首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mycobacterium tuberculosis and Mycobacterium leprae, the two main mycobacterial pathogens in humans, produce highly specific long chain beta-diols, the dimycocerosates of phthiocerol, and structurally related phenolic glycolipid (PGL) antigens, which are important virulence factors. In addition, M. tuberculosis also secretes glycosylated p-hydroxybenzoic acid methyl esters (p-HBAD) that contain the same carbohydrate moiety as the species-specific PGL of M. tuberculosis (PGL-tb). The genes involved in the biosynthesis of these compounds in M. tuberculosis are grouped on a 70-kilobase chromosomal fragment containing three genes encoding putative glycosyltransferases: Rv2957, Rv2958c, and Rv2962c. To determine the functions of these genes, three recombinant M. tuberculosis strains, in which these genes were individually inactivated, were constructed and biochemically characterized. Our results demonstrated that (i) the biosynthesis of PGL-tb and p-HBAD involves common enzymatic steps, (ii) the Rv2957, Rv2958c, and Rv2962c genes are involved in the formation of the glycosyl moiety of the two classes of molecules, and (iii) the product of Rv2962c catalyzes the transfer of a rhamnosyl residue onto p-hydroxybenzoic acid ethyl ester or phenolphthiocerol dimycocerosates, whereas the products of Rv2958c and Rv2957 add a second rhamnosyl unit and a fucosyl residue to form the species-specific triglycosyl appendage of PGL-tb and p-HBAD. The recombinant strains produced provide the tools to study the role of the carbohydrate domain of PGL-tb and p-HBAD in M. tuberculosis pathogenesis.  相似文献   

2.
Diesters of phthiocerol and phenolphthiocerol are important virulence factors of Mycobacterium tuberculosis and Mycobacterium leprae, the two main mycobacterial pathogens in humans. They are both long-chain beta-diols, and their biosynthetic pathway is beginning to be elucidated. Although the two classes of molecules share a common lipid core, phthiocerol diesters have been found in all the strains of the M. tuberculosis complex examined although phenolphthiocerol diesters are produced by only a few groups of strains. To address the question of the origin of this diversity 8 reference strains and 10 clinical isolates of M. tuberculosis were analyzed. We report the presence of glycosylated p-hydroxybenzoic acid methyl esters, structurally related to the type-specific phenolphthiocerol glycolipids, in the culture media of all reference strains of M. tuberculosis, suggesting that the strains devoid of phenolphthiocerol derivatives are unable to elongate the putative p-hydroxybenzoic acid precursor. We also show that all the strains of M. tuberculosis examined and deficient in the production of phenolphthiocerol derivatives are natural mutants with a frameshift mutation in pks15/1 whereas a single open reading frame for pks15/1 is found in Mycobacterium bovis BCG, M. leprae, and strains of M. tuberculosis that produce phenolphthiocerol derivatives. Complementation of the H37Rv strain of M. tuberculosis, which is devoid of phenolphthiocerol derivatives, with the fused pks15/1 gene from M. bovis BCG restored phenolphthiocerol glycolipids production. Conversely, disruption of the pks15/1 gene in M. bovis BCG led to the abolition of the synthesis of type-specific phenolphthiocerol glycolipid. These data indicate that Pks15/1 is involved in the elongation of p-hydroxybenzoic acid to give p-hydroxyphenylalkanoates, which in turn are converted, presumably by the PpsA-E synthase, to phenolphthiocerol derivatives.  相似文献   

3.
A few mycobacterial species, most of which are pathogenic for humans, produce dimycocerosates of phthiocerol (DIM) and of glycosylated phenolphthiocerol, also called phenolglycolipid (PGL), two groups of molecules shown to be important virulence factors. The biosynthesis of these molecules is a very complex pathway that involves more than 15 enzymatic steps and has just begun to be elucidated. Most of the genes known to be involved in these pathways are clustered on the chromosome of M. tuberculosis. Based on their amino acid sequences, we hypothesized that the proteins encoded by Rv2952 and Rv2959c, two open reading frames of this locus, are involved in the transfer of methyl groups onto various hydroxyl functions during the biosynthesis of DIM, PGL, and related p-hydroxybenzoic acid derivatives (p-HBAD). Using allelic exchange and site-specific recombination, we produced three recombinant strains of Mycobacterium tuberculosis carrying insertions in Rv2952 or Rv2959c. Analysis of these mutants revealed that (i) the protein encoded by Rv2952 is a methyltransferase catalyzing the transfer of a methyl group onto the lipid moiety of phthiotriol and glycosylated phenolphthiotriol dimycocerosates to form DIM and PGL, respectively, (ii) Rv2959c is part of an operon including the newly characterized Rv2958c gene that encodes a glycosyltransferase also involved in PGL and p-HBAD biosynthesis, and (iii) the enzyme encoded by Rv2959c catalyzes the O-methylation of the hydroxyl group located on carbon 2 of the rhamnosyl residue linked to the phenolic group of PGL and p-HBAD produced by M. tuberculosis. These data further extend our understanding of the biosynthesis of important mycobacterial virulence factors and provide additional tools to decipher the molecular mechanisms of action of these molecules during the pathogenesis of tuberculosis.  相似文献   

4.
Naturally occurring variants of the enzyme chorismate mutase are known to exist that exhibit diversity in enzyme structure, regulatory properties, and association with other proteins. Chorismate mutase was not annotated in the initial genome sequence of Mycobacterium tuberculosis (Mtb) because of low sequence similarity between known chorismate mutases. Recombinant protein coded by open reading frame Rv1885c of Mtb exhibited chorismate mutase activity in vitro. Biochemical and biophysical characterization of the recombinant protein suggests its resemblance to the AroQ class of chorismate mutases, prototype examples of which include the Escherichia coli and yeast chorismate mutases. We also demonstrate that unlike the corresponding proteins of E. coli, Mtb chorismate mutase does not have any associated prephenate dehydratase or dehydrogenase activity, indicating its monofunctional nature. The Rv1885c-encoded chorismate mutase showed allosteric regulation by pathway-specific as well as cross-pathway-specific ligands, as evident from proteolytic cleavage protection and enzyme assays. The predicted N-terminal signal sequence of Mtb chorismate mutase was capable of functioning as one in E. coli, suggesting that Mtb chorismate mutase belongs to the AroQ class of chorismate mutases. It was evident that Rv1885c may not be the only enzyme with chorismate mutase enzyme function within Mtb, based on our observation of the presence of chorismate mutase activity displayed by another hypothetical protein coded by open reading frame Rv0948c, a novel instance of the existence of two monofunctional chorismate mutases ever reported in any pathogenic bacterium.  相似文献   

5.
目的 构建表达结核分枝杆菌Rv1776c基因的重组耻垢分支杆菌,并鉴定该基因在重组耻垢分支杆菌中的活性。方法 采用PCR技术克隆结核分枝杆菌Rv1776c基因,构建大肠埃希菌‒分支杆菌穿梭表达质粒pMV-Rv1776c,通过酶切和测序鉴定其正确性,用电穿孔法将重组质粒转染到耻垢分支杆菌mc2155中。以SDS-PAGE及Western blot检测证实Rv1776c蛋白在重组耻垢分支杆菌内的表达。结果 重组耻垢分支杆菌构建成功,生长曲线说明重组质粒不会影响耻垢分支杆菌的体外生长;SDS-PAGE及Western blot检测证实Rv1776c在耻垢分枝杆菌内表达出相对分子量约56 kD的Rv1776c蛋白。结论 成功构建了Rv1776c基因的穿梭质粒pMV-Rv1776c,且该质粒在耻垢分枝杆菌内具有生物活性,为进一步研究其表达产物的功能提供基础。  相似文献   

6.
Phthiocerol dimycocerosates and related compounds are important molecules in the biology of Mycobacterium tuberculosis, playing a key role in the permeability barrier and in pathogenicity. Both phthiocerol dimycocerosates, the major compounds, and phthiodiolone dimycocerosates, the minor constituents, are found in the cell envelope of M. tuberculosis, but their specific roles in the biology of the tubercle bacillus have not been established yet. According to the current model of their biosynthesis, phthiocerol is produced from phthiodiolone through a two-step process in which the keto group is first reduced and then methylated. We have previously identified the methyltransferase enzyme that is involved in this process, encoded by the gene Rv2952 in M. tuberculosis. In this study, we report the construction and biochemical analyses of an M. tuberculosis strain mutated in gene Rv2951c. This mutation prevents the formation of phthiocerol and phenolphthiocerol derivatives, but leads to the accumulation of phthiodiolone dimycocerosates and glycosylated phenolphthiodiolone dimycocerosates. These results provide the formal evidence that Rv2951c encodes the ketoreductase catalyzing the reduction of phthiodiolone and phenolphthiodiolone to yield phthiotriol and phenolphthiotriol, which are the substrates of the methyltransferase encoded by gene Rv2952. We also compared the resistance to SDS and replication in mice of the Rv2951c mutant, deficient in synthesis of phthiocerol dimycocerosates but producing phthiodiolone dimycocerosates, with those of a wild-type strain and a mutant without phthiocerol and phthiodiolone dimycocerosates. The results established the functional redundancy between phthiocerol and phthiodiolone dimycocerosates in both the protection of the mycobacterial cell and the pathogenicity of M. tuberculosis in mice.  相似文献   

7.
8.
目的 研究经典抗结核药物异烟肼对重组耻垢分支杆菌生长增殖及其Rv1776c基因表达的影响。方法 将重组菌MS-Rv1776c接种于LB培养基培养作为对照组,实验组给予异烟肼药物处理,不同时间点取菌液测量A600值,根据所测A值绘制增殖曲线;提取菌液DNA以RT-PCR方法检测异烟肼对Rv1776c基因表达的影响;免疫印迹法SDS-PAGE及Western blot检测异烟肼对Rv1776c蛋白表达的影响。结果 异烟肼对两组重组耻垢分枝杆菌增殖无显著影响(P>0.05);异烟肼可抑制Rv1776c基因的表达(P<0.05);SDS-PAGE及Western blot检测发现异烟肼可显著降低ERv1776c蛋白的表达(P<0.05)。结论 异烟肼对重组耻垢分支杆菌的增殖无影响,但可抑制结核分枝杆菌Rv1776c基因及其表达的蛋白。该结果对研究结核菌从休眠菌到复苏初期及活跃期的药物预防提供了实验依据。  相似文献   

9.
Chorismate mutase (CM) catalyzes the rearrangement of chorismate to prephenate in the biosynthetic pathway that forms phenylalanine and tyrosine in bacteria, fungi, plants, and apicomplexan parasites. Since this enzyme is absent from mammals, it represents a promising target for the development of new antimycobacterial drugs, which are needed to combat Mycobacterium tuberculosis, the causative agent of tuberculosis. Until recently, two putative open reading frames (ORFs), Rv0948c and Rv1885c, showing low sequence similarity to CMs have been described as "conserved hypothetical proteins" in the M. tuberculosis genome. However, we and others demonstrated that these ORFs are in fact monofunctional CMs of the AroQ structural class and that they are differentially localized in the mycobacterial cell. Since homologues to the M. tuberculosis enzymes are also present in Mycobacterium smegmatis, we cloned the coding sequences corresponding to ORFs MSMEG5513 and MSMEG2114 from the latter. The CM activities of both ORFs was determined, as well as their translational start sites. In addition, we analyzed the promoter activities of three M. tuberculosis loci related to phenylalanine and tyrosine biosynthesis under a variety of conditions using M. smegmatis as a surrogate host. Our results indicate that the aroQ (Rv0948c), *aroQ (Rv1885c), and fbpB (Rv1886c) genes from M. tuberculosis are constitutively expressed or subjected to minor regulation by aromatic amino acids levels, especially tryptophan.  相似文献   

10.
目的:用原核系统表达结核分枝杆菌Rv3425蛋白并纯化,评价该重组蛋白在结核病血清学诊断方面的价值。方法:以结核分枝杆菌H37Rv株基因组为模板,PCR扩增得到Rv3425基因序列,克隆至表达载体pET-28a中,转入大肠杆菌BL21(DE3)进行诱导、表达后纯化,用Western印迹和ELISA法进行抗原性初步评价。结果:在原核系统内经IPTG诱导表达后,Rv3425蛋白主要以包涵体形式存在,经复性和镍柱层析纯化后,纯度达95%以上;Western印迹和ELISA结果证明重组Rv3425具有较强的抗原活性;用纯化的Rv3425蛋白做抗原,临床诊断结核病人血清,阳性率达50%。结论:高纯度的Rv3425蛋白在结核病诊断方面具有很高的应用价值,可作为结核病诊断的备选抗原。  相似文献   

11.
The emergence of multi-drug resistant (MDR) strains of Mycobacterium tuberculosis is the main reason why tuberculosis (TB) continues to be a major health problem worldwide. It is urgent to discover novel anti-mycobacterial agents based on new drug targets for the treatment of TB, especially MDR-TB. Tryptophan biosynthetic pathway, which is essential for the survival of M. tuberculosis and meanwhile absent in mammals, provides potential anti-TB drug targets. One of the promising drug targets in this pathway is anthranilate synthase component I (TrpE), whose role is to catalyze the conversion of chorismate to anthranilate using ammonia as amino source. In order to get a deep understanding of TrpE, a study on purification and characteristic identification of TrpE is required. In this work, the putative trpE gene of M. tuberculosis H37Rv was expressed as a fusion protein with a 6x His-tag on the N-terminal (His-TrpE) in Escherichia coli. The recombinant TrpE protein was successfully purified and then its enzymatic characteristics were analyzed. The native TrpE without His-tag was obtained by removal of the N-terminal fusion partner of His-TrpE using enterokinase. It was found that N-terminal fusion partner had little influence on TrpE catalytic activity. In addition, the key residues related to enzyme catalytic activity and that involved in l-tryptophan inhibition were predicted in the structure of M. tuberculosis H37Rv TrpE. These results would be beneficial to the designing of novel anti-TB drugs with high potency and selectivity.  相似文献   

12.
Ability of Mycobacterium tuberculosis to survive under oxidative stress in vivo is an important aspect of pathogenesis. Rv3303c gene from M. tuberculosis encodes an NAD(P)H quinone reductase. These enzymes have been shown to manage oxidative stress in other pathogenic bacteria. We have hypothesized that Rv3303c protein will remove reactive oxygen species released by the host and hence reduce oxidative stress to M. tuberculosis. rv3303c was PCR cloned and the purified recombinant enzyme reduced superoxide generator menadione. Antisense and sense RNA constructs of rv3303c were electroporated in M. tuberculosis H37Rv. The transformants were characterized by difference in expression of specific mRNA and protein. Antisense transformants were markedly reduced in virulence as compared to sense transformants as judged by several parameters such as weight and survival of infected mice, growth in vivo, colonization and histopathology of lungs. In the presence of menadione, the sense transformant was more resistant to killing in vitro than the antisense transformant. It may be concluded that the rv3303c gene contributes to virulence of M. tuberculosis in vivo and this might be mediated in part by increased resistance to reactive oxygen intermediates thereby enhancing intracellular growth and colonization.  相似文献   

13.
Aim:  Molecular cloning, overexpression and biochemical characterization of the genes from the Mycobacterium tuberculosis H37Rv genome having hypothetical β-lactamases activity.
Methods and Results:  Analysis of the M. tuberculosis H37Rv genome revealed that Rv 2068c , Rv 0406 c and Rv 3677 c gene products were predicted to exhibit β-lactamases activity. All the three genes were cloned in pET28a vector and overexpressed in C41 (DE3) Escherichia coli cells. The His-tagged recombinant proteins were confirmed by immunoblotting and were shown to have β-lactamase activity by the hydrolysis of nitrocefin and other β-lactams. Catalytic parameters for all the recombinant proteins were derived followed by the enzyme inhibition studies. Antibiotic susceptibility studies using the recombinant strains showed an increased resistance against different classes of β-lactam antibiotics.
Conclusion:  The study revealed the possibility of more than one gene in M. tuberculosis , encoding proteins having β-lactamase or β-lactamase-like activity, giving wide spectrum of resistance against β-lactams.
Significance and Impact of the Study:  Systematic study of hypothetical β-lactamases of M. tuberculosis and related species and their correlation with β-lactam and inhibitor susceptibility profile might be useful in developing new antibiotic regime for the treatment of tuberculosis caused by multiple drug resistant (MDR) strains.  相似文献   

14.
Qamra R  Prakash P  Aruna B  Hasnain SE  Mande SC 《Biochemistry》2006,45(23):6997-7005
Chorismate mutase catalyzes the first committed step toward the biosynthesis of the aromatic amino acids, phenylalanine and tyrosine. While this biosynthetic pathway exists exclusively in the cell cytoplasm, the Mycobacterium tuberculosis enzyme has been shown to be secreted into the extracellular medium. The secretory nature of the enzyme and its existence in M. tuberculosis as a duplicated gene are suggestive of its role in host-pathogen interactions. We report here the crystal structure of homodimeric chorismate mutase (Rv1885c) from M. tuberculosis determined at 2.15 A resolution. The structure suggests possible gene duplication within each subunit of the dimer (residues 35-119 and 130-199) and reveals an interesting proline-rich region on the protein surface (residues 119-130), which might act as a recognition site for protein-protein interactions. The structure also offers an explanation for its regulation by small ligands, such as tryptophan, a feature previously unknown in the prototypical Escherichia coli chorismate mutase. The tryptophan ligand is found to be sandwiched between the two monomers in a dimer contacting residues 66-68. The active site in the "gene-duplicated" monomer is occupied by a sulfate ion and is located in the first half of the polypeptide, unlike in the Saccharomyces cerevisiae (yeast) enzyme, where it is located in the later half. We hypothesize that the M. tuberculosis chorismate mutase might have a role to play in host-pathogen interactions, making it an important target for designing inhibitor molecules against the deadly pathogen.  相似文献   

15.
Phthiocerol dimycocerosates (DIM) and phenolglycolipids (PGL) are functionally important surface-exposed lipids of Mycobacterium tuberculosis. Their biosynthesis involves the products of several genes clustered in a 70-kb region of the M. tuberculosis chromosome. Among these products is PpsD, one of the modular type I polyketide synthases responsible for the synthesis of the lipid core common to DIM and PGL. Bioinformatic analyses have suggested that this protein lacks a functional enoyl reductase activity domain required for the synthesis of these lipids. We have identified a gene, Rv2953, that putatively encodes an enoyl reductase. Mutation in Rv2953 prevents conventional DIM formation and leads to the accumulation of a novel DIM-like product. This product is unsaturated between C-4 and C-5 of phthiocerol. Consistently, complementation of the mutant with a functional pks15/1 gene from Mycobacterium bovis BCG resulted in the accumulation of an unsaturated PGL-like substance. When an intact Rv2953 gene was reintroduced into the mutant strain, the phenotype reverted to the wild type. These findings indicate that Rv2953 encodes a trans-acting enoyl reductase that acts with PpsD in phthiocerol and phenolphthiocerol biosynthesis.  相似文献   

16.
Rv3487c (lipF), a member of the lipase family of Mycobacterium tuberculosis, is related to virulence of this pathogen. Real-time RT-PCR analysis indicated that Rv3487c was induced at low pH in M. tuberculosis cultured in vitro. The gene of Rv3487c was cloned and expressed as fusion protein in Escherichia coli. After removal of the N-terminal domain of the fusion partner by enterokinase treatment, the effect of pH, temperature, and detergents on the purified enzyme activity and stability was characterized. Rv3487c could efficiently hydrolyze short chain esters. The catalytic triad of Rv3487c consists of residues Ser90, Glu189, and His219 as demonstrated by amino acid sequence alignment, three-dimensional modeling, and site-directed mutagenesis.  相似文献   

17.
The Rv0183 gene of the Mycobacterium tuberculosis H37Rv strain, which has been implicated as a lysophospholipase, was cloned and expressed in Escherichia coli. The purified Rv0183 protein did not show any activity when lysophospholipid substrates were used, but preferentially hydrolysed monoacylglycerol substrates with a specific activity of 290 units x mg(-1) at 37 degrees C. Rv0183 hydrolyses both long chain di- and triacylglycerols, as determined using the monomolecular film technique, although the turnover was lower than with MAG (monoacyl-glycerol). The enzyme shows an optimum activity at pH values ranging from 7.5 to 9.0 using mono-olein as substrate and is inactivated by serine esterase inhibitors such as E600, PMSF and tetrahydrolipstatin. The catalytic triad is composed of Ser110, Asp226 and His256 residues, as confirmed by the results of site-directed mutagenesis. Rv0183 shows 35% sequence identity with the human and mouse monoglyceride lipases and well below 15% with the other bacterial lipases characterized so far. Homologues of Rv0183 can be identified in other mycobacterial genomes such as Mycobacterium bovis, Mycobacterium smegmatis, and even Mycobacterium leprae, which is known to contain a low number of genes involved in the replication process within the host cells. The results of immunolocalization studies performed with polyclonal antibodies raised against the purified recombinant Rv0183 suggested that the enzyme was present only in the cell wall and culture medium of M. tuberculosis. Our results identify Rv0183 as the first exported lipolytic enzyme to be characterized in M. tuberculosis and suggest that Rv0183 may be involved in the degradation of the host cell lipids.  相似文献   

18.
We have identified an omega,E,E-farnesyl diphosphate (omega,E,E-FPP) synthase, encoded by the open reading frame Rv3398c, from Mycobacterium tuberculosis that is unique among reported FPP synthases in that it does not contain the type I (eukaryotic) or the type II (eubacterial) omega,E,E-FPP synthase signature motif. Instead, it has a structural motif similar to that of the type I geranylgeranyl diphosphate synthase found in Archaea. Thus, the enzyme represents a novel class of omega,E,E-FPP synthase. Rv3398c was cloned from the M. tuberculosis H37Rv genome and expressed in Mycobacterium smegmatis using a new mycobacterial expression vector (pVV2) that encodes an in-frame N-terminal affinity tag fusion with the protein of interest. The fusion protein was well expressed and could be purified to near homogeneity, allowing facile kinetic analysis of recombinant Rv3398c. Of the potential allylic substrates tested, including dimethylallyl diphosphate, only geranyl diphosphate served as an acceptor for isopentenyl diphosphate. The enzyme has an absolute requirement for divalent cation and has a K(m) of 43 microM for isopentenyl diphosphate and 9.8 microM for geranyl diphosphate and is reported to be essential for the viability of M. tuberculosis.  相似文献   

19.
A 9.5-kb section of DNA called region of deletion 1 (RD1) is present in virulent Mycobacterium tuberculosis strains but is deleted in all attenuated Mycobacterium bovis BCG vaccine strains. This region codes for at least nine genes. Some or all RD1 gene products may be involved in virulence and pathogenesis, and at least two, ESAT-6 and CFP-10, represent potent T- and B-cell antigens. In order to produce the entire set of RD1 proteins with their natural posttranslational modifications, a robust expression system for M. tuberculosis proteins in the fast-growing saprophytic strain Mycobacterium smegmatis was developed. Our system employs the inducible acetamidase promoter and allows translational fusion of recombinant M. tuberculosis proteins with polyhistidine or influenza hemagglutinin epitope tags for affinity purification. Using eGFP as reporter gene, we showed that the acetamidase promoter is tightly regulated in M. smegmatis and that this promoter is much stronger than the widely used constitutive groEL2 promoter. We then cloned 11 open reading frames (ORFs) found within RD1 and successfully expressed and purified the respective proteins. Sera from tuberculosis patients and M. tuberculosis-infected mice reacted with 10 purified RD1 proteins, thus demonstrating that Rv3871, Rv3872, Rv3873, CFP-10, ESAT-6, Rv3876, Rv3878, Rv3879c and ORF-14 are expressed in vivo. Finally, glycosylation of the RD1 proteins was analyzed. We present preliminary evidence that the PPE protein Rv3873 is glycosylated at its C terminus, thus highlighting the ability of M. smegmatis to produce M. tuberculosis proteins bearing posttranslational modifications.  相似文献   

20.
Temperature-sensitive mutant 2-20/32 of Mycobacterium smegmatis mc(2)155 was isolated and genetically complemented with a Mycobacterium tuberculosis H37Rv DNA fragment that contained a single open reading frame. This open reading frame is designated Rv3265c in the M. tuberculosis H37Rv genome. Rv3265c shows homology to the Escherichia coli gene wbbL, which encodes a dTDP-Rha:alpha-D-GlcNAc-pyrophosphate polyprenol, alpha-3-L-rhamnosyltransferase. In E. coli this enzyme is involved in O-antigen synthesis, but in mycobacteria it is required for the rhamnosyl-containing linker unit responsible for the attachment of the cell wall polymer mycolyl-arabinogalactan to the peptidoglycan. The M. tuberculosis wbbL homologue, encoded by Rv3265c, was shown to be capable of restoring an E. coli K12 strain containing an insertionally inactivated wbbL to O-antigen positive. Likewise, the E. coli wbbL gene allowed 2-20/32 to grow at higher non-permissive temperatures. The rhamnosyltransferase activity of M. tuberculosis WbbL was demonstrated in 2-20/32 as was the loss of this transferase activity in 2-20/32 at elevated temperatures. The wbbL of the temperature-sensitive mutant contained a single-base change that converted what was a proline in mc(2)155 to a serine residue. Exposure of 2-20/32 to higher non-permissive temperatures resulted in bacteria that could not be recovered at the lower permissive temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号