首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dense ionization tracks from high linear energy transfer (LET) radiations form multiple damaged sites (MDS), which involve several types of DNA lesions in close vicinity. The primary DNA damage triggers sensor proteins that activate repair processes, cell cycle control or eventually apoptosis in subsequent cellular responses. The question how homologous recombination (HR) and non-homologous end joining (NHEJ) interact in the repair of radiation-induced DNA damage of MDS type has been addressed in different model systems but several questions remain to be answered. We have therefore challenged cells with treatments of ionizing radiation of different qualities to investigate whether primary DNA damages of different complexity are reflected in the processes of repair by HR as well as cell survival. We used the V79 derived SPD8 cell line to determine the induction of HR in the hprt exon 7 and clonogenic assay for survival in response to radiation. SPD8 cells were irradiated with gamma-rays (137Cs 0.5 keV/microm), boron ions (40 and 80 keV/microm) and nitrogen ions (140 keV/microm), with doses up to 5 Gy. Analysis of clonogenic survival showed that B-ions (80 keV/microm) and N-ions were more toxic than gamma-rays, 4.1 and 5.0 times respectively, while B-ions at 40 keV/microm were 2.0 times as toxic as gamma-rays. Homologous recombination in the cells exposed to B-ions (80 keV/microm) increased 2.9 times, a significant response as compared to cells exposed to gamma-rays, while for B-ions (40 keV/microm) and N-ions a nonsignificant increase in HR of 1.2 and 1.4, respectively, was observed. We hypothesize that the high-LET generated formation of MDS is responsible for the enhanced cytotoxicity as well as for the mobilization of the HR machinery.  相似文献   

2.
The accumulation of the cell cycle regulators TP53 and CDKN1A (p21/CIP1/WAF1) was investigated after exposure to X rays and carbon ions (170 keV microm(-1)) and xenon, bismuth and uranium ions (8900-15,000 keV microm(-1)) in normal human fibroblasts. The influence of the overall dose and the LET of these radiation types was studied systematically and the kinetics of the cell response was followed up to 24 h after exposure. The accumulation of TP53 protein was dependent on the dose and the LET, and TP53 levels declined to lower levels for all radiation types within 24 h after exposure. CDKN1A levels increased and peaked at 3 to 6 h after exposure. The persisting level of this protein at 24 h was strongly dependent on the dose and the LET for X rays and carbon ions. The exposure to very high-LET ions (8900-15,000 keV microm(-1)) did not lead to a further increase in CDKN1A, suggesting a saturation effect for the induction of this protein. The cellular effects of elevated CDKN1A after particle irradiation are discussed.  相似文献   

3.
Carbon K characteristic ultrasoft X-rays of energy 0.278 keV were found to be effective in inducing inactivation and mutation to thioguanine resistance in cultured V79 Chinese hamster cells and human diploid fibroblasts. These X-rays act as a probe of the sensitive sites within the cells since they produce low-energy photoelectron tracks of range about 7 nm; this is an order of magnitude smaller than those produced by the 1.5 keV aluminium X-rays used in previous studies. A detailed interpretation of the results requires assumptions to be made about the positions of the sensitive sites within the cells but, for any reasonable set of assumptions, the carbon X-rays are found to be more effective than gamma-rays and are probably at least as effective as long tracks of helium ions of similar LET. These observations extend the conclusions previously drawn from the observed effectiveness of aluminium X-rays regarding the sizes of the subcellular sites involved in inactivation and mutation. They imply that the sensitive sites smaller than about 7 nm, and that highly localized energy depositions consisting of less than or approximately 14 ionizations are sufficient to produce biological effects. These results are also in contradiction to models of radiation action which require relatively large sites, such as the usual form of the 'theory of dual radiation action'.  相似文献   

4.
Human and rodent cells proficient and deficient in non-homologous end joining (NHEJ) were irradiated with X rays, 70 keV/microm carbon ions, and 200 keV/microm iron ions, and the biological effects on these cells were compared. For wild-type CHO and normal human fibroblast (HFL III) cells, exposure to iron ions yielded the lowest cell survival, followed by carbon ions and then X rays. NHEJ-deficient xrs6 (a Ku80 mutant of CHO) and 180BR human fibroblast (DNA ligase IV mutant) cells showed similar cell survival for X and carbon-ion irradiation (RBE = approximately 1.0). This phenotype is likely to result from a defective NHEJ protein because xrs6-hamKu80 cells (xrs6 cells corrected with the wild-type KU80 gene) exhibited the wild-type response. At doses higher than 1 Gy, NHEJ-defective cells showed a lower level of survival with iron ions than with carbon ions or X rays, possibly due to inactivation of a radioresistant subpopulation. The G(1) premature chromosome condensation (PCC) assay with HFL III cells revealed LET-dependent impairment of repair of chromosome breaks. Additionally, iron-ion radiation induced non-repairable chromosome breaks not observed with carbon ions or X rays. PCC studies with 180BR cells indicated that the repair kinetics after exposure to carbon and iron ions behaved similarly for the first 6 h, but after 24 h the curve for carbon ions approached that for X rays, while the curve for iron ions remained high. These chromosome data reflect the existence of a slow NHEJ repair phase and severe biological damage induced by iron ions. The auto-phosphorylation of DNA-dependent protein kinase catalytic subunits (DNA-PKcs), an essential NHEJ step, was delayed significantly by high-LET carbon- and iron-ion radiation compared to X rays. This delay was further emphasized in NHEJ-defective 180BR cells. Our results indicate that high-LET radiation induces complex DNA damage that is not easily repaired or is not repaired by NHEJ even at low radiation doses such as 2 Gy.  相似文献   

5.
We studied the LET and ion species dependence of the RBE for cell killing to clarify the differences in the biological effects caused by the differences in the track structure that result from the different energy depositions for different ions. Normal human skin fibroblasts were irradiated with heavy-ion beams such as carbon, neon, silicon and iron ions that were generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Science (NIRS) in Japan. Cell killing was measured as reproductive cell death using a colony formation assay. The RBE-LET curves were different for carbon ions and for the other ions. The curve for carbon ions increased steeply up to around 98 keV/microm. The RBE of carbon ions at 98 keV/microm was 4.07. In contrast, the curves for neon, silicon and iron ions had maximum peaks around 180 keV/microm, and the RBEs at the peak position ranged from 3.03 to 3.39. When the RBEs were plotted as a function of Z*2/beta2 (where Z* is the effective charge and beta is the relative velocity of the ion) instead of LET, the discrepancies between the RBE-LET curves for the different ion beams were reduced, but branching of the RBE-Z*2/beta2 curves still remained. When the inactivation cross section was plotted as a function of either LET or Z*2/beta2, it increased with increasing LET. However, the inactivation cross section was always smaller than the geometrical cross section. These results suggest that the differences in the energy deposition track structures of the different ion sources have an effect on cell killing.  相似文献   

6.
The combined effects of heavy-ion radiation and hyperthermia on the survival of CHO-SC1 cells and its temperature-sensitive (ts) mutant tsH1 cells were studied using accelerated neon ions followed by mild heating at 41.5 degrees C. The sequence of application of heat and high-LET radiation is significant to cell-killing effects. Heat applied to cells prior to irradiation with neon plateau ions (LET = 32 keV/microns) was less effective than heat applied immediately after irradiation. The ability of cells to synthesize new proteins plays a key role in this sequence-dependent thermal sensitization. When protein synthesis was shut down in tsH1 cells, the thermal enhancement of cell killing by high-LET radiation was the same regardless of the sequence. The thermal enhancement of radiation-induced cell killing was LET-dependent for the SC1 cells, but this was not clearly demonstrated in the tsH1 cells. Furthermore, the RBE of heated SC1 cells varied with LET and reached a maximum of greater than 3 at 80 keV/microns. In the absence of protein synthesis, the maximum RBE value was reduced to 2.6. These results suggest that the accumulation of cellular damage caused by exposure to densely ionizing particles with increasing LETs can be potentiated with active protein synthesis during postirradiation heat treatment.  相似文献   

7.
To gain insight into the mutagenic effects of accelerated heavy ions in plants, the mutagenic effects of carbon ions near the range end (mean linear energy transfer (LET): 425keV/μm) were compared with the effects of carbon ions penetrating the seeds (mean LET: 113keV/μm). Mutational analysis by plasmid rescue of Escherichia coli rpsL from irradiated Arabidopsis plants showed a 2.7-fold increase in mutant frequency for 113keV/μm carbon ions, whereas no enhancement of mutant frequency was observed for carbon ions near the range end. This suggested that carbon ions near the range end induced mutations that were not recovered by plasmid rescue. An Arabidopsis DNA ligase IV mutant, deficient in non-homologous end-joining repair, showed hyper-sensitivity to both types of carbon-ion irradiation. The difference in radiation sensitivity between the wild type and the repair-deficient mutant was greatly diminished for carbon ions near the range end, suggesting that these ions induce irreparable DNA damage. Mutational analysis of the Arabidopsis GL1 locus showed that while the frequency of generation of glabrous mutant sectors was not different between the two types of carbon-ion irradiation, large deletions (>~30kb) were six times more frequently induced by carbon ions near the range end. When 352keV/μm neon ions were used, these showed a 6.4 times increase in the frequency of induced large deletions compared with the 113keV/μm carbon ions. We suggest that the proportion of large deletions increases with LET in plants, as has been reported for mammalian cells. The nature of mutations induced in plants by carbon ions near the range end is discussed in relation to mutation detection by plasmid rescue and transmissibility to progeny.  相似文献   

8.
Widespread evidence indicates that exposure of cell populations to ionizing radiation results in significant biological changes in both the irradiated and nonirradiated bystander cells in the population. We investigated the role of radiation quality, or linear energy transfer (LET), and radiation dose in the propagation of stressful effects in the progeny of bystander cells. Confluent normal human cell cultures were exposed to low or high doses of 1GeV/u iron ions (LET ~ 151 keV/μm), 600 MeV/u silicon ions (LET ~ 51 keV/μm), or 1 GeV protons (LET ~ 0.2 keV/μm). Within minutes after irradiation, the cells were trypsinized and co-cultured with nonirradiated cells for 5 h. During this time, irradiated and nonirradiated cells were grown on either side of an insert with 3-μm pores. Nonirradiated cells were then harvested and allowed to grow for 20 generations. Relative to controls, the progeny of bystander cells that were co-cultured with cells irradiated with iron or silicon ions, but not protons, exhibited reduced cloning efficiency and harbored higher levels of chromosomal damage, protein oxidation and lipid peroxidation. This correlated with decreased activity of antioxidant enzymes, inactivation of the redox-sensitive metabolic enzyme aconitase, and altered translation of proteins encoded by mitochondrial DNA. Together, the results demonstrate that the long-term consequences of the induced nontargeted effects greatly depend on the quality and dose of the radiation and involve persistent oxidative stress due to induced perturbations in oxidative metabolism. They are relevant to estimates of health risks from exposures to space radiation and the emergence of second malignancies after radiotherapy.  相似文献   

9.
To clarify the relationship between cell death and chromosomal aberrations following exposure to heavy-charged ion particles beams, exponentially growing Human Salivary Gland Tumor cells (HSG cells) were irradiated with various kinds of high energy heavy ions; 13 keV/μm carbon ions as a low-LET charged particle radiation source, 120 keV/μm carbon ions and 440 keV/μm iron ions as high-LET charged particle radiation sources. X-rays (200 kVp) were used as a reference. Reproductive cell death was evaluated by clonogenic assays, and the chromatid aberrations in G2/M phase and their repairing kinetics were analyzed by the calyculin A induced premature chromosome condensation (PCC) method. High-LET heavy-ion beams introduced much more severe and un-repairable chromatid breaks and isochromatid breaks in HSG cells than low-LET irradiation. In addition, the continuous increase of exchange aberrations after irradiation occurred in the high-LET irradiated cells. The cell death, initial production of isochromatid breaks and subsequent formation of chromosome exchange seemed to be depend similarly on LET with a maximum RBE peak around 100–200 keV/μm of LET value. Conversely, un-rejoined isochromatid breaks or chromatid breaks/gaps seemed to be less effective in reproductive cell death. These results suggest that the continuous yield of chromosome exchange aberrations induced by high-LET ionizing particles is a possible reason for the high RBE for cell death following high-LET irradiation, alongside other chromosomal aberrations additively or synergistically.  相似文献   

10.
We studied the LET and ion species dependence of the induction of chromatin breaks measured immediately after irradiation as initially measured breaks and after 24 h postirradiation incubation (37 degrees C) as non-rejoined breaks in normal human fibroblasts with different heavy ions, such as carbon, neon, silicon and iron, generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Science (NIRS). Chromatin breaks were measured as an excess number of fragments of prematurely condensed chromosomes using premature chromosome condensation (PCC). The results showed that the number of excess fragments per cell per Gy for initially measured chromatin breaks was dependent on LET in the range from 13.3 to 113.1 keV/mum but was not dependent on ion species. On the other hand, the number of non-rejoined chromatin breaks detected after 24 h postirradiation incubation was clearly dependent on both LET and ion species. No significant difference was observed in the cross section for initially measured breaks, but a statistically significant difference was observed in the cross section for non-rejoined breaks among carbon, neon, silicon and iron ions. This suggests that the LET-dependent structure in the biological effects is reflected in biological consequences of repair processes.  相似文献   

11.
Chinese hamster V79 cells were exposed to high LET (linear energy transfer) (16)O-beam (625keV/mum) radiation in the dose range of 0-9.83Gy. Cell survival, micronuclei (MN), chromosomal aberrations (CA) and induction of apoptosis were studied as a follow up of our earlier study on high LET radiations ((7)Li-beam of 60keV/mum and (12)C-beam of 295keV/mum) as well as (60)Co gamma-rays. Dose dependent decline in surviving fraction was noticed along with the increase of MN frequency, CA frequency as well as percentage of apoptosis as detected by nuclear fragmentation assay. The relative intensity of DNA ladder, which is a useful marker for the determination of the extent of apoptosis induction, was also increased in a dose dependent manner. Additionally, expression of tyrosine kinase lck-1 gene, which plays an important role in response to ionizing radiation induced apoptosis, was increased with the increase of radiation doses and also with incubation time. The present study showed that all the high LET radiations were generally more effective in cell killing and inflicting other cytogenetic damages than that of low LET gamma-rays. The dose response curves revealed that (7)Li-beam was most effective in cell killing as well as inducing other nuclear damages followed by (12)C, (16)O and (60)Co gamma-rays, in that order. The result of this study may have some application in biological dosimetry for assessment of genotoxicity in heavy ion exposed subjects and in determining suitable doses for radiotherapy in cancer patients where various species of heavy ions are now being generally used.  相似文献   

12.
DNA double-strand breaks are nonrandomly induced by high-LET radiation. Differences in the induction and rejoining of DSBs after irradiation with ions having different LET were detected by fragment analysis. The data obtained indicate that the track structure of the traversing particle and its interaction with the different chromatin structures of the cellular DNA influence the yield as well as the distribution of the induced damage. The induction and rejoining of clustered DSBs induced by the same nitrogen ion fluence at LETs of 80-225 keV/microm were investigated by a detailed analysis of the DNA fragmentation patterns in normal human fibroblasts. The DSBs in the cells were allowed to rejoin during incubations for 0-20 h. Two separate pulsed-field gel electrophoresis protocols were used, optimized for separation of fragments in the size ranges 1-6 Mbp and 5 kbp-1.5 Mbp. A strong influence of LET on the level of DSB induction was evident. The DSB yield increased from 4.5 +/- 0.2 to 10.0 +/- 0.3 DSBs per particle traversal through the cell nucleus when LET increased from 80 to 225 keV/microm. Further, the size distribution of the DNA fragments showed a significant dependence on radiation quality, with an excess of fragments at 50-200 kbp and around 1 Mbp. Differences in repair kinetics were also evident, with slower rejoining for increasing LET, and the initial nonrandom fragment distributions were still present after 1 h of repair.  相似文献   

13.
We investigated the earliest possible chromosome break and repair process in normal human fibroblasts irradiated with low and high LET (linear energy transfer) heavy ion radiation using the modified premature chromosome condensation (PCC) technique utilizing wortmannin (WM) during the fusion incubation period [M. Okada, S. Saito, R. Okayasu, Facilitated detection of chromosome break and repair at low levels of ionizing radiation by addition of wortmannin to G1-type PCC fusion incubation, Mutat. Res., 562 (2004) 11-17]. The initial numbers of breaks were approximately 10/cell/Gy in X-irradiated samples, followed by carbon (LET: 70 keV/microm), neon, and the number was around 5/cell/Gy in silicon (LET: 70 and 200 keV/microm) and iron (LET: 200 keV/microm) samples. If WM was not used, the initial numbers of breaks with silicon and iron were higher than those of X-rays. To quantify these data, we used initial repair ratio (IRR) defined as the number of G1 PCC breaks with WM divided by the number of breaks without WM. X-irradiation gave the maximum IRR ( approximately 2.0), while iron as well as silicon irradiation showed the minimum IRR ( approximately 1.0), suggesting almost no rejoining at the initial stage. Although there is a comparatively good correlation between the IRR value and the cell survival, the survival fraction with the repair data at 2 or 6h correlates better statistically. Our data indicate that high LET heavy ion irradiation induces a lower number of initial chromosome breaks with minimal repair when compared with low LET irradiation. These results at the chromosome level substantiate and extend the notion that high LET radiation produces complex-type DNA double strand breaks (DSBs).  相似文献   

14.
Induction of DSBs in the diploid yeast, Saccharomyces cerevisiae, was measured by pulsed-field gel electrophoresis (PFGE) after the cells had been exposed on membrane filters to a variety of energetic heavy ions with values of linear energy transfer (LET) ranging from about 2 to 11,500 keV/microm, (241)Am alpha particles, and 80 keV X rays. After irradiation, the cells were lysed, and the chromosomes were separated by PFGE. The gels were stained with ethidium bromide, placed on a UV transilluminator, and analyzed using a computer-coupled camera. The fluorescence intensities of the larger bands were found to decrease exponentially with dose or particle fluence. The slope of this line corresponds to the cross section for at least one double-strand break (DSB), but closely spaced multiple breaks cannot be discriminated. Based on the known size of the native DNA molecules, breakage cross sections per base pair were calculated. They increased with LET until they reached a transient plateau value of about 6 x 10(-7) microm(2) at about 300-2000 keV/microm; they then rose for the higher LETs, probably reflecting the influence of delta electrons. The relative biological effectiveness for DNA breakage displays a maximum of about 2.5 around 100-200 keV/microm and falls below unity for LET values above 10(3) keV/microm. For these yeast cells, comparison of the derived breakage cross sections with the corresponding cross section for inactivation derived from the terminal slope of the survival curves shows a strong linear relationship between these cross sections, extending over several orders of magnitude.  相似文献   

15.
Yields of DNA double-strand breaks were determined in primary human skin fibroblasts exposed to 1H and 4He ions at various linear energy transfers (LETs) and to 15 MeV electrons as the reference radiation. The values obtained for the relative biological effectiveness (RBE) were 2.03, 1.45 and 1.36 for 1H ions at LETs of 35, 23 and 7.9 keV/microm, respectively, and 1.2, 1.18, 1.38 and 1.31 for 4He ions at LETs of 124, 76, 35 and 27 keV/microm, respectively. The data were obtained using pulsed-field gel electrophoresis of DNA released from cells using the chromosomes of the yeast Saccharomyces cerevisiae as length markers and fitting the experimental mass distributions of fragmented DNA to those obtained by computer simulation of the random breakage of human chromosomes. The RBE values for induction of DSBs in mammalian cells cannot be fitted to a common RBE-LET relationship for electrons and 1H, 4He and light ions. Comparison of the RBEs for mammalian cells with the corresponding RBEs obtained for yeast cells shows similar RBEs of electrons for yeast and mammalian cells; however, for 4He and light ions in the LET range of 100 to 1000 keV/microm, the RBEs for yeast are significantly higher compared with mammalian cells. These characteristics of the RBE-LET relationships for yeast and mammalian cells are attributed to the fraction of small DNA fragments induced by particles when traversing the higher-order chromatin structures which are different to some extent in these two cell types.  相似文献   

16.
Effects of heavy ions and energetic protons on normal human fibroblasts   总被引:2,自引:0,他引:2  
At the low particle fluences of radiation to which astronauts are exposed in space, "non-targeted" effects such as the bystander response may have increased significance. The radiation-induced bystander effect is the occurrence of biological responses in unirradiated cells near to or sharing medium with cells traversed by radiation. The objectives of this study were to establish the responses of AG01522 diploid human fibroblasts after exposure to several heavy ions and energetic protons, as compared to X-rays, and to obtain initial information on the bystander effect in terms of cell clonogenic survival after Fe ion irradiation. Using a clonogenic survival assay, relative biological effectiveness (RBE) values at 10% survival were 2.5, 2.3, 1.0 and 1.2 for 1 GeV/amu Fe, 1 GeV/amu Ti, 290 MeV/amu C and 1 GeV/amu protons, respectively, compared to 250 kVp X-rays. For induction of micronuclei (MN), compared to the low LET protons, Fe and Ti are very effective inducers of damage, although C ions are similar to protons. Using a transwell insert system in which irradiated and unirradiated bystander cells share medium but are not touching each other, it was found that clonogenic survival in unirradiated bystander cells was decreased when irradiated cells were exposed to Fe ions or X-rays. The magnitude of the decrease in bystander survival was similar with both radiation types, reaching a plateau of about 80% survival at doses of about 0.5 Gy or larger.  相似文献   

17.
Dose-response curves for micronucleus (MN) formation were measured in Chinese hamster V79 and xrs6 (Ku80(-)) cells and in human mammary epithelial MCF10A cells in the dose range of 0.05-1 Gy. The Chinese hamster cells were exposed to 1 GeV/nucleon iron ions, 600 MeV/nucleon iron ions, and 300 MeV/nucleon iron ions (LETs of 151, 176 and 235 keV/microm, respectively) as well as with 320 kVp X rays as reference. Second-order polynomials were fitted to the induction curves, and the initial slopes (the alpha values) were used to calculate RBE. For the repair-proficient V79 cells, the RBE at these low doses increased with LET. The values obtained were 3.1 +/- 0.8 (LET = 151 keV/microm), 4.3 +/- 0.5 (LET = 176 keV/microm), and 5.7 +/- 0.6 (LET = 235 keV/microm), while the RBE was close to 1 for the repair-deficient xrs6 cells regardless of LET. For the MCF10A cells, the RBE was determined for 1 GeV/nucleon iron ions and was found to be 5.5 +/- 0.9, slightly higher than for V79 cells. To test the effect of shielding, the 1 GeV/nucleon iron-ion beam was intercepted by various thicknesses of high-density polyethylene plastic absorbers, which resulted in energy loss and fragmentation. It was found that the MN yield for V79 cells placed behind the absorbers decreased in proportion to the decrease in dose both before and after the iron-ion Bragg peak, indicating that RBE did not change significantly due to shielding except in the Bragg peak region. At the Bragg peak itself with an entrance dose of 0.5 Gy, where the LET is very high from stopping low-energy iron ions, the effectiveness for MN formation per unit dose was decreased compared to non-Bragg peak areas.  相似文献   

18.
Using highly energetic particles to irradiate plasmid DNA in aerobic aqueous solution, we have compiled an extensive database on how yields of DNA single- and double-strand breaks (SSBs and DSBs) vary with radiation quality. This study was performed in a low-scavenging buffer system and covers a wide range of ion species (helium to uranium) and LETs (5 to 16,000 keV/microm). For LETs up to around 40 keV/microm for SSBs and 400 keV/microm for DSBs, the total energy deposition determines cross section. At higher LET, cross sections level off and individual plateaus for particles of different atomic numbers are observed. For each ion species this is more pronounced and occurs at lower LET for SSBs than for DSBs, leading to an increase in the DSB:SSB ratio from 1:70 for X rays to 1:6 at 500 keV/microm. At this LET, the influence of track structure becomes evident, with high local concentrations of ionization events favoring the formation of DSBs and also intratrack recombination reactions. For lower-energy ions, a saturation in production of measurable DSBs is apparent, due to correlated lesion induction within densely ionizing particle tracks. For very heavy low-energy ions, both SSB and DSB cross sections decrease with particle velocity at nearly constant LET, forming individual hooked curves when plotted as a function of LET.  相似文献   

19.
In studying E. coli mutation rate as a function of dose of different types of ionizing radiation it was found that mutagenic efficiency of helium ions (LET-22, 54 and 72 keV/microns) was higher than that of gamma-rays. As LET increased the mutagenic efficiency decreased. The mutation rate for all types of radiation under study was both a power function and a linear-quadratic function of dose.  相似文献   

20.
The human breast is sensitive to radiation carcinogenesis, and genomic instability occurs early in breast cancer development. This study tests the hypothesis that ionizing radiation elicits genomic instability in finite life-span human mammary epithelial cells (HMEC) and asks whether densely ionizing radiation is a more potent inducer of instability. HMEC in a non-proliferative state were exposed to X rays or 1 GeV/nucleon iron ions followed by delayed plating. Karyotypic instability and centrosome aberrations were monitored in expanded clonal isolates. Severe karyotypic instability was common in the progeny of cells that survived X-ray or iron-ion exposure. There was a lower dose threshold for severe karyotypic instability after iron-ion exposure. More than 90% of X-irradiated colonies and >60% of iron-ion-irradiated colonies showed supernumerary centrosomes at levels above the 95% upper confidence limit of the mean for unirradiated clones. A dose response was observed for centrosome aberrations for each radiation type. There was a statistically significant association between the incidence of karyotypic instability and supernumerary centrosomes for iron-ion-exposed colonies and a weaker association for X-irradiated colonies. Thus genomic instability occurs frequently in finite life-span HMEC exposed to sparsely or densely ionizing radiation and may contribute to radiation-induced breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号