首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of the cation-binding properties of porcine neurofilaments   总被引:5,自引:0,他引:5  
S Lefebvre  W E Mushynski 《Biochemistry》1988,27(22):8503-8508
In the presence of physiological levels of Na+ (10 mM), K+ (150 mM), and Mg2+ (2 mM), dephosphorylated neurofilaments contained two Ca2+ specific binding sites with Kd = 11 microM per unit consisting of eight low, three middle, and three high molecular subunits, as well as 46 sites with Kd = 620 microM. Only one class of 126 sites with Kd = 740 microM was detected per unit of untreated neurofilaments. A chymotryptic fraction enriched in the alpha-helical domains of neurofilament subunits contained one high-affinity Ca2+-binding site (Kd = 3.6 microM) per domain fragment of approximately 32 kDa. This site may correspond to a region in coil 2b of the alpha-helical domain, which resembles the I-II Ca2+-binding site in intestinal Ca2+-binding protein. Homopolymeric filaments composed of the low or middle molecular weight subunits contained low-affinity Ca2+-binding sites with Kd = 37 microM and 24 microM, respectively, while the Kd values for the low-affinity sites in heteropolymeric filaments were 8-10-fold higher. Competitive binding studies, using the chymotryptic fraction to assay the high-affinity Ca2+-binding sites and 22Na+ to monitor binding to the phosphate-containing low-affinity sites, yielded Kd values for Al3+ of 0.01 microM and 4 microM, respectively. This suggests that the accumulation of Al3+ in neurons may be due in part to its binding to neurofilaments.  相似文献   

2.
Based on the proposal that ribonucleases cleave the RNA phosphodiester bond with a mechanism involving pentacovalent phosphorous as transition state, complexes of guanosine and inosine with vanadate-(IV, V), molybdate-(VI), tungstate-(VI), chromate-(VI) and hexacyanochromate-(III) were synthesized and probed as inhibitors of recombinant ribonuclease T1, obtained from an E. coli. overproducing strain. The apparent dissociation constants of these inhibitors and RNase T1, as determined by Michaelis-Menten kinetics, vary between 0.5-0.9 microM and indicate very strong binding, 100- to 1000-fold stronger than the binding of guanosine (Kd = 545 microM) and inosine (Kd = 780 microM), and 50-100-fold stronger than the binding of the product 3' GMP (Kd = 55 microM). Therefore the synthesized inhibitors may be considered as genuine transition state analogs for the enzyme.  相似文献   

3.
1H-[1,2,3]-Triazol-1-yl mannosides have been synthesized as inhibitors for the beta-galactoside-binding family of galectin proteins. Easier synthetic access to C1 in mannose, as compared to C3 in galactose, for attachment of affinity-enhancing triazoles rendered a synthetic advantage. The best mannose-derived inhibitor for galectin-9N, 4-benzylaminocarbonyl-1H-[1,2,3]-triazol-1-yl beta-D-mannopyranoside, had a Kd value of 540 microM, which compares favorably with its galactoside counterpart (Kd=670 microM) and with LacNAc (Kd=500 microM).  相似文献   

4.
1. The binding of Ca2+ ions to purified pig heart NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase, freed of contaminating Ca2+ by parvalbumin/polyacrylamide chromatography, has been studied by flow dialysis and by the use of fura-2. 2. For the 2-oxoglutarate dehydrogenase complex, 3.5 mol of Ca2+-binding sites/mol of complex were apparent, with an apparent dissociation constant (Kd value) for Ca2+ of 2.0 microM. These values were little affected by Mg2+ ions, ADP or 2-oxoglutarate. 3. By contrast, binding of Ca2+ to NAD+-isocitrate dehydrogenase (Kd = 14 microM) required ADP, isocitrate and Mg2+ ions. The number of Ca2+-binding sites associated with NAD+-isocitrate dehydrogenase was then 0.9 mol/mol of tetrameric enzyme. 4. The 2-oxoglutarate dehydrogenase complex bound ADP (as ADP3-) to a group of tight-binding sites (Kd = 3.1 microM) with a stoichiometry, 3.3 mol/mol of complex, similar to that for the binding of Ca2+; a variable number of much weaker sites (Kd = 100 microM) for ADP3- was also apparent.  相似文献   

5.
Lanthanide luminescence was used to examine the effects of posttranslational adenylylation on the metal binding sites of Escherichia coli glutamine synthetase (GS). These studies revealed the presence of two lanthanide ion binding sites of GS of either adenylylation extrema. Individual emission decay lifetimes were obtained in both H2O and D2O solvent systems, allowing for the determination of the number of water molecules coordinated to each bound Eu3+. The results indicate that there are 4.3 +/- 0.5 and 4.6 +/- 0.5 water molecules coordinated to Eu3+ bound to the n1 site of unadenylylated enzyme, GS0, and fully adenylylated enzyme, GS12, respectively, and that there are 2.6 +/- 0.5 water molecules coordinated to Eu3+ at site n2 for both GS0 and GS12. Energy transfer measurements between the lanthanide donor-acceptor pair Eu3+ and Nd3+, obtained an intermetal distance measurement of 12.1 +/- 1.5 A. Distances between a Tb3+ ion at site n2 and tryptophan residues were also performed with the use of single-tryptophan mutant forms of E. coli GS. The dissociation constant for lanthanide ion binding to site n1 was observed to decrease from Kd = 0.35 +/- 0.09 microM for GS0 to Kd = 0.06 +/- 0.02 microM for GS12. The dissociation constant for lanthanide ion binding to site n2 remained unchanged as a function of adenylylation state; Kd = 3.8 +/- 0.9 microM and Kd = 2.6 +/- 0.7 microM for GS0 and GS12, respectively. Competition experiments indicate that Mn2+ affinity at site n1 decreases as a function of increasing adenylylation state, from Kd = 0.05 +/- 0.02 microM for GS0 to Kd = 0.35 +/- 0.09 microM for GS12. Mn2+ affinity at site n2 remains unchanged (Kd = 5.3 +/- 1.3 microM for GS0 and Kd = 4.0 +/- 1.0 microM for GS12). The observed divalent metal ion affinities, which are affected by the adenylylation state, agrees with other steady-state substrate experiments (Abell LM, Villafranca JJ, 1991, Biochemistry 30:1413-1418), supporting the hypothesis that adenylylation regulates GS by altering substrate and metal ion affinities.  相似文献   

6.
Ca2+ or Cd2+ binding and the conformational change induced by the metal binding in two frog bone Gla-proteins (BGP, termed BGP-1 and BGP-2) were studied by equilibrium dialysis and CD measurement. By CD measurement in the far-ultraviolet region, the alpha-helix content of both apoBGPs was found to be 8%. Binding of both Ca2+ and Cd2+ was accompanied with a change in the CD spectrum, and the alpha-helix content increased to 15 and 25% for BGP-1 and BGP-2, respectively. CD measurement in the near-ultraviolet region indicated that the environment of aromatic amino acid residues in the protein molecule was changed by metal binding. Equilibrium dialysis experiments indicated that each of these two protein binds specifically 2 mol of Ca2+, and nonspecifically an additional 3-4 mol of Ca2+ in 0.02 M Tris-HCl/0.15 M NaCl (pH 7.4), at 4 degrees C. According to the two separate binding sites model, BGP-1 has 1 high-affinity Ca2+ binding site (Kd1 = 0.17 mM) and 1 low-affinity site (Kd2 = 0.29 mM), and BGP-2 contains 1 high-affinity site (Kd1 = 0.14 mM) and 1 low-affinity site (Kd2 = 0.67 mM). In addition, 2 Cd2+ bound to a high-affinity binding site on BGP-1 with Kd1 of 10.4 microM, and 1 Cd2+ bound to a low-affinity binding site with Kd2 of 41.5 microM. On the other hand, BGP-2 had three classes of binding sites and 1 Cd2+ bound to each binding site with Kd1 = 3.6 microM, Kd2 = 16.3 microM, Kd3 = 51.7 microM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We have synthesized two photolabile arylazido-analogues of Ins(1,4,5)P3 selectively substituted at the 1-phosphate group for determination of Ins(1,4,5)P3-binding proteins. These two photoaffinity derivatives, namely N-(4-azidobenzoyl)aminoethanol-1-phospho-D-myo-inositol 4,5-bisphosphate (AbaIP3) and N-(4-azidosalicyl)aminoethanol-1-phospho-D-myo-inositol 4,5-bisphosphate (AsaIP3), bind to high affinity Ins(1,4,5)P3-specific binding sites at a 9-fold lower affinity (Kd = 66 and 70 nM) than Ins(1,4,5)P3 (Kd = 7.15 nM) in a fraction from rat pancreatic acinar cells enriched in endoplasmic reticulum (ER). Other inositol phosphates tested showed comparable (DL-myo-inositol 1,4,5-trisphosphothioate, Kd = 81 nM) or much lower affinities for the binding sites [Ins(1,3,4,5)P4, Kd = 4 microM; Ins(1,4)P2, Kd = 80 microM]. Binding of AbaIP3 was also tested on a microsomal preparation of rat cerebellum [Kd = 300 nM as compared with Ins(1,4,5)P3, Kd = 45 nM]. Ca2+ release activity of the inositol derivatives was tested with AbaIP3. It induced a rapid and concentration-dependent Ca2+ release from the ER fraction [EC50 (dose producing half-maximal effect) = 3.1 microM] being only 10-fold less potent than Ins(1,4,5)P3 (EC50 = 0.3 microM). From the two radioactive labelled analogues ([3H]AbaIP3 and 125I-AsIP3) synthesized, the radioiodinated derivative was used for photoaffinity labelling. It specifically labelled three proteins with apparent molecular masses of 49, 37 and 31 kDa in the ER-enriched fraction. By subfractionation of this ER-enriched fraction on a Percoll gradient the 37 kDa Ins(1,4,5)P3 binding protein was obtained in a membrane fraction which showed the highest effect in Ins(1,4,5)P3-inducible Ca2+ release (fraction P1). The other two Ins(1,4,5)P3-binding proteins, of 49 and 31 kDa, were obtained in fraction P2, in which Ins(1,4,5)P3-induced Ca2+ release was half of that obtained in fraction P1. We conclude from these data that the 37 kDa and/or the 49 and 31 kDa proteins are involved in Ins(1,4,5)P3-induced Ca2+ release from the ER of rat pancreatic acinar cells.  相似文献   

8.
1. Metal ions other than zinc and magnesium were effective in modulating the activity of rat osseous plate alkaline phosphatase. 2. Increasing pH had remarkable effects on the modulation of rat osseous plate alkaline phosphatase. 3. The modulation of enzyme activity by zinc, manganese and cobalt ions was slightly affected by pH variations. 4. Zinc ions were stimulatory for the enzyme at very low concentrations (50 nM). Above 50 nM zinc ions inhibited the enzyme by displacing magnesium ions. 5. Calcium ions were inhibitors of alkaline phosphatase (Kd = 10 microM) whereas manganese (Kd = 1.3 microM) and cobalt (Kd = 0.2 microM) ions were stimulatory in the pH range 8.0-10.0.  相似文献   

9.
The synthesis of a new 8-spin-labeled analog of AMP, 8-[[[(2,2,5,5-tetramethyl-1-oxy-3-pyrrolidinyl)carbamoyl]methyl]thio]adenosine 5'-phosphate (8-slAMP), is described. The procedure is facile and results in high yields. 8-slAMP is a competitive inhibitor of AMP nucleosidase with a Ki of 19 microM as compared to a Km of 100 microM for AMP. The analog is not a substrate for the enzyme and does not displace MgATP2- from the allosteric sites under the usual assay conditions. The EPR spectrum of the bound spin probe reveals a highly immobilized nitroxide group. Binding studies with 8-slAMP at 8 degrees C indicate three independent binding sites (Kd = 1.4 microM) per molecule of enzyme (Mr = 320,000). These properties make 8-slAMP a good spin probe for AMP nucleosidase. The analog may also be useful for other proteins known or suspected of binding AMP analogs in a syn conformation.  相似文献   

10.
The ligand binding of kringle 1 + 2 + 3 and kringle 1 from human plasminogen has been investigated by fluorescence spectroscopy. Analysis of fluorescence titration of kringle 1 + 2 + 3 with 6-aminohexanoic acid shows that this fragment, besides the high-affinity lysine-binding site with Kd = 2.9 microM, contains two additional lysine-binding sites which differ in binding strength (Kd = 28 microM and Kd = 220 microM). This strongly suggests the existence of a lysine-binding site in each of the first three kringles. 6-Aminohexanoic acid, pentylamine, pentanoic acid and arginine were used for investigation of the ligand specificity of isolated kringle 1 prepared by pepsin hydrolysis of kringle 1 + 2 + 3. It has been established that kringle 1 has high affinity to 6-aminohexanoicacid, pentylamine and arginine (Kd values are 3.2 microM, 4.8 microM and 4.3 microM, respectively). At the same time pentanoic acid did not bind with kringle 1. These facts indicate, firstly, a broad ligand specificity of kringle 1 and, secondly, the paramount importance of the positively charged group of the ligand for its interaction with lysine-binding site of this kringle.  相似文献   

11.
Certain 4-(phenylamino)furo[2,3-b]quinoline and 2-(furan-2-yl)-4-(phenylamino)quinoline derivatives were synthesized and evaluated in vitro against the full panel of NCIs 60 cancer cell lines. The preliminary results indicated these tricyclic 4-(phenylamino)furo[2,3-b]quinolines were more cytotoxic than their corresponding 2-(furan-2-yl)-4-(phenylamino)quinoline isomers. For the 4-(phenylamino)furo[2,3-b]quinolines, compounds 2a and 3d are two of the most potent with a mean GI50 value of 0.025 microM in each case. Inactivity of 2b and 2c (positional isomers of 2a) indicated that both electronic environment, and the distance between intercalating pharmacophore and H-bond-donating MeO group are important. For the 2-(furan-2-yl)-4-(phenylamino)quinoline isomers, compound 12 (a mean GI50 of 4.36 microM), which bears a para-COMe substituent, is more active than its meta-substituted counterpart 13 (10.5 microM). However, the electron-donating MeO substituent is preferred at the meta-position, and the cytotoxicity for the meta-substituted derivatives decreased in the order: MeO derivative 14b (3.05 microM) > oxime 16 (6.85 microM) > ketone 13 (10.5 microM) > methyl oxime 18 (20.6 microM).  相似文献   

12.
Interaction of non-steroidal antiestrogens with dopamine receptor binding   总被引:1,自引:0,他引:1  
The ability of various estrogen antagonists and agonists to compete with [3H]spiroperidol, [3H]domperidone, [3H]dihydroalprenolol, [3H]dihydroergocryptine, [3H]dopamine or [3H]5-hydroxytryptamine for binding to membrane preparations from rat brain tissue was tested. The non-steroidal triphenylethylene-type antiestrogens with an amine side chain--enclomiphene, nitromifene, tamoxifen and zuclomiphene--were found to be competitive inhibitors of [3H]spiroperidol (Kd = 0.12 nM; Bmax = 101 fmol/mg protein) and [3H]domperidone (Kd = 0.62 nM; Bmax = 86 fmol/mg protein) binding to striatal membranes. The Ki values ranged from 4-12 microM. Estradiol-17 beta (Ki = 480 microM) or diethylstilbestrol (Ki = 63 microM) were much less effective inhibitors exhibiting noncompetitive interaction with the in vitro binding of [3H]spiroperidol. The pharmacological relevance of the antiestrogen interactions with dopamine receptor binding is discussed with respect to adverse effects of the in vivo administered compounds such as nausea and vomiting.  相似文献   

13.
Using N-acetylglucosaminono-1,5-lactone (1) as the reference, the inhibitory activity of its (formal) derivatives N-acetylglucosaminono-1,5-lactone oxime (2) and N-acetylglucosaminono-1,5-lactone O-(phenylcarbamoyl)-oxime (3) was tested against beta-N-acetylglucosaminidase of different origins (animal, plant, fungus). Displaying inhibition constants of 0.45 microM and 0.62 microM, for the animal and plant enzyme, respectively, the simple oxime 2 was about equally potent as the parent lactone 1, and 50-400 times more efficient than two recently described new beta-N-acetylglucosaminidase inhibitors. The (phenylcarbamoyl)oxime 3 performed even better, particularly with the fungal enzyme (Ki = 40 nM), i.e. was about 350 times more potent than the lactone. In all cases competitive inhibition was observed with 4-nitrophenyl-beta-N-acetylglucosaminide as the substrate. With Ki/Km ratios up to 3300 for 2 and 13,600 for 3, the mode of action of these novel inhibitors is probably that of transition state mimicry. Suggestions are made for their use as a tool in biological research.  相似文献   

14.
Binding and endocytosis of heparin by human endothelial cells in culture   总被引:8,自引:0,他引:8  
Binding of heparin and low molecular weight heparin fragments (CY 222, Mr range 1500-8000) to human vascular endothelial cells was studied. Primary culture of human umbilical vein endothelial cells and either 125I or 3H-labeled heparin or [125I]CY 222 were used. Slow, saturable and specific binding was found. No other tested glycosaminoglycan, excepting a highly sulfated heparan fraction, was able to compete for heparin binding. Two groups of binding sites for [3H]heparin could be distinguished: one with high affinity (Kd = 0.12 microM) and another with lower affinity (Kd = 1.37 microM) and a relative large capacity of binding (1.16 X 10(7) molecules/cell) was calculated. The Kd for unlabeled heparin, as calculated from competition experiments, was 0.23 microM. Much lower affinity was calculated for unlabeled low molecular weight heparin fragments CY 222 (Kd = 4.3 microM) from competition experiments with [125I]CY 222. The binding reversibility was only partial for unfractionated heparin. Even by chasing with unlabeled compound, a fraction of 25-30% was not dissociable from endothelial cells. This fraction was much lower if incubation was carried out at 4 degrees C. The addition of basic proteins (histones) to the incubation medium greatly enhanced the undissociable binding at 37 degrees C, but not at 4 degrees C. The undissociable fraction of heparin was not available to degradation by purified microbial heparinase. These results suggest that a fraction of bound heparin is internalized by the vascular endothelium.  相似文献   

15.
Cytosolic proteins may play an important role in the intracellular transport of bile acids in enterocytes. The lithocholate binding properties of cytosolic protein from bovine small intestine were studied. Lithocholate binding was observed in the Y (45-50 kDa), Y' (30-35 kDa), and Z fractions (10-15 kDa) following gel filtration of cytosol. A Y protein with glutathione S-transferase activity (46 kDa) was purified by S-octyl-glutathione affinity chromatography and chromatofocusing (eluted at pH 7.5) of the Y fraction. Two Y' bile acid binding proteins with dihydrodiol dehydrogenase activity were partially purified from the Y' fraction by chromatofocusing and hydroxyapatite-HPLC. The lithocholate binding affinity of Y' protein (Kd < 0.35 microM) was higher than that of Y protein (Kd = 2 microM) and was comparable to that of Z protein (Kd = 0.2 microM). The binding affinity of Y protein was higher for bilirubin (Kd = 2.5 microM) than that for BSP (Kd = 200 microM). This was comparable to the binding affinity of bovine hepatic Y protein. These data indicate that Y' and Z proteins participate in the intracellular transport of bile acids from the brush border to the basolateral pole in enterocytes.  相似文献   

16.
Copper(I)-catalyzed addition of alkynes to methyl 3-azido-3-deoxy-1-thio-beta-D-galactopyranoside afforded stable and structurally simple 3-deoxy-3-(1H-1,2,3-triazol-1-yl)-1-thio-galactosides carrying a panel of substituents at the triazole C4 in high yields. The 3-(1H-[1,2,3]-triazol-1-yl)-1-thio-galactoside collection synthesized contained inhibitors of the tumor- and inflammation-related galectin-3 with Kd values as low as 107 microM, which is as potent as the natural disaccharide inhibitors lactose and N-acetyllactosamine.  相似文献   

17.
Pharmacological evidence has suggested that endothelin-3 (ET-3) may act via a novel form of ET receptor that is shared by ETA receptor antagonists but not by ETB receptor selective agonists. This study analyses the properties of interaction of ET-3 with recombinant bovine ETA receptor. Apparent Kd(ET-3) values as low as 50 nM were defined from [125I]ET-1 binding experiments performed at low (5 microg/ml) protein concentrations in the assays. Larger (up to 1 microM) values were artefactually obtained in experiments performed at larger protein concentrations. The three monoiodo ET-3 derivatives were synthetized. ([125I]Y14)ET-3 did not recognize ETA receptors. ([125I]Y6)ET-3 labelled 18% of [125I]ET-1 binding sites with a Kd value of 320 pM. ([125I]Y13)ET-3 labelled 44% of [125I]ET-1 binding sites with a Kd value of 130 pM. High affinity ([125I]Y6)ET-3 and ([125I]Y13)ET-3 bindings were prevented by ET-1 (Kd = 5-7 pM), ET-3 (Kd = 70-250 pM), BQ-123 (Kd = 2 nM) and FR139317 (Kd = 2 nM) but not by low concentrations of 4-AlaET-1, sarafotoxin S6c or IRL1620. The three monoiodo ET-3 derivatives bound to recombinant rat ETB receptors with a pM affinity. The results suggest that ET-3, ([125I]Y6)ET-3 and ([125I]Y13)ET-3 should not be considered as ETB receptor specific ligands.  相似文献   

18.
In the present investigation the interaction of a novel selective NMDA receptors agonist, N-phthalamoyl-L-glutamic acid (PhGA), with the synaptic membranes preparation of human hippocampus was examined against NMDA. It was established that there are two binding sites of 3H-L-Glu, Kd1 = 0.35 +/- 0.11 nM, Bmax1 = 6.5 +/- 2.3 pmol/mg and Kd2 = 51 +/- 12 nM, Bmax2 = 98 +/- 17 pmol/mg. The inhibition constants (Ki) were calculated for NMDA and PhGA and were equal: Ki(NMDA) = 19 microM, Ki (PhGA) = 13 microM, respectively. It was concluded that PhGA is the partial agonist of the NMDA receptors.  相似文献   

19.
Existing techniques for androgen receptor (AR) assay are complicated by cross-reactivity of ligand binding affinities that can lead to incorrect estimation of receptor concentration. Two most frequently used ligands are [3H]dihydrotestosterone [( 3H]DHT) and [3H]methyltrienolone [( 3H]R1881), which in addition to binding to AR also bind to sex hormone binding globulin (SHBG; Kd = 1.5 nM) and progesterone receptors (PgR; Human Kd = 1 nM, rat Kd = 6 nM) respectively. Triamcinolone acetonide (TMA) is commonly used to block binding of [3H]R1881 to PgR, however at high concentrations TMA itself will bind AR (Kd = 7 microM). We have developed a hybrid ligand method for the measurement of AR in the presence of SHBG and PgR. This method used [3H]R1881 as the high specific activity labelled tracer and DHT as the unlabelled competitor of specific AR binding. Using this assay, 20% of human colorectal carcinomas were found to contain AR.  相似文献   

20.
Inactive NADP-malate dehydrogenase (disulfide form) from chloroplasts of Zea mays is activated by reduced thioredoxin while the active enzyme (dithiol form) is inactivated by incubation with oxidized thioredoxin. This reductive activation of NADP-malate dehydrogenase is inhibited by over 95% in the presence of NADP and the Kd for this interaction of NADP with the inactive enzyme is about 3 microM. Other substrates of the enzyme (malate, oxaloacetate, or NADPH) do not effect the rate of enzyme activation but NADPH can reverse the inhibitory effect of NADP. It appears that NADPH (Kd = 250 microM) and NADP (Kd = 3 microM) compete for the same site, presumably the coenzyme-binding site at the active centre. Apparently the enzyme . NADP binary complex cannot be reduced by thioredoxin whereas the enzyme . NADPH complex is reduced at the same rate as is the free enzyme. Similarly the oxidative inactivation of reduced NADP-malate dehydrogenase is inhibited by up to 85% by NADP and NADPH completely reverses this inhibition. The Kd values of the active-reduced enzyme for NADP and NADPH were both estimated to be 30 microM. From these data a model was constructed which predicts how changing NADPH/NADP levels in the chloroplast might change the steady-state level of NADP-malate dehydrogenase activity. The model indicates that at any fixed ratio of reduced to oxidized thioredoxin high proportions of active NADP-malate dehydrogenase and, hence, high rates of oxaloacetate reduction, can only occur with very high NADPH/NADP ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号