首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
MDM2--master regulator of the p53 tumor suppressor protein   总被引:35,自引:0,他引:35  
Momand J  Wu HH  Dasgupta G 《Gene》2000,242(1-2):15-29
MDM2 is an oncogene that mainly functions to modulate p53 tumor suppressor activity. In normal cells the MDM2 protein binds to the p53 protein and maintains p53 at low levels by increasing its susceptibility to proteolysis by the 26S proteosome. Immediately after the application of cellular stress, the ability of MDM2 to bind to p53 is blocked or altered in a fashion that prevents MDM2-mediated degradation. As a result, p53 levels rise, causing cell cycle arrest or apoptosis. In this review, we present evidence for the existence of three highly conserved regions (CRs) shared by MDM2 proteins and MDMX proteins of different species. These highly conserved regions encompass residues 42-94 (CR1), 301-329 (CR2), and 444-483 (CR3) on human MDM2. These three domains are respectively important for binding p53, for binding the retinoblastoma protein, and for transferring ubiquitin to p53. This review discusses the major milestones uncovered in MDM2 research during the past 12 years and potential uses of this knowledge in the fight against cancer.  相似文献   

3.
Although ubiquitin receptor Rad23 has been implicated in bringing ubiquitylated p53 to the proteasome, how Rad23 recognizes p53 remains unclear. We demonstrate that XPC, a Rad23-binding protein, regulates p53 turnover. p53 protein in XPC-deficient cells remains ubiquitylated, but its association with the proteasome is drastically reduced, indicating that XPC regulates a postubiquitylation event. Furthermore, we found that XPC participates in the MDM2-mediated p53 degradation pathway via direct interaction with MDM2. XPC W690S pathogenic mutant is specifically defective for MDM2 binding and p53 degradation. p53 is known to become stabilized following UV irradiation but can be rendered unstable by XPC overexpression, underscoring a critical role of XPC in p53 regulation. Elucidation of the proteolytic role of XPC in cancer cells will help to unravel the detailed mechanisms underlying the coordination of DNA repair and proteolysis.  相似文献   

4.
Chang YC  Jan KY  Cheng CA  Liao CB  Liu YC 《DNA Repair》2008,7(5):751-761
The tumor suppressor p53 enhances repair of UVC-induced DNA damage. The comet-NE assay, a conventional alkaline comet assay which includes a nuclear digestion step, was used to examine the effects of p53 on the excision activity of nuclear extracts (NEs). In contrast with untreated NEs, NEs immunodepleted of p53 or NEs of p53-null cells were unable to excise UVC-induced DNA adducts. Introduction of p53 by transfection restored the excision activity to NEs of p53-null cells. Deletion of the N-terminal 99 amino acids and/or the C-terminal 85 amino acids of p53 barely affected the excision activity, whereas further deletion of the C-terminus of p53 by another 10 amino acids completely abolished the excision activity of NEs. Immunostaining following localized UV irradiation was used to examine the effects of p53 on the recruitment of repair proteins for nucleotide excision repair (NER). Although recruitment of XPC occurred regardless of the presence of p53, the recruitment of XPB was p53-dependent. However, p53 with the 95 amino acid deletion at its C-terminus was unable to support this recruitment of XPB. Consistently, intact p53 (but not the C-terminal 95 residue truncated version) was detected in co-immunoprecipitation assays with an anti-XPB antibody. These results support the hypothesis that p53 facilitates NER through direct involvement by protein-protein interactions.  相似文献   

5.

Background  

The p53 tumor suppressor and its related protein, p73, share a homologous DNA binding domain, and mouse genetics studies have suggested that they have overlapping as well as distinct biological functions. Both p53 and p73 are activated by genotoxic stress to regulate an array of cellular responses. Previous studies have suggested that p53 and p73 independently activate the cellular apoptotic program in response to cytotoxic drugs. The goal of this study was to compare the promoter-binding activity of p53 and p73 at steady state and after genotoxic stress induced by hydroxyurea.  相似文献   

6.
The p53 tumor suppressor gene plays an important role in preventing tumor development. The p53 protein interacts with other p53 signal pathway members to control cell proliferation. In this study, expression of the p53, Human homolog of murine Double Minute 2 (HDM2), p14Alternating Reading Frame (ARF), Zinc Finger and BTB domain containing 7A (ZBTB7A), and B-Cell Lymphoma 6 (BCL6) genes was quantitatively investigated by real-time polymerase chain reaction (PCR) in the peripheral blood of patients with chronic lymphocytic leukemia (CLL) and healthy controls. Plasma fibronectin levels were determined by enzyme-linked immunosorbent assay. Expression of the p53, p14, and HDM2 genes were significantly higher in the patients. However, ZBTB7A and BCL6 gene expression was not detectable in both groups. A positive correlation between p14ARF and HDM2 expression and a negative correlation between p53 and p14ARF expression was observed. Expression of the p14ARF and HDM2 genes were inversely correlated in the control group. Neither HDM2 nor p14ARF gene expression was correlated with p53 expression. The p53 gene was also analyzed for the presence of mutations. A splice-site mutation was found in a single patient. Our findings indicate that expression of the p53, p14ARF, and HDM2 genes are associated with CLL. Elucidation of the mutual interactions at the protein level warrants further studies.  相似文献   

7.
The simian B-lymphotropic papovavirus (LPV) encodes a large tumor antigen (T antigen) which is 45% identical to both the simian virus 40 (SV40) and the polyomavirus (PyV) large T antigens. In transgenic mice, the transforming properties of the LPV T antigen are similar to those of the SV40 T antigen. However, little is known about its biochemical activities. Since SV40 T antigen forms a complex with and stabilizes the host cell tumor suppressor protein p53 while the PyV large T antigen does not, we characterized the LPV T antigen for its ability to complex p53. We demonstrate an association between LPV T antigen and p53 in both a tumor-derived cell line and BALB/c 3T3 cells transformed in culture. A third protein of approximately 68 kDa which was found associated with the LPV T antigen-p53 complex in tumor-derived cells appears to be heat shock protein 70 (hsp70). The half-life of p53 in all LPV T-antigen-transformed cells was extended significantly; i.e., it was 3 to 7 h compared with 19 minutes in BALB/c 3T3 cells. The half-life of the LPV T antigen itself was 5 to 9 h depending on the cell line origin. That p53 was stabilized because of association with LPV T antigen and not because of mutation was demonstrated with the p53 conformation-dependent monoclonal antibody PAb246. This antibody distinguishes between wild-type p53 (PAb246+) and mutant, oncogenic p53 (PAb246-). Sequential immunoprecipitation showed all detectable p53 to be of the PAb246+ class in each LPV-transformed cell line, suggesting that the stable p53 was indeed wild type.  相似文献   

8.
9.
Matrix metalloproteinase-2 (MMP-2) is an enzyme with proteolytic activity against matrix proteins, particularly basement membrane constituents. A single nucleotide polymorphism C-->T transition at -1306, which disrupts an Sp1-type promoter site (CCACC box), displayed a strikingly lower promoter activity with T allele. Our study investigated whether the MMP-2 -1306 C-->T polymorphism contributed to the development and progression of colorectal cancer in the Chinese population. One hundred twenty-six colorectal cancer patients and 126 age- and sex-matched controls were included in this study. PCR-based denaturing high performance liquid chromatography analysis and sequencing were used to determine the MMP-2 genotypes. MMP-2 expression of each genotype was analyzed in four colorectal cancer cell lines by semi-quantitative RT-PCR. The correlation between the genotypes and clinicopathological parameters among colorectal cancer cases was investigated. The results showed that the levels of MMP-2 mRNA expression in cell lines containing CC genotype were much higher compared with cell with CT genotype. The frequency of MMP-2 CC genotype was significantly higher in colorectal cancer patients when compared with controls (OR, 1.959; 95% CI, 1.055-3.637). Colorectal cancers with CC genotype were more common with serosa/adventitia layer involvement compared with CT+TT genotypes. Our data suggest that MMP-2 -1306 C-->T polymorphism may be associated with colorectal cancer development and invasion in the Chinese population.  相似文献   

10.
11.
We isolated a 33-kDa protein, Pex19p/HK33/HsPXF, as a p19ARF-binding protein in a yeast two-hybrid screen. We demonstrate here that Pex19p interacts with p19ARF in the cell cytoplasm and excludes p19ARF from the nucleus, leading to a concurrent inactivation of p53 function. Down-regulation of Pex19p by its antisense expression resulted in increased levels of p19ARF, increased p53 function, and a p53/p21WAF1-mediated senescence-like cell cycle arrest. The data demonstrated a novel mechanism of down-regulation of the p19ARF-p53 pathway.  相似文献   

12.
Regulation of the p53 tumor suppressor protein   总被引:35,自引:0,他引:35  
  相似文献   

13.
14.
Activation of the p53 tumor suppressor protein   总被引:19,自引:0,他引:19  
The p53 tumor suppressor gene plays an important role in preventing cancer development, by arresting or killing potential tumor cells. Mutations within the p53 gene, leading to the loss of p53 activity, are found in about half of all human cancers, while many of the tumors that retain wild type p53 carry mutations in the pathways that allow full activation of p53. In either case, the result is a defect in the ability to induce a p53 response in cells undergoing oncogenic stress. Significant advances have been made recently in our understanding of the molecular pathways through which p53 activity is regulated, bringing with them fresh possibilities for the design of cancer therapies based on reactivation of the p53 response.  相似文献   

15.
Tian Y  Hou Y  Zhou X  Cheng H  Zhou R 《PloS one》2011,6(2):e17017
Oncogenes and tumor suppressors work in concert to regulate cell growth or death, which is a pair of antagonist factors for regulation of tumorigenesis. Here we show promoter characteristic of tumor suppressor RASSF1A, which revealed a p53 binding site in the distal and a GC-rich region in the proximal promoter region of RASSF1A, in despite of TATA box-less. The GC-rich region, which is ~300 bp upstream from the RASSF1A ATG, showed the strongest promoter activity in an assay of RASSF1A-driving GFP expression. Methylation analysis of the CpG island showed that 78.57% of the GC sties were methylated in testis tumor samples compared with methylation-less in normal testis. Hypermethylation of the GC-rich region is associated with RASSF1A silencing in human testis tumors. In addition, electrophoretic mobility shift assay indicated that p53 protein bound to the RASSF1A promoter. Further chromatin immunoprecipitation confirmed p53 binding to the RASSF1A. Moreover, p53 binding to the promoter down-regulated RASSF1A expression. These results suggest that p53 protein specifically binds to the RASSF1A promoter and inhibits its expression. Our results provide new insight into the mechanism of action of tumor suppressors and may be a starting point for development of new approaches to cancer treatment.  相似文献   

16.
Acute low-dose irradiation (0.1-1 Gy, 1.33 Gy/min) of cells of a human glioblastoma cell line, A-172, induced a dose-dependent monophasic accumulation of TP53 (formerly known as p53) and CDKN1A (formerly known as WAF1). In contrast, chronic gamma irradiation (0.001 Gy/min) produced a clear biphasic response of accumulation TP53 with the first peak at 1.5 h (0.09 Gy) and the second peak at 10 h (0.54 Gy). Significantly, when the cells were preirradiated with a chronic dose of gamma irradiation for 24 h (1.44 Gy) or 50 h (3 Gy), they no longer responded to an acute challenging dose to produce a dose-dependent response of the TP53 pathway. These findings suggest that chronic irradiation at low dose rate alters the TP53-dependent signal transduction pathway. Wearing away of the TP53 pathway by chronic exposure to radiation may have important implications for radiation protection.  相似文献   

17.
The oncogene mdm2 has been found to be amplified in human sarcomas, and the gene product binds to the tumor suppressor p53. In this report, we describe the dissection of the MDM2-binding domain on p53 as well as the p53-binding domain on MDM2. We also demonstrate that the oncoprotein simian virus 40 T antigen binds to the product of cellular oncogene mdm2. We have constructed several N- and C-terminal deletion mutants of p53 and MDM2, expressed them in vitro, and assayed their in vitro association capability. The N-terminal boundary of the p53-binding domain on MDM2 is between amino acids 1 and 58, while the C-terminal boundary is between amino acids 221 and 155. T antigen binds to an overlapping domain on the MDM2 protein. On the other hand, the MDM2-binding domain of p53 is defined by amino acids 1 and 159 at the N terminus. At the C terminus, binding is progressively reduced as amino acids 327 to 145 are deleted. We determined the effect of human MDM2 on the transactivation ability of wild-type human p53 in the Saos-2 osteosarcoma cell line, which does not have any endogenous p53. Human MDM2 inhibited the ability of human p53 to transactivate the promoter with p53-binding sites. Thus, human MDM2 protein, like the murine protein, can inactivate the transactivation ability of human p53. Interestingly, both the transactivation domain and the MDM2-binding domain of p53 are situated near the N terminus. We further show that deletion of the N-terminal 58 amino acids of MDM2, which eliminates p53 binding, also abolishes the capability of inactivating p53-mediated transactivation. This finding suggests a correlation of in vitro p53-MDM2 binding with MDM2's ability in vivo to interfere with p53-mediated transactivation.  相似文献   

18.
19.
20.
Genetic polymorphisms of p53 and its negative regulator murine double minute 2 homolog (MDM2) have been shown to be closely associated with tumorigenesis in a variety of human cancers. In the present study, single nucleotide polymorphism (SNP) at p53 codon 72 and MDM2 promoter 309 was examined for germline DNA samples from 102 endometrial cancer cases and 95 controls using polymerase chain reaction-based fragment analysis. There were no significant differences in the genotype and allele prevalence between control subjects and endometrial cancer patients for p53 codon 72. The GG genotype frequency of MDM2-SNP309 was statistically higher in endometrial cancer patients than that in normal healthy women when compared with the TG genotype ( P = 0.0088). However, no statistically significant differences were found between the TT and TG or GG genotype frequencies and allele prevalence. Interestingly, the combination of the homozygous Arg/Arg genotype of p53 codon 72 and homozygous GG genotype of MDM2 SNP309 polymorphisms was significantly associated with the risk of endometrial cancer (odds ratio = 3.28, 95% confidence interval = 1.13 to 9.53, P = 0.0212). The homozygous variants of wild p53 codon 72 and mutant MDM2 promoter 309 may cooperatively increase the risk of endometrial cancer in a Japanese population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号