) identified by LC-ESI-MS/MS in the DNA binding domain (DBD) and the hinge region, which affect retinoic acid (RA) sensitivity, coregulator interaction and heterodimerization with retinoid X receptor (RXR) in the context of the full-length protein. Constitutive negative mutation at Lys (109), but not Lys (171), reduces RA-dependent activation. Methylation at Lys (109) plays a more dominant role than trimethylation at Lys (347) in terms of RA activation of the full-length receptor. Lys (109) is located in a homologous sequence (CEGC K GFFRRS) of the DBD in RARs and is conserved in the nuclear receptor superfamily even across the species boundary. This study uncovers a potential role for monomethylation at Lys (109) in coordinating the synergy between DBD and LBD for ligand-dependent activation of RAR alpha.  相似文献   

7.
The retinoic acid receptor beta2 (RARbeta2) is a potent, retinoid-inducible tumor suppressor gene, which is a critical molecular relay for retinoid actions in cells. Its down-regulation, or loss of expression, leads to resistance of cancer cells to retinoid treatment. Up to now, no primary mechanism underlying the repression of the RARbeta2 gene expression, hence affecting cellular retinoid sensitivity, has been identified. Here, we demonstrate that the phosphoinositide 3-kinase/Akt signaling pathway affects cellular retinoid sensitivity, by regulating corepressor recruitment to the RARbeta2 promoter. Through direct phosphorylation of the corepressor silencing mediator for retinoic and thyroid hormone receptors (SMRT), Akt stabilized RAR/SMRT interaction, leading to an increased tethering of SMRT to the RARbeta2 promoter, decreased histone acetylation, down-regulation of the RARbeta2 expression, and impaired cellular differentiation in response to retinoid. The phosphoinositide 3-kinase/Akt signaling pathway, an important modulator of cellular survival, has thus a direct impact on cellular retinoid sensitivity, and its deregulation may be the triggering event in retinoid resistance of cancer cells.  相似文献   

8.
The ratio of two differentially replicating alleles is not constant during S phase. Using this fact, we have developed a method for determining allele-specific replication timing for alleles differing by at least a single base pair. Unsynchronized cells in tissue culture are first sorted into fractions based on DNA content as a measure of position in S phase. DNA is purified from each fraction and used for PCR with primers that bracket the allelic difference, amplifying both alleles. The ratio of alleles in the amplified product is then determined by a single nucleotide primer extension (SNuPE) assay, modified as described [Singer-Sam,J. and Riggs,A.D. (1993) Methods Enzymol., 225, 344-351]. We report here use of this SNuPE-based method to analyze replication timing of two X-linked genes, Pgk-1 and Xist, as well as the autosomal gene Gabra-6. We have found that the two alleles of the Gabra-6 gene replicate synchronously, as expected; similarly, the active allele of the Pgk-1 gene on the active X chromosome (Xa) replicates early relative to the silent allele on the inactive X chromosome (Xi). In contrast, the expressed allele of the Xist gene, which is on the Xi, replicates late relative to the silent allele on the Xa.  相似文献   

9.
The orphan nuclear receptor TR2 functions as a constitutive activator for the endogenous retinoic acid receptor beta2 (RAR(beta2)) gene expression in P19 embryonal carcinoma cells and for reporters driven by the RAR(beta2) promoter in COS-1 cells. The activation of RAR(beta2) by TR2 is mediated by the direct repeat-5 (DR5) element located in the RAR(beta2) promoter. Furthermore, cAMP exerts an enhancing effect on the activation of RAR(beta2) by TR2, which is mediated by the cAMP response element located in the 5'-flanking region of the DR5. The constitutive activation function-1 (AF-1) of TR2 is mapped to amino acid residues 10-30 in its N-terminal A segment. A direct molecular interaction occurs between CREMtau and TR2, detected by co-immunoprecipitation, which is mediated by the N-terminal AB segment of TR2. In gel mobility shift assays, TR2 competes with P19 nuclear factor binding to the RAR(beta2) promoter, and TR2 and CREMtau bind simultaneously to this DNA fragment. The role of TR2 in the early events of RA signaling process is discussed.  相似文献   

10.
Zhang Q  Rubenstein JN  Liu VC  Park I  Jang T  Lee C 《Life sciences》2005,76(10):1159-1166
The murine renal cell carcinoma (Renca) cells are insensitive to TGF-beta due to a lack of TGF-beta type II receptor (TbetaR-II). The objective of the present study is to determine the mechanism of this loss of sensitivity to TGF-beta in Renca cells. Renca cells were cultured and treated with 5-Aza-2'-Deoxycytidine (5-Aza), a specific inhibitor of methylation. Expression of TGF-beta type I receptor (TbetaRI) and TbetaRII was determined by RT-PCR and Western blot analysis before and after the treatment of Renca cells with 5-Aza. The expression of phosphorylated Smad2 (P-Smad2) was determined by Western blot analysis. TGF-beta levels in the conditioned medium were measured by ELISA. Renca cells did not express TbetaR-II prior to 5-Aza treatment. After 5-Aza treatment, these cells expressed TbetaR-II at both mRNA and protein levels, which corresponded to the restoration of sensitivity to TGF-beta by an increase in P-Smad2. Levels of TGF-beta1 were similar before and after 5-Aza treatment. Results of the present study indicated that, in Renca cells, the loss of sensitivity to TGF-beta is likely due to a promoter hypermethylation in the TbetaR-II gene.  相似文献   

11.
12.
Although different DNA polymerases have distinct functions and substrate affinities, their general mechanism of action is similar. Thus, they can all be studied using the same technical principle, the primer extension assay employing radioactive tags. Even though fluorescence has been used routinely for many years for DNA sequencing, it has not been used in the in vitro primer extension assay. The use of fluorescence labels has obvious advantages over radioactivity, including safety, speed and ease of manipulation. In the present study, we demonstrated the potential of non-radioactive in vitro primer extension for DNA polymerase studies. By using an M13 tag in the substrate, we can use the same fluorescent M13 primer to study different substrate sequences. This technique allows quantification of the DNA polymerase activity of the Klenow fragment using different templates and under different conditions with similar sensitivity to the radioactive assay.  相似文献   

13.
Recently three isoforms of the mouse retinoic acid receptor (mRAR beta 1, mRAR beta 2, mRAR beta 3) have been described, generated from the same gene (Zelent et al., 1991). The isoforms differ in their 5'-untranslated (5'-UTR) and A region, but have identical B to F regions. The N-terminal variability of mRAR beta 1/beta 3 is encoded in the first two exons (E1 and E2), while exon E3 includes N-terminal sequences of the mRAR beta 2 isoform. We have determined the structure of the human RAR beta 2 gene, using a genomic library from K562 cells. The open reading frame is split into eight exons: E3 contains sequences for the N-terminal A region and E4 to E10 encode the common part of the receptor, including the DNA-binding domain and ligand-binding domain. Corresponding to other nuclear receptors, both 'zinc-fingers' of the DNA-binding domain are encoded separately in two exons and the ligand-binding domain is assembled from five exons.  相似文献   

14.
In this report we describe a simple and rapid protocol for reliable quantitation of mitochondrial DNA (mtDNA) mutations, which is basically a modification of the traditional polymerase chain reaction (PCR)/restriction fragment length polymorphism (RFLP) analysis technique. Up to now, the PCR/RFLP method has been of limited use for the accurate determination of ratios of mutant and wild type molecules, largely owing to the formation of heteroduplex molecules by PCR and incompleteness of restriction digestion. In order to overcome this problem, we have introduced a single-step primer extension reaction using Vent(R)(exo-) DNA polymerase and a fluorescence-labeled primer to the standard assay. The labeled homoduplex molecules are then digested with a restriction endonuclease, and the nucleic acids fractionated on an automated DNA sequencer equipped with GENESCAN analysis software. The amount of mutant mtDNA is readily estimated from fluorescence intensities of the wild-type and mutant mtDNA fragments corrected for incomplete digestion as monitored by a homologous control fragment. The accuracy of the improved protocol was determined by constructing standard curves obtained from defined mixtures of genomic DNA containing homoplasmic wild-type and mutant mtDNA. The expected values were obtained, with an observed correlation coefficient of 0.997 and a typical variability of +/-5% between repeated measurements. Further validation of the protocol is provided by the screening of five patients and unaffected subjects carrying the guanine to adenine transition at the nucleotide 3460 of the mitochondrial genome responsible for the mitochondrial disorder of Leber's hereditary optic neuropathy.  相似文献   

15.
16.
Studies were performed to determine whether 5-fluoro-2'-deoxycytidine 5'-monophosphate (FdCMP) is an inhibitor of deoxycytidylate hydroxymethylase and whether it could form an isolable covalent complex with the enzyme and the cofactor, 5,10-methyl-enetetrahydrofolate. The results showed that although FdCMP is a competitive inhibitor of dCMP hydroxymethylase, it does not cause time-dependent inhibition of the enzyme in the presence of cofactor. Further, although uv difference spectral evidence was found for FdCMP-cofactor-enzyme complex, the complex was not sufficiently stable to isolate on nitrocellulose filters. We conclude that FdCMP is not a mechanism-based inhibitor of dCMP hydroxymethylase.  相似文献   

17.
18.
19.
Many melanoma cells are resistant to the anti-proliferative effect of all trans retinoic acid (ATRA). Retinoic Acid Receptor-β2 (RAR-β2) mediates the ATRA growth inhibition. We found a correlation between the anti-proliferative activity of ATRA and expression of RAR-β2. There was not a strict correlation between DNA methylation of RAR-β gene and its expression. There was no difference in global and RARβ specific nucleosome repeat length (NRL) in melanoma and melanocytes or between control and ATRA treated cells. Pan-acetylation of H3 and H4 within the RAR-β gene promoter was higher in cells expressing RAR-β2. All trans retinoic acid treatment of responsive cells did not change pan-acetylation of H3/H4, but addition of ATRA to non-responsive cells increased H4 pan-acetylation. Phytochemicals or the histone deacetylase inhibitor Trichostatin A did not restore expression of RAR-β2. Treatment of WM1366 melanoma cells with 5-aza 2′-deoxycytidine reactivated RAR-β2 gene expression and restored the ability of ATRA to further induce the expression of this gene. Therefore, promoter methylation is responsible for silencing of RAR-β2 in some melanoma cells and pan-acetylation of H3 likely plays a permissive role in expression of RAR-β2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号