首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Summary Pullulanase and isoamylase activities in PAGE bands have been detected and distinguished by using a two-step, replica-gel revealing assay. The de-branching activity is first revealed as a bluish-purple band by incubating an amylopectin-agar replica gel and then exposing this to iodine vapour. In the second step, pullulanase can be distinguished from isoamylase by a similar procedure using pullulan-agar replica gel and revealing hydrolysis by flooding the plate with ethanol; pullulanase activity shows a colorless band. The procedure exclude other amylases activities. The sensitivity is such that 0.0015 unit of pullulanase and 0.0004 unit of isoamylase activities can be detected easily.  相似文献   

2.
The activities of the two types of starch debranching enzymes, isoamylase and pullulanase, were greatly reduced in endosperms of allelic sugary-1 mutants of rice (Oryza sativa), with the decrease more pronounced for isoamylase than for pullulanase. However, the decrease in isoamylase activity was not related to the magnitude of the sugary phenotype (the proportion of the phytoglycogen region of the endosperm), as observed with pullulanase. In the moderately mutated line EM-5, the pullulanase activity was markedly lower in the phytoglycogen region than in the starch region, and isoamylase activity was extremely low or completely lost in the whole endosperm tissue. These results suggest that both debranching enzymes are involved in amylopectin biosynthesis in rice endosperm. We presume that isoamylase plays a predominant role in amylopectin synthesis, but pullulanase is also essential or can compensate for the role of isoamylase in the construction of the amylopectin multiple-cluster structure. It is highly possible that isoamylase was modified in some sugary-1 mutants such as EM-273 and EM-5, since it was present in significant and trace amounts, respectively, in these mutants but was apparently inactive. The results show that the Sugary-1 gene encodes the isoamylase gene of the rice genome.  相似文献   

3.
Pseudomonas isoamylase (EC 3.2.1.68) hydrolyzes (1 → 6)-α-D-glucosidic linkages of amylopectin, glycogen, and various branched dextrins and oligosaccharides. The detailed structural requirements for the substrate are examined qualitatively and quantitatively in this paper, in comparison with the pullulanase of Klebsiella aerogenes. As with pullulanase. Ps. isoamylase is unable to cleave D-glucosyl stubs from branched saccharides. Ps. isoamylase differs from pullulanase in the following characteristics: (1) The favored substrates for Ps. isoamylase are higher-molecular-weight polysaccharides. Most of the branched oligosaccharides examined were hydrolyzed at a lower rate, 10% or less of the rate of hydrolysis of amylopectin. (2) Maltosyl branches are hydrolyzed off by Ps. isoamylase very slowly in comparison with maltotriosyl branches. (3)Pr. isoamylase requires a minimum of three D-glucose residues in the B- or C-chain.  相似文献   

4.
The gene (iam) coding for isoamylase (glycogen 6-glucanohydrolase) of Pseudomonas amyloderamosa SB-15 was cloned. Its nucleotide sequence contained an open reading frame of 2313 nucleotides (771 amino acids) encoding a precursor of secreted isoamylase. The precursor contained a signal peptide of 26 amino acid residues at its amino terminus and three regions homologous with those conserved in alpha-amylases (1,4-alpha-D-glucan 4-glucanohydrolase) of species ranging from prokaryotes to eukaryotes. These homologous regions were also found in another debranching enzyme, pullulanase (pullulan 6-glucanohydrolase) from Klebsiella aerogenes. Sequences of the isoamylase also showed significant homology with those between positions 300 and the carboxyl terminus of pullulanase. The regions required for the specificity of isoamylase were discussed on the basis of a comparison of its amino acid sequence with those of alpha-amylases, cyclomaltodextrin glucanotransferases, and pullulanase.  相似文献   

5.
Forty-two bifidobacterial strains were screened for α-amylase and/or pullulanase activity by investigating their capacities to utilize starch, amylopectin, or pullulan. Of the 42 bifidobacterial strains tested, 19 were capable of degrading potato starch. Of these 19 strains, 11 were able to degrade starch and amylopectin, as well as pullulan. These 11 strains, which were shown to produce extracellular starch-degrading activities, included 5 strains of Bifidobacterium breve, 1 B. dentium strain, 1 B. infantis strain, 3 strains of B. pseudolongum, and 1 strain of B. thermophilum. Quantitative and qualitative enzyme activities were determined by measuring the concentrations of released reducing sugars and by high-performance thin-layer chromatography, respectively. These analyses confirmed both the inducible nature and the extracellular nature of the starch- and pullulan-degrading enzyme activities and showed that the five B. breve strains produced an activity that is consistent with type II pullulanase (amylopullulanase) activity, while the remaining six strains produced an activity with properties that resemble those of type III pullulan hydrolase.  相似文献   

6.
Forty-two bifidobacterial strains were screened for alpha-amylase and/or pullulanase activity by investigating their capacities to utilize starch, amylopectin, or pullulan. Of the 42 bifidobacterial strains tested, 19 were capable of degrading potato starch. Of these 19 strains, 11 were able to degrade starch and amylopectin, as well as pullulan. These 11 strains, which were shown to produce extracellular starch-degrading activities, included 5 strains of Bifidobacterium breve, 1 B. dentium strain, 1 B. infantis strain, 3 strains of B. pseudolongum, and 1 strain of B. thermophilum. Quantitative and qualitative enzyme activities were determined by measuring the concentrations of released reducing sugars and by high-performance thin-layer chromatography, respectively. These analyses confirmed both the inducible nature and the extracellular nature of the starch- and pullulan-degrading enzyme activities and showed that the five B. breve strains produced an activity that is consistent with type II pullulanase (amylopullulanase) activity, while the remaining six strains produced an activity with properties that resemble those of type III pullulan hydrolase.  相似文献   

7.
The action of purified yeast isoamylase on amylopectin, like that of bacterial pullulanase, results in the hydrolysis of the outermost inter-chain linkages with the liberation of linear maltosaccharides having an average degree of polymerisation of approximately 15 -glucose residues. This hydrolytic action distinguishes yeast isoamylase from yeast amylo-(1→6)-glucosidase, which acts by a combination of transferase and glucosidase activities. The products of enzyme action on amylopectin are discussed in relation to the probable molecular structure of the polysaccharide.  相似文献   

8.
Summary Two highly alkalophilic bacteria, and potent producers of alkaline pullulanase, were isolated from Korean soils. The two isolates, identified asBacillus sp. S-1 andMicrococcus sp. Y-1, grow on starch under alkaline conditions and effectively secrete extracellular pullulanases. The two isolates were extremely alkalophilic since bacterial growth and enzyme production occurred at pH values ranging from pH 6.0 to 12.0 forMicrococcus sp. Y-1 and pH 6.0 to 10.0 forBacillus sp. S-1. Both strains secrete enzymes that possess amylolytic and pullulanolytic acitivities. Extracellular crude enzymes of both isolates gave maltotriose as the major product formed from soluble starch and pullulan hydrolysis. Compared to other alkalophilic microbes such asMicrococcus sp. (0.57 units ml–1),Bacillus sp. KSM-1876 (0.56 units ml–1) andBacillus No. 202-1 (1.89 units ml–1) these isolates secreted extremely high concentrations (7.0 units ml–1 forBacillus sp. S-1 and 7.6 units ml–1 forMicrococcus sp. Y-1) of pullulanases in batch culture. The pullulanase activities from both strains were mostly found in the culture medium (85–90%). The extracellular enzymes of both bacteria were alkalophilic and moderately thermoactive; optimal activity was detected at pH 8.0–10.0 and between 50 and 60°C. Even at pH 12.0, 65% of original Y-1 pullulanase activity and 10% of S-1 pullulanase activity remained. The two newly isolated strains had broad pH ranges and moderate thermostability for their enzyme activities. These result strongly indicate that these new bacterial isolates have potential as producers of pullulanases for use in the starch industry.  相似文献   

9.
The gene encoding a type I pullulanase from the hyperthermophilic anaerobic bacterium Thermotoga neapolitana (pulA) was cloned in Escherichia coli and sequenced. The pulA gene from T. neapolitana showed 91.5% pairwise amino acid identity with pulA from Thermotoga maritima and contained the four regions conserved in all amylolytic enzymes. pulA encodes a protein of 843 amino acids with a 19-residue signal peptide. The pulA gene was subcloned and overexpressed in E. coli under the control of the T7 promoter. The purified recombinant enzyme (rPulA) produced a 93-kDa protein with pullulanase activity. rPulA was optimally active at pH 5-7 and 80°C and had a half-life of 88 min at 80°C. rPulA hydrolyzed pullulan, producing maltotriose, and hydrolytic activities were also detected with amylopectin, starch, and glycogen, but not with amylose. This substrate specificity is typical of a type I pullulanase. Thin layer chromatography of the reaction products in the reaction with pullulan and aesculin showed that the enzyme had transglycosylation activity. Analysis of the transfer product using NMR and isoamylase treatment revealed it to be α-maltotriosyl-(1,6)-aesculin, suggesting that the enzyme transferred the maltotriosyl residue of pullulan to aesculin by forming α-1,6-glucosidic linkages. Our findings suggest that the pullulanase from T. neapolitana is the first thermostable type I pullulanase which has α-1,6-transferring activity.  相似文献   

10.
The notion of debranching enzyme activity as a participant in starch synthesis is gaining acceptance. Inconsistent reports from mutant analyses implicate either isoamylase or pullulanase as a determinant in amylopectin formation and whether wild-type plants utilize one or the other, or both, of these debranching enzymes in starch synthesis is unclear. Recent results on the su1 mutant in maize suggest that both forms of debranching enzymes might be involved in amylopectin formation. We wished to find out if isoamylase takes part in starch synthesis by comparing isoamylase gene activity under three conditions: (1) during starch accumulation in developing sink tissues; (2) during starch degradation in germinating seeds; (3) in ectopic expression after applying sucrose, a starch precursor. We isolated the gene for barley isoamylase, iso1, and analysed its expression and regulation in germinating seeds, developing endosperm and vegetative tissues, and compared the isoamylase gene expression in sink tissues from three different species. Our results indicate that isoamylase gene activity is involved in starch synthesis in wild-type plants and is modulated by sucrose.  相似文献   

11.
一个新型耐热普鲁兰酶的结构与功能   总被引:1,自引:0,他引:1  
新型普鲁兰酶的研究对于普鲁兰酶制剂的国产化、打破国外垄断具有非常重要的意义。从我国云南腾冲地区轮马热泉的淤泥中分离获得了一株耐热普鲁兰酶产生菌LM 18-11,经16S rDNA序列系统进化树分析,确定该菌为厌氧芽胞杆菌Anoxybacillus属种,并从中克隆获得了耐热普鲁兰酶的编码基因,该酶在55℃-60℃、pH 5.6-6.4的范围内具有最大的反应活性。此外,该酶具有较好的热稳定性,在60℃下处理48 h,仍可保持50%以上的活力;动力学分析该酶的Vmax和Km分别为750 U/mg和1.47 mg/mL,是目前文献报道中比活力最高的耐热普鲁兰酶。同时还对该酶进行了晶体结构分析,结果显示该酶具有?-淀粉酶家族中典型的结构,在N端具有一个特殊的底物结合域,该结构域的缺失导致比活力和底物结合力都有相应降低,Vmax和Km分别为324 U/mg和1.95 mg/mL。同时,将该普鲁兰酶编码基因导入枯草芽胞杆菌中,在P43启动子的控制下,普鲁兰酶基因获得了高效表达,胞外酶活可达42 U/mL,相比初始菌种,表达活力提高40倍以上。研究表明该普鲁兰酶具有很好的应用前景。  相似文献   

12.
Two out of three extremely thermophilic anaerobic archaea, isolated from deep-sea hydrothermal vents, produced pullulanase activity in the presence of maltose in the growth medium. Enzyme activities were mainly extracellular and characterized by optimum temperatures of 95°C and 80–95°C, optimum pH of 5.0–7.0 and a high degree of thermostability. One strain when grown in a fermenter with maltose as inducer produced pullulanase at 35 U/l. © Rapid Science Ltd. 1998  相似文献   

13.
云南高原湖泊抚仙湖和星云湖的酵母菌胞外酶活性   总被引:1,自引:1,他引:0  
【背景】高原湖泊因其海拔高、气压低、辐射强、氧气含量低,是一类特殊环境,而其中的微生物是高原湖泊生态系统物质循环与能量流动的重要参与者,其胞外酶活性的表现决定其适应这一特殊环境的方式与能力。【目的】对分离自云南高原湖泊抚仙湖和星云湖湖水的酵母菌进行产胞外酶活性的筛选,以期获得具有潜在应用价值的活性菌株。【方法】在5°C和25°C培养温度下,采用平板筛选法对两个湖泊酵母菌进行产胞外蛋白酶、纤维素酶、淀粉酶、脂肪酶、几丁质酶、木聚糖酶、植酸酶、菊粉酶、漆酶、锰依赖过氧化物酶和木质素过氧化物酶活性的筛选。【结果】抚仙湖和星云湖的所有测试酵母菌菌株至少都能产1种胞外酶,且主要产植酸酶、菊粉酶和淀粉酶;其次为脂肪酶、纤维素酶、木聚糖酶、锰依赖过氧化物酶和木质素过氧化物酶;产几丁质酶、蛋白酶和漆酶的酵母菌很少,星云湖酵母菌都不产漆酶。培养温度为5°C时,抚仙湖和星云湖的酵母菌产5种及5种以上胞外酶的活性菌株数均多于25°C。【结论】抚仙湖和星云湖的酵母菌产胞外酶菌株多样性丰富,胞外酶种类多样,产酶酵母菌可能参与高原湖泊生态系统的物质循环;筛选得到的产胞外酶菌株为开发与利用高原湖泊酶资源提供了良好的种质资源,具有进一步研究的价值。  相似文献   

14.
The gene encoding a new extracellular amylopullulanase (type II pullulanase) was cloned from an extremely thermophilic anaerobic archaeon Thermococcus siculi strain HJ21 isolated previously from a deep-sea hydrothermal vent. The functional hydrolytic domain of the amylopullulanase (TsiApuN) and its MalE fusion protein (MTsiApuN) were expressed heterologously. The complete amylopullulanase (TsiApu) was also purified from fermentation broth of the strain. The pullulanase and amylase activities of the three enzymes were characterized. TsiApu had optimum temperature of 95°C for the both activities, while MTsiApuN and TsiApuN had a higher optimum temperature of 100°C. The residual total activities of MTsiApuN and TsiApuN were both 89% after incubation at 100°C for 1 h, while that of TsiApu was 70%. For all the three enzymes the optimum pHs for amylase and pullulanase activities were 5.0 and 6.0, respectively. By analyzing enzymatic properties of the three enzymes, this study suggests that the carboxy terminal region of TsiApu might interfere with the thermoactivity. The acidic thermoactive amylopullulanases MTsiApuN and TsiApuN could be further employed for industrial saccharification of starch.  相似文献   

15.
Abstract The capability of secreting thermoactive enzymes exhibiting α-amylase and pullulanase with debraching activity, seems to be widely distributed amongst anaerobic thermophilic bacteria. Interestingly, pullulanase formed by these bacteria displays dual specificity by attacking α-1,6- as well as α-1,4-glycosidic linkages in branched glucose polymers. Unlike the enzyme system of aerobic microorganisms the majority of starch hydrolysing enzymes of anaerobic bacteria is metal indepedent and is extremely thermostable. This enzyme system is controlled by substrate induction and catabolite repression; enzyme expression is accomplished when maltose or maltose-containing carbohydrates are used as substrates. By developing a process in continuous culture we were able to greatly enhance enzyme synthesis and release by anaerobic thermophilic bacteria. An elevation in the specific activities of cell-free amylases and pullulanases could also be achieved by entrapping of bacteria in calcium alginate beads. The unique properties of extracellular enzymes of thermophilic anaerobic bacteria makes this group of organisms suitable candidates for inductrial application.  相似文献   

16.
Extracellular polysaccharides produced by 3 strains of Pullularia pullulans were fractionated by treating with cetyl trimethyl ammonium hydroxide into soluble and insoluble fractions, and the structure of the former fraction, i.e., pullulan, was studied. The yield and the ratio of 2 fractions varied widely according to the strains. But the structure of pullulan was found to be uniform irrespective of the strains used. All 3 samples of pullulan gave only glucose on complete acid hydrolysis, and 93~95% maltotriose and 5~7% maltotetraose after isoamylase (pullulanase) action. The ratio of α-1,4- to α-1,6-glucosidic linkages calculated from periodate oxidation data coincided very well with the value expected from the ratio of maltotriose to maltotetraose units. An evidence for the complete absence of branch structure in pullulan was presented from the results of hydrolysis by pullulan 4-glucanohydrolase.  相似文献   

17.
The present study was conducted to screen microorganisms that produce phospholipase D (PLD), and we especially focused on the strains having high transphosphatidylation activity. Eighty bacterial strains were isolated from soil samples by a screening method utilizing a preliminary selection medium with phosphatidylcholine (PC) as the sole carbon source. The culture supernatants were then assayed for PLD activity. The finding of dual PLD activities in cultures revealed that the hydrolytic and transphosphatidylation activities were correlated. Consequently, six strains were selected as stably producing PLD enzyme(s) during continuous subcultures. The culture supernatants of selected strains synthesized phosphatidylglycerol, phosphatidylserine and phosphatidylethanolamine from PC with high conversion rates. These isolated strains will be made available to carry out phospholipid modification through the efficient transphosphatidylation activity of the PLD that they produce.  相似文献   

18.
The crystal structures of Klebsiella pneumoniae pullulanase and its complex with glucose (G1), maltose (G2), isomaltose (isoG2), maltotriose (G3), or maltotetraose (G4), have been refined at around 1.7-1.9A resolution by using a synchrotron radiation source at SPring-8. The refined models contained 920-1052 amino acid residues, 942-1212 water molecules, four or five calcium ions, and the bound sugar moieties. The enzyme is composed of five domains (N1, N2, N3, A, and C). The N1 domain was clearly visible only in the structure of the complex with G3 or G4. The N1 and N2 domains are characteristic of pullulanase, while the N3, A, and C domains have weak similarity with those of Pseudomonas isoamylase. The N1 domain was found to be a new type of carbohydrate-binding domain with one calcium site (CBM41). One G1 bound at subsite -2, while two G2 bound at -1 approximately -2 and +2 approximately +1, two G3, -1 approximately -3 and +2 approximately 0', and two G4, -1 approximately -4 and +2 approximately -1'. The two bound G3 and G4 molecules in the active cleft are almost parallel and interact with each other. The subsites -1 approximately -4 and +1 approximately +2, including catalytic residues Glu706 and Asp677, are conserved between pullulanase and alpha-amylase, indicating that pullulanase strongly recognizes branched point and branched sugar residues, while subsites 0' and -1', which recognize the non-reducing end of main-chain alpha-1,4 glucan, are specific to pullulanase and isoamylase. The comparison suggested that the conformational difference around the active cleft, together with the domain organization, determines the different substrate specificities between pullulanase and isoamylase.  相似文献   

19.
Extracellular enzyme‐producing yeasts might be involved in the supplementation of enzymes within the gastrointestinal tract of fish. The present study was intended to detect yeasts in the intestine of three Indian major carps (Labeo rohita, Catla catla, Cirrhinus mrigala), three exotic carps (Hypophthalmichthys molitrix, Ctenopharyngodon idella, Cyprinus carpio), as well as Nile tilapia (Oreochromis niloticus), and to identify the most promising extracellular enzyme‐producing (e.g. amylase, protease, lipase, cellulase, xylanase and phytase) yeast strains by 18S rDNA sequence analysis. Selected for qualitative enzyme assay were 121 yeast strains, from which 28 were further studied for quantitative enzyme assay. The strain CMH6A isolated from C. mrigala exhibited the best extracellular enzyme activities except for amylase and cellulase. The strain ONF19B isolated from O. niloticus was noted as the best extracellular enzyme producer among the strains that produced all of the extracellular enzymes studied. Sequencing of the 18S rDNA fragment followed by nucleotide blast in the National Centre for Biotechnology Information (NCBI) GenBank revealed that strains CMH6A and ONF19B were similar to Pichia kudriavzevii (Accession no. KF479403 ) and Candida rugosa (Accession no. KF479404 ), respectively. The test of antagonism (in vitro) revealed that the isolated yeasts could not affect the growth of the autochthonous gut bacteria. This might indicate likely co‐existence of autochthonous yeasts and bacteria in the fish gut. Further research is necessary to explore the possibilities of utilizing the extracellular enzyme‐producing yeasts detected in the present study for commercial aquaculture.  相似文献   

20.
Isoamylase is essential to saccharifying starch by cleavage of 1,6-glucoside linkages in starch molecules. In this study, a novel isoamylase gene from Bacillus lentus JNU3 was cloned. The open reading frame of the gene was 2412 base pairs long and encoded a polypeptide of 804 amino acids with a calculated molecular mass of 90 kDa. The deduced amino acid sequence shared less than 40% homology with that of microbial isoamylase ever reported, which indicated it was a novel isoamylase. A constitutive GAP promoter was used to express the recombinant isoamylase in the yeast Pichia pastoris by continuous high cell-density fermentation to avoid the use of methanol, which resulted in 318 U/mL extracellular isoamylase activity after 72 h in a 10 L fermenter. The recombinant enzyme was purified and characterized. It had an estimated molecular mass of 90 kDa, with its optimal activity at 70 °C, pH 6.5 and was quite stable between 30 °C and 70 °C. The recombinant isoamylase proves to be superior to pullulanase as an auxiliary enzyme in maltose production from starch. Therefore it will contribute significantly to the starch debranching process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号