首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Harmonics of outer hair cell motility.   总被引:7,自引:1,他引:7       下载免费PDF全文
The voltage-dependent mechanical activity of outer hair cells (OHC) from the organ of Corti is considered responsible for the peripheral auditory system's enhanced ability to detect and analyze sound. Nonlinear processes within the inner ear are presumed to be characteristic of this enhancement process. Harmonic distortion in the OHC mechanical response was analyzed under whole-cell voltage clamp. It is shown that the OHC produces DC, fundamental and second harmonic length changes in response to sinusoidal transmembrane voltage stimulation. Mechanical second harmonic distortion decreases with frequency, whereas the predicted transmembrane second harmonic voltage increases with frequency. Furthermore, the phase of the second harmonic distortion does not correspond to the phase of the predicted transmembrane voltage. In contradistinction, it has been previously shown (Santos-Sacchi, J. 1992. Neuroscience. 12:1906-1916) that fundamental voltage and evoked mechanical responses share magnitude and phase characteristics. OHC length changes are modeled as resulting from voltage-dependent cell surface area changes. The model suggests that the observed harmonic responses in the mechanical response are consistent with the nonlinearity of the voltage-to-length change (V-delta L) function. While these conclusions hold for the data obtained with the present voltage clamp protocol and help to understand the mechanism of OHC motility, modeling the electromechanical system of the OHC in the in vivo state indicates that the mechanical nonlinearity of the OHC contributes minimally to mechanical distortion. That is, in vivo, at moderate sound pressure levels and below, the dominant factor which contributes to nonlinearities of the OHC mechanical response resides within the nonlinear, voltage-generating, stereociliar transduction process.  相似文献   

2.
The outer hair cell (OHC) possesses a nonlinear charge movement whose characteristics indicate that it represents the voltage sensor responsible for OHC mechanical activity. OHC mechanical activity is known to exist along a restricted extent of the cell's length. We have used a simultaneous partitioning microchamber and whole cell voltage clamp technique to electrically isolate sections of the OHC membrane and find that the nonlinear charge movement is also restricted along the cell's length. Apical and basal portions of the OHC are devoid of voltage sensors, corresponding to regions of the cell where the subsurface cisternae and/or the mechanical responses are absent. We conclude that the physical domain of the motility voltage sensor corresponds to that of the mechanical effector and speculate that sensor and effector reside within one intra membranous molecular species, perhaps an evolved nonconducting or poorly conducting voltage-dependent ion channel.  相似文献   

3.
Cytoplasmic actin and cochlear outer hair cell motility   总被引:2,自引:0,他引:2  
Summary Isolated outer hair cells of the guinea pig lacking a cuticular plate and its associated infracuticular network retain the ability to shorten longitudinally and become thinner. Membrane ghosts lacking cytoplasm retain the cylindrical shape of the hair-cell, and although they do not shorten, they retain the ability to constrict and become thinner. These data suggest that cytoplasmic components are associated with outer hair-cell longitudinal shortening and that the lateral wall is responsible for maintaing cell shape and for constriction. Actin, a protein associated with the cytoskeleton and cell motility, is thought to be involved in outer hair-cell motility. To study its role, actin was localized in isolated outer hair cells by use of phalloidin labeled with fluorescein and antibodies against actin coupled to colloidal gold. In permeabilized guinea-pig hair cells stained with phalloidin, actin filaments are found along the lateral wall. In frozen-fixed hair cells actin filaments are distributed uniformly throughout the cytoplasm. Electron-microscopic studies show that antibodies label actin throughout the outer hair-cell body. Thus cytoplasmic actin filaments may provide the structural basis for the contraction-like events.  相似文献   

4.
The role of outer hair cell motility in cochlear tuning.   总被引:7,自引:0,他引:7  
The mammalian cochlea's remarkable sensitivity and frequency selectivity are thought to be mediated by the mechanical feedback action of outer hair cells. New tools for measuring the movement of cochlear elements, and recent advances in modeling are increasing our knowledge of cochlear mechanics.  相似文献   

5.
Deo N  Grosh K 《Biophysical journal》2004,86(6):3519-3528
With discovery of the protein prestin and the gathering evidence linking it to outer hair cell electromotility, the working mechanism of outer hair cells is becoming clearer. Recent experiments have established the voltage-dependent stiffness of outer hair cells and given an insight into the nature of variation of stiffness with respect to voltage. These and earlier experiments are used to analyze and develop models of outer hair cell response. In this article, recent modeling efforts have been reconciled and placed into a common mechanics-based framework. The constitutive models are analyzed with regard to their capability to replicate experimental results. We extend the area motor model to include elastic constants dependent on motor state. The modified model successfully captures stiffness variations of outer hair cells and capacitance changes with respect to voltage.  相似文献   

6.
Iwasa KH 《Biophysical journal》2001,81(5):2495-2506
Recent studies have revealed that voltage-dependent length changes of the outer hair cell are based on charge transfer across the membrane. Such a motility can be explained by an "area motor" model, which assumes two states in the motor and that conformational transitions involve transfer of motor charge across the membrane and mechanical displacements of the membrane. Here it is shown that the area motor is piezoelectric and that the hair cell that incorporates such a motor in its lateral membrane is also piezoelectric. Distinctive features of the outer hair cell are its exceptionally large piezoelectric coefficient, which exceeds the best known piezoelectric material by four orders of magnitude, and its prominent nonlinearity due to the discreteness of motor states.  相似文献   

7.
The effect of elevated divalent cation concentration on the kinetics of sodium ionic and gating currents was studied in voltage-clamped frog skeletal muscle fibers. Raising the Ca concentration from 2 to 40 mM resulted in nearly identical 30-mV shifts in the time courses of activation, inactivation, tail current decay, and ON and OFF gating currents, and in the steady state levels of inactivation, charge immobilization, and charge vs. voltage. Adding 38 mM Mg to the 2 mM Ca bathing a fiber produced a smaller shift of approximately 20 mV in gating current kinetics and the charge vs. voltage relationship. The results with both Ca and Mg are consistent with the hypothesis that elevated concentrations of these alkali earth cations alter Na channel gating by changing the membrane surface potential. The different shifts produced by Ca and Mg are consistent with the hypothesis that the two ions bind to fixed membrane surface charges with different affinities, in addition to possible screening.  相似文献   

8.
Dallos P  Wu X  Cheatham MA  Gao J  Zheng J  Anderson CT  Jia S  Wang X  Cheng WH  Sengupta S  He DZ  Zuo J 《Neuron》2008,58(3):333-339
It is a central tenet of cochlear neurobiology that mammalian ears rely on a local, mechanical amplification process for their high sensitivity and sharp frequency selectivity. While it is generally agreed that outer hair cells provide the amplification, two mechanisms have been proposed: stereociliary motility and somatic motility. The latter is driven by the motor protein prestin. Electrophysiological phenotyping of a prestin knockout mouse intimated that somatic motility is the amplifier. However, outer hair cells of knockout mice have significantly altered mechanical properties, making this mouse model unsatisfactory. Here, we study a mouse model without alteration to outer hair cell and organ of Corti mechanics or to mechanoelectric transduction, but with diminished prestin function. These animals have knockout-like behavior, demonstrating that prestin-based electromotility is required for cochlear amplification.  相似文献   

9.
10.
Outer hair cells are the mechanical effectors of the cochlear amplifier, an active process that improves the sensitivity and frequency discrimination of the mammalian ear. In vivo, the gain of the cochlear amplifier is regulated by the efferent neurotransmitter acetylcholine through the modulation of outer hair cell motility. Little is known, however, regarding the molecular mechanisms activated by acetylcholine. In this study, intracellular signaling pathways involving the small GTPases RhoA, Rac1, and Cdc42 have been identified as regulators of outer hair cell motility. Changes in cell length (slow motility) and in the amplitude of electrically induced movement (fast motility) were measured in isolated outer hair cells patch clamped in whole-cell mode, internally perfused through the patch pipette with different inhibitors and activators of these small GTPases while being externally stimulated with acetylcholine. We found that acetylcholine induces outer hair cell shortening and a simultaneous increase in the amplitude of fast motility through Rac1 and Cdc42 activation. In contrast, a RhoA- and Rac1-mediated signaling pathway induces outer hair cell elongation and decreases fast motility amplitude. These two opposing processes provide the basis for a regulatory mechanism of outer hair cell motility.  相似文献   

11.
Summary A voltage-dependent anion-selective channel, VDAC, is found in outer mitochondrial membranes. VDAC's conductance is known to decrease as the transmembrane voltage is increased in either the positive or negative direction. Charged groups on the channel may be responsible for this voltage dependence by allowing the channel to respond to an applied electric field. If so, then neutralization of these charges would eliminate the voltage dependence. Channels in planar lipid bilayers which behaved normally at pH 6 lost much of their voltage dependence at high pH. Raising the pH reduced the steepness of the voltage dependence and raised the voltage needed to close half the channels. In contrast, the energy difference between the open and closed state in the absence of a field was changed very little by the elevated pH. The groups being titrated had an apparent pK of 10.6. From the pK and chemical modification, lysine epsilon amino groups are the most likely candidates responsible for VDAC's ability to respond to an applied electric field.  相似文献   

12.
Cochlear outer hair cells undergo reversible changes in shape when externally stimulated. This response, known as OHC motility, is a central component of the cochlear amplifier, the mechanism responsible for the high sensitivity of mammalian hearing. We report that actin depolymerization, as regulated by activation/inhibition of LIMK/cofilin-mediated pathways, has a pivotal role in OHC motility. LIMK-mediated cofilin phosphorylation, which inhibits the actin depolymerizing activity of this protein, increases both electromotile amplitude and total length of guinea pig OHCs. In contrast, a decrease in cofilin phosphorylation reduces both OHC electromotile amplitude and OHC length. Experiments with acetylcholine and lysophosphatidic acid indicate that the effects of these agents on OHC motility are associated with regulation of cofilin phosphorylation via different signaling cascades. On the other hand, nonlinear capacitance measurements confirmed that all observed changes in OHC motile response were independent of the performance of the motor protein prestin. Altogether, these results strongly support the hypothesis that the cytoskeleton has a major role in the regulation of OHC motility, and identify actin depolymerization as a key process for modulating cochlear amplification.  相似文献   

13.
CFTR displays voltage dependence and two gating modes during stimulation   总被引:9,自引:4,他引:5  
The patch-clamp technique in conjunction with current noise analysis was employed to clarify the events underlying the regulation of the CFTR (cystic fibrosis transmembrane conductance regulator) during cAMP- dependent stimulation. 3T3 fibroblast cells expressing the CFTR were stimulated in cell-attached mode with forskolin. The number (N) of activated channels per patch ranged from 1 to approximately 100. In true single-channel recordings, CFTR's gating was best described by two open states (approximately 5 and approximately 100 ms) and three closed states (< or = 5, approximately 100, and approximately 1,000 ms). Current noise analysis resulted in spectra containing two distinct Lorentzian noise components with corner frequencies of 1.3 Hz and approximately 50 Hz, respectively. Single-channel time constants were dependent on voltage. The fastest closed state increased its contribution from 48% at +100 mV to 87% at -100 mV, and the medium open state reduced its length to one half, resulting in gating dominated by fast events. Similarly, the fast Lorentzian increased its amplitude, and its corner frequency increased from 44 Hz at +100 mV to 91 Hz at - 100 mV, while the slow Lorentzian was voltage independent. In multi- channel recordings N.Po (i.e., N times open probability) increased significantly, on average by 52% between -90 and +90 mV. Stimulation with forskolin increased Po of CFTR to approximately 0.5, which resulted from a decrease of the longest closed state while the faster open and closed states were unaffected. Neither corner frequency was affected during stimulation. Recordings from multichannel patches revealed in addition, unique, very long channel openings (high Po mode, average 13 s). Channels exhibiting high Po (i.e., Po approximately 1.0) or low Po (i.e., Po approximately 0.5) gating modes were both present in multichannel recordings, and CFTRs switched modes during stimulation. In addition, the switch to the high Po mode appeared to be a cooperative event for channel pairs. High forskolin concentration (i.e., 10 microM) favored transition into the high Po mode, suggesting a cellularly mediated regulation of model switching due to a fundamental change in configuration of the CFTR. Thus, during stimulation the CFTR increased its activity through two distinct effects: the reduction of the long closed state and modal switching to the high Po mode.  相似文献   

14.
Functioning of the membrane motor of the outer hair cell is tightly associated with transfer of charge across the membrane. To obtain further insights into the motor mechanism, we examined kinetics of charge transfer across the membrane in two different modes. One is to monitor charge transfer induced by changes in the membrane potential as an excess membrane capacitance. The other is to measure spontaneous flip-flops of charges across the membrane under voltage-clamp conditions as current noise. The noise spectrum of current was inverse Lorentzian, and the capacitance was Lorentzian, as theoretically expected. The characteristic frequency of the capacitance was approximately 10 kHz, and that for current noise was approximately 30 kHz. The difference in the characteristic frequencies seems to reflect the difference in the modes of mechanical movement associated with the two physical quantities.  相似文献   

15.
The gating of ClC-0, the voltage-dependent Cl- channel from Torpedo electric organ, is strongly influenced by Cl- ions in the external solution. Raising external Cl- over the range 1-600 mM favors the fast- gating open state and disfavors the slow-gating inactivated state. Analysis of purified single ClC-0 channels reconstituted into planar lipid bilayers was used to identify the role of Cl- ions in the channel's fast voltage-dependent gating process. External, but not internal, Cl- had a major effect on the channel's opening rate constant. The closing rate was more sensitive to internal Cl- than to external Cl-. Both opening and closing rates varied with voltage. A model was derived that postulates (a) that in the channel's closed state, Cl- is accessible to a site located at the outer end of the conduction pore, where it binds in a voltage-independent fashion, (b) that this closed conformation can open, whether liganded by Cl- or not, in a weakly voltage-dependent fashion, (c) that the Cl(-)-liganded closed channel undergoes a conformational change to a different closed state, such that concomitant with this change, Cl- ion moves inward, conferring voltage-dependence to this step, and (d) that this new Cl(-)- liganded closed state opens with a very high rate. According to this picture, Cl- movement within the pre-open channel is the major source of voltage dependence, and charge movement intrinsic to the channel protein contributes very little to voltage-dependent gating of ClC-0. Moreover, since the Cl- activation site is probably located in the ion conduction pathway, the fast gating of ClC-0 is necessarily coupled to ion conduction, a nonequilibrium process.  相似文献   

16.
We propose a three-dimensional (3D) model to simulate outer hair cell electromotility. In our model, the major components of the composite cell wall are explicitly represented. We simulate the activity of the particles/motor complexes in the plasma membrane by generating active strains inside them and compute the overall response of the cell. We also consider the constrained wall and compute the generated active force. We estimate the parameters of our model by matching the predicted longitudinal and circumferential electromotile strains with those observed in the microchamber experiment. In addition, we match the earlier estimated values of the active force and cell wall stiffness. The computed electromotile strains in the plasma membrane and other components of the wall are in agreement with experimental observations in trypsinized cells and in nonmotile cells transfected with Prestin. We discover several features of the 3D mechanism of outer hair cell electromotilty. Because of the constraints under which the motors operate, the motor-related strains have to be 2-3 times larger than the observable strains. The motor density has a strong effect on the electromotile strain. Such effect on the active force is significantly lower because of the interplay between the active and passive properties of the cell wall.  相似文献   

17.
The neurotransmitters serotonin and dopamine inhibit growth cone motility and neurite elongation of specific identified neurons of the pond snail Helisoma. Similarly, experimentally evoked action potentials inhibit motility of these growth cones. Here we explore the possibility that the motility- and elongation-inhibiting actions of serotonin and dopamine derive from the electrophysiological responses of the respective neurons. Evidence of three types in support of this hypothesis is presented: (1) Only those identified neurons for which motility is inhibited by serotonin or dopamine respond to the transmitter with sustained electrical excitation. (2) The magnitude of the electrical excitation response correlates with the degree of inhibition of growth cone motility. (3) The injection of hyperpolarizing current enables motility to continue as in the absence of transmitters. We conclude that membrane voltage is an important level of control of growth cone motility, at which neurotransmitters exert a regulatory influence.  相似文献   

18.
J Howard  A J Hudspeth 《Neuron》1988,1(3):189-199
Mechanical stimuli are thought to open the transduction channels of a hair cell by tensing elastic components, the gating springs, that pull directly on the channels. To test this model, we measured the stiffness of hair bundles during mechanical stimulation. A bundle's compliance increased by about 40% at the position where half of the channels opened. This we attribute to conformational changes of transduction channels as they open and close. The magnitude and displacement dependence of the gating compliance provide quantitative information about the molecular basis of mechanoelectrical transduction: the force required to open each channel, the number of transduction channels per hair cell, the stiffness of a gating spring, and the swing of a channel's gate as it opens.  相似文献   

19.
20.
Large-conductance Ca(2+)-activated K(+) channels can be activated by membrane voltage in the absence of Ca(2+) binding, indicating that these channels contain an intrinsic voltage sensor. The properties of this voltage sensor and its relationship to channel activation were examined by studying gating charge movement from mSlo Ca(2+)-activated K(+) channels in the virtual absence of Ca(2+) (<1 nM). Charge movement was measured in response to voltage steps or sinusoidal voltage commands. The charge-voltage relationship (Q-V) is shallower and shifted to more negative voltages than the voltage-dependent open probability (G-V). Both ON and OFF gating currents evoked by brief (0.5-ms) voltage pulses appear to decay rapidly (tau(ON) = 60 microseconds at +200 mV, tau(OFF) = 16 microseconds at -80 mV). However, Q(OFF) increases slowly with pulse duration, indicating that a large fraction of ON charge develops with a time course comparable to that of I(K) activation. The slow onset of this gating charge prevents its detection as a component of I(gON), although it represents approximately 40% of the total charge moved at +140 mV. The decay of I(gOFF) is slowed after depolarizations that open mSlo channels. Yet, the majority of open channel charge relaxation is too rapid to be limited by channel closing. These results can be understood in terms of the allosteric voltage-gating scheme developed in the preceding paper (Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. J. Gen. Physiol. 114:277-304). The model contains five open (O) and five closed (C) states arranged in parallel, and the kinetic and steady-state properties of mSlo gating currents exhibit multiple components associated with C-C, O-O, and C-O transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号