首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Qualea grandiflora is a typical tree of Brazilian cerrados (savanna-like vegetation) that bears paired extrafloral nectaries (EFNs) along its stems. Results show that possession of EFNs increases ant density on Q. grandiflora shrubs over that of neighbouring non-nectariferous plants. Frequency of ant occupancy and mean number of ants per plant were much higher on Qualea than on plants lacking EFNs. These differences resulted in many more live termitebaits being attacked by foraging ants on Qualea than on neighbours without EFNs. Termites were attacked in equal numbers and with equal speeds on different-aged leaves of Qualea. The greatest potential for herbivore deterrence was presented by Camponotus ants (C. crassus, C. rufipes and C. aff. blandus), which together attacked significantly more termites than nine other ant species grouped. EFNs are regarded as important promoters of ant activity on cerado plants.  相似文献   

2.
Sambucus javanica is a perennial herb with extrafloral nectaries (EFNs) on its inflorescences. To explore the ecological functions of EFNs, a factorial combination experiment of ant (access or exclusion) and EFNs (with or without) at the plant level was created in two populations. The role of EFNs in the attraction of ants and flying pollinators, the defensive role of ants against foliar herbivores, the effects of ants on pollinator visitation and the effects of ant–pollinator interactions on fruit production in one or both populations were assessed. Ants were common on the ant-access plants with EFNs, but absent from the ant-access plants without EFNs. Foliar herbivory was independent of ant and EFN treatments and their interactions. The visitation frequency of flying pollinators (honeybees and syrphid flies) and fruit set were significantly higher for plants with EFNs than plants without EFNs, but were not affected by ant treatments or their interactions with EFN treatments. These results suggest that EFNs in S. javanica attracted both ants and flying pollinators, but ants did not present a defensive role against herbivores, did not deter flying pollinators from visiting inflorescences and had no effects on fruit production. In addition, ants were not significant pollen vectors.  相似文献   

3.

Extrafloral nectary (EFN)-bearing plants attract ants to gain protection against herbivores. Some EFN-bearing plants possess different types of EFNs, which might have different effects on ants on the plants. Mallotus japonicus (Thunb.) Muell. Arg. (Euphorbiaceae) bears two types of EFNs, including a pair of large EFNs at the leaf base and many small EFNs along the leaf edge. This study aimed to determine the different roles of the two types of EFNs in biotic defense by ants. A field experiment was conducted to investigate the effect of leaf damage on EFN production and on the distribution pattern of ants. After leaf damage, the number of leaf edge EFNs increased in the leaves first-produced. The number of ants on the leaves also increased, and the foraging area of ants extended from the leaf base to the leaf tip. An EFN-covering field experiment revealed that leaf edge EFNs had a greater effect than leaf base EFNs on ant dispersal on leaves. The extended foraging area of ants resulted in an increase of encounter or attack rate against an experimentally placed herbivore, Spodoptera litura. These results suggest that M. japonicus plants control the foraging area of ants on their leaves using different types of EFNs in response to leaf damage, thus achieving a very effective biotic defense against herbivores by ants.

  相似文献   

4.
1. Predatory ants may reduce infestation by herbivorous insects, and slow‐moving Lepidopteran larvae are often vulnerable on foliage. We investigate whether caterpillars with morphological or behavioural defences have decreased risk of falling prey to ants, and if defence traits mediate host plant use in ant‐rich cerrado savanna. 2. Caterpillars were surveyed in four cerrado localities in southeast Brazil (70–460 km apart). The efficacy of caterpillar defensive traits against predation by two common ant species (Camponotus crassus, C. renggeri) was assessed through experimental trials using caterpillars of different species and captive ant colonies. 3. Although ant presence can reduce caterpillar infestation, the ants' predatory effects depend on caterpillar defence traits. Shelter construction and morphological defences can prevent ant attacks (primary defence), but once exposed or discovered by ants, caterpillars rely on their size and/or behaviour to survive (secondary defence). 4. Defence efficiency depends on ant identity: C. renggeri was more aggressive and lethal to caterpillars than C. crassus. Caterpillars without morphological defences or inside open shelters were found on plants with decreased ant numbers. No unsheltered caterpillar was found on plants with extrafloral nectaries (EFNs). Caterpillars using EFN‐bearing plants lived in closed shelters or presented morphological defences (hairs, spines), and were less frequently attacked by ants during trials. 5. The efficiency of defences against ants is thus crucial for caterpillar survival and determines host plant use by lepidopterans in cerrado. Our study highlights the effect of EFN‐mediated ant‐plant interactions on host plant use by insect herbivores, emphasizing the importance of a tritrophic viewpoint in risky environments.  相似文献   

5.
Plants bearing extrafloral nectaries (EFNs) often have traits typical of pioneer species, and may be expected to proliferate in disturbed habitats. However, a negative effect of disturbance on visitation by attendant ants could prevent EFN‐bearing plants from acting as disturbance winners. Here, we address the effects of chronic anthropogenic disturbance on the abundance of EFN‐bearing plants and their interactions with attendant ants in Caatinga vegetation of northeastern Brazil. We recorded the abundance of EFN‐bearing plants, proportion of plants visited by ants and composition of ant attendant species at 24 sites varying in levels of disturbance. EFN‐bearing plants as a whole did not behave as a disturbance winner group. The responses of the 13 species to increasing disturbance were highly variable, with three species declining in abundance (loser species). The richness of ant species attending EFNs did not vary with disturbance, but species composition did. The overall proportion of EFN‐bearing plants attended by ants per 5‐min period was not affected by disturbance. However, for the three loser species, attendance decreased from about 50 percent with low and moderate disturbance to half that with very high disturbance. We hypothesize that disturbed sites are more stressful for loser species compared with other EFN‐bearing plants, with physiological stress resulting in lower production of EFN secretions and reduced attraction of ants. This would make such species double losers, with physiological stress at disturbed sites not only directly influencing their performance but also indirectly affecting it through the disruption of a key mutualism.  相似文献   

6.
Much effort has been devoted to understanding the function of extrafloral nectaries (EFNs) for ant–plant–herbivore interactions. However, the pattern of evolution of such structures throughout the history of plant lineages remains unexplored. In this study, we used empirical knowledge on plant defences mediated by ants as a theoretical framework to test specific hypotheses about the adaptive role of EFNs during plant evolution. Emphasis was given to different processes (neutral or adaptive) and factors (habitat change and trade‐offs with new trichomes) that may have affected the evolution of ant–plant associations. We measured seven EFN quantitative traits in all 105 species included in a well‐supported phylogeny of the tribe Bignonieae (Bignoniaceae) and collected field data on ant–EFN interactions in 32 species. We identified a positive association between ant visitation (a surrogate of ant guarding) and the abundance of EFNs in vegetative plant parts and rejected the hypothesis of phylogenetic conservatism of EFNs, with most traits presenting K‐values < 1. Modelling the evolution of EFN traits using maximum likelihood approaches further suggested adaptive evolution, with static‐optimum models showing a better fit than purely drift models. In addition, the abundance of EFNs was associated with habitat shifts (with a decrease in the abundance of EFNs from forest to savannas), and a potential trade‐off was detected between the abundance of EFNs and estipitate glandular trichomes (i.e. trichomes with sticky secretion). These evolutionary associations suggest divergent selection between species as well as explains K‐values < 1. Experimental studies with multiple lineages of forest and savanna taxa may improve our understanding of the role of nectaries in plants. Overall, our results suggest that the evolution of EFNs was likely associated with the adaptive process which probably played an important role in the diversification of this plant group.  相似文献   

7.
Current evidence suggests that ant–plant relationships may influence species composition, abundance, and interactions at the community scale. The main resource that plants offer to ants is extrafloral nectar (EFN) and the major part of published studies shown benefits from ants to plants possessing EFNs. However, the complementary question of whether and how ants benefit from EFNs is rarely addressed. Here, we present the results of a long-term study to demonstrate whether EFN has a positive effect on ant colony fitness. We quantified colony growth rate, survival and the final weight of individuals as measures of benefit derived from EFN. Our results provide clear evidence that EFN can have a significant positive impact on the survivorship, growth and reproduction of the Myrmicinae Cephalotes pusillus. In fact, a diet rich in EFN (providing at least 30 cal per day) resulted in five times more individuals per colony, greater body weights, and more eggs. These results have shed new light on the relationships between ants and EFN-bearing plants such as in tropical and temperate systems. The ant C. pusillus is the first case in which we have firm evidence that EFN improves colony growth and development, corroborating more than 100 years of experimental evidence of benefits to plants in these widespread relationships.  相似文献   

8.
Despite years of study, it remains unclear if and to what extent the effects of extra‐floral nectaries (EFNs) on arboreal ants observed on individual trees scale up to larger spatial scales. Here, we address this issue in Brazilian savanna and tested three predictions: (i) Trees with EFN have higher richness of arboreal ant species than trees without; (ii) Arboreal ant species richness increases with the proportion of total EFN‐bearing trees at the site scale, due to a higher occurrence of non‐core ant species; (iii) Ant species composition changes with the proportion of EFN‐bearing trees at the site scale. We sampled arboreal ants in 32 plots with EFN‐bearing trees ranging from 0% to 60% of all trees. We sampled 72 ant species, from which 17 (mostly belonging to Camponotus, Cephalotes and Crematogaster) were identified as core species in at least one of the ant‐EFN networks in the 32 plots. Ant species richness was significantly higher on EFN‐bearing trees. We identified 11 ant species that preferentially occurred on EFN‐bearing trees, all of which were core partners in networks. Species richness at the site scales increased with the proportion of EFN‐bearing trees, regardless of tree density and richness; this pattern was due to a higher occurrence of non‐core ant species. Finally, species composition also varied with the proportion of EFN‐bearing trees. Therefore, we found that the presence of EFNs not only influences arboreal ants on individual trees but also has a substantial effect on the ant‐EFN network on a broader community scale. The increase in non‐core species site scale reveals that this interaction is unlikely to result in substantially enhanced protection services for EFN‐bearing plants.  相似文献   

9.
Summary. Many species of ground nesting ants regularly visit extrafloral nectaries (EFNs) of the savannah tree Pseudocedrela kotschyi. The distribution of ants on the plants is mosaic-like, i.e. stable and predictable with different ant species dominating neighbouring trees. In order to examine whether foraging behaviour may influence the structure of these ant communities, we investigated individual foraging behaviour of Camponotus sericeus, the ant species with highest incidence on P. kotschyi trees in the study area. Foragers of C. sericeus continuously visited EFNs on the leafs of P. kotschyi during their diurnal activity period. Individually marked foragers showed a pronounced fidelity for individual plants and particular leaves. Ant individuals returned to the same plants over a three week period at least. They persistently focused foraging on the same leaves (about three per ant). Null model analysis of ant distribution revealed that ants partitioned their host plant. Co-occurrence on the same leaves was significantly lower than could be expected by chance for most trees studied. Foraging was not oriented towards the plants growing closest to the nest but more distantly growing plants were considerably used. Choice of plants could therefore be influenced by plant quality or by presence of other, competing ant species. The study is the first to show leaf fidelity caused by EFNs and micro-site fidelity within the context of species rich ant communities. It considers the resulting systematic, partitioned use of individual plants as important factor supporting the formation of a mosaic-like ant distribution on plants.  相似文献   

10.
Abiotic conditions can increase the costs of services and/or the benefits of rewards provided by mutualistic partners. Consequently, in some situations, the outcome of mutualisms can move from beneficial to detrimental for at least one partner. In the case of protective mutualisms between ant bodyguards and plants bearing extrafloral nectaries (EFNs), plants from arid environments face a trade‐off between EFN production and maintenance and water and carbon economy. This trade‐off may increase EFN costs and decrease their value as a defensive strategy to plants in such environments. Despite this, the presence of EFNs is an ubiquitous trait in plants from arid environments, suggesting that they provide greater benefits to plants in these environments to compensate for their higher costs. We used a meta‐analysis to investigate if such benefits do increase with decreasing water availability and the possible underlying causes (such as ant behaviour or ant diversity). As predicted, ant effect on EFN plants performance increased as mean annual precipitation decreased. We also found that the frequency of dominant ants on EFN plants increased in drier areas. Due to the more aggressive behaviour of dominant ants, we suggest that they represent an important factor shaping the adaptive value of EFNs to plants in arid environments.  相似文献   

11.
The first data on the taxonomic distribution and abundance of woody plants with extrafloral nectaries (EFN) from SE Asia are reported. The species richness and frequency of woody angiosperm plants with extrafloral nectaries was studied in the Pasoh Forest Reserve, a primary lowland forest in Peninsular Malaysia. EFN were present on 12.3% of the 741 species surveyed. 91 plant species belonging to 47 genera and 16 families were found to have EFN. Euphorbiaceae, Dipterocarpaceae, Rosaceae, Leguminosae, and Ebenaceae were the families most frequently bearing EFN whereas EFN were rare in the more primitive subclasses of the Magnoliopsida and common in the more advanced taxa (Dilleniidae, Rosidae, Asteridae). Most common were flattened glands associated with the leaf blade. A comparison with data from the Neotropics showed a great similarity in regard to the taxonomic distribution of plants with EFN. EFN-plants occupied 19.3% of the cover of the Pasoh Forest 50 ha plot.Species with EFN were under-represented among shrubs and trees of the understorey. We found an increase in the number of species with EFN as well as in their cover from the understorey to the canopy emergents. EFN were found more often among the abundant species (species with n>500/50 ha). Percentage occurrence and cover of EFN-bearing plants in the 50 ha plot of primary forest was lower than recorded for secondary habitats in tropical areas. At present, in the core zone of the Pasoh Forest Reserve which has been investigated only few species known to indicate disturbance occur. Therefore most of the recorded EFN-species cannot be regarded as secondary forest plants.The interactions between ants and EFN-bearing plants appear to be rather facultative and nonspecific. In Pasoh we found 28 ant species from seven genera visiting EFN. Most of the EFN-associated ants belonged to the subfamily Myrmicinae while Ponerines were rare, a pattern which was also reported for the Neotropics.In cooperation with the Forest Research Institute Malaysia, Kepong, 52109 Kuala Lumpur, Selangor, Malaysia.  相似文献   

12.
Habitat fragmentation has a marked impact on the functional composition of tropical forest tree assemblages, and such change is likely to cascade through other trophic levels. Here, we investigate how habitat fragmentation affects extrafloral nectary (EFN)‐bearing plants and ant functional groups known to attend EFNs in a fragmented landscape of the Atlantic Forest. Extrafloral nectary‐bearing trees were identified in 50 0.1‐ha plots located in forest fragments, edge and interior patches. Ants were surveyed in 30 1‐m2 litter samples in each of 17 forest fragments and in forest interior. Extrafloral nectary‐bearing plants accounted for 19.9% of individuals and 10.5% of species and included both pioneer and shade‐tolerant species similarly rich in the three habitat types. However, shade‐tolerant individuals accounted for >80% of EFN‐bearing plants in forest interior, compared with 2% in forest edge and 29% in fragments. Forest edge and fragment plots had a third fewer EFN‐bearing individuals and species compared with forest interior. This appeared to have important implications for local ant communities as the density of EFN‐bearing trees was the most important variable explaining the species richness of arboreal dominant ants. Our results show that plant loser–winner replacements promoted by forest fragmentation can cascade through higher trophic levels, with implications for forest dynamics and biodiversity conservation.  相似文献   

13.
Galen C 《Oecologia》2005,144(1):80-87
According to the distraction hypothesis, extrafloral nectaries (EFN) evolved under selection to entice ants away from floral nectaries, reducing ant-mediated damage to flowers and/or interference with pollinators. Predator-satiation, through production of nectar in either surplus flowers or EFN, provides an alternative mechanism for reducing the impact of ants as flower visitors. I tested these two hypotheses by experimentally adding EFN to flowering plants of the alpine wildflower, Polemonium viscosum, and by surveying the relationship between ant visitation and nectary number in nature. Plants of P. viscosum lack EFN and experience flower damage by ants of Formica neorufibarbus gelida. Ant behavior was compared on plants with five flowers and three experimental EFN and on controls with equal floral display, but no EFN. Addition of EFN increased flower visitation by ants. The effect of EFN on flower visitation did not depend on proximity of EFN to flowers or attractiveness of EFN to ants. Findings suggest that ants perceived patch quality on a whole plant basis, rather than responding to EFN and flowers as distinct nectar patches. Ant visitation did not keep pace with nectary number in nature. The relationship between ant visitation and nectary number per plant was weak and shallow as predicted under satiation. Ant foraging choices on experimental inflorescences showed that ants bypass flowers avoided by earlier ants, enhancing probability of escape via satiation. Results do not support the idea that EFN evolve to reduce flower visitation by ants, but show instead that nectar in surplus flowers can satiate ants and reduce their negative impacts on flower function and integrity.  相似文献   

14.
Ants of the genus Oecophylla are predators of other insects and are able to protect a variety of terrestrial plants against pest insects; however, observations on the ecology of these ants in mangrove forests are lacking. General observations on the ecology of Oecophylla smaragdina were carried out in a Thai mangrove forest to determine if these ants can protect their host plants in less favorable mangrove habitats. Leaf herbivory and the density of O. smaragdina ants were measured on Rhizophora mucronata trees at two sites. The results showed a negative correlation between ant density and herbivory. At both sites, the mean percent damaged leaf area was more than four times higher on trees without ants compared to “ant‐trees.” A significant negative correlation was found between tree mean percent leaf damage and the density of ants on the tree. Furthermore, on trees with ants, there was less herbivory on leaves close to ant nests compared to other leaves on the tree. Most damage was caused by chrysomelid beetles (62%) and sesarmid crabs (25%) and both types of herbivory were significantly reduced on ant‐trees.  相似文献   

15.
Abstract In several plants, extrafloral nectaries (EFN) are located close to the reproductive structures, suggesting that ants may act as a defence against specialized seed predators that overcome chemical defences. Alternatively, ants may also deter herbivores in a generalized manner, thereby protecting the whole plant. In this work, we examined the relationship between the chemically protected weed Crotalaria pallida Ait. (Leguminosae) that bears EFN, its specialized seed predator, the larvae of the arctiid moth Utetheisa ornatrix L. (Arctiidae) and ants. We tested two hypotheses related to the type of deterrence caused by ants. The Seed Predator Deterrence Hypothesis predicts that ant deterrence is directed primarily towards herbivores that destroy seeds and other reproductive structures, without attacking herbivores on vegetative structures. The General Deterrence Hypothesis states that ants are general in their effects, equally deterring herbivores in vegetative and reproductive structures. Our results supported the predictions of the Seed Predator Deterrence Hypothesis, namely, that (i) ant activity on EFN was related to the vulnerability of reproductive structures to attack by U. ornatrix; (ii) ant patrolling was restricted almost entirely to racemes; (iii) ants removed termites used as baits more frequently on racemes than on leaves; and (iv) U. ornatrix larvae were often expulsed from the racemes. These results indicate that EFN can act as another deterrent mechanism in chemically protected plants by promoting the expulsion of specialist seed predators.  相似文献   

16.
The study of geographical variation is a key approach to understand evolution of ecological interactions. We investigated geographical variation in the interaction among Crotalaria pallida (Leguminosae: Papilionideae), its specialized herbivore, Utetheisa ornatrix L. (Lepidoptera: Arctiidae), and ants attracted to extrafloral nectaries (EFNs). First, we used common-garden experiments with plants collected in different sites at different geographical scales to test for differences among populations in C. pallida attractiveness to ants. When we compared three populations from Southeast Brazil (150 km apart), the number of visiting ants per plant, and the percent of termite baits attacked by ants, were significantly different among plant populations. In a comparison of populations from SE Brazil and Florida (USA), there was no significant difference between the populations in the number of ants per plant or the frequency of baits attacked. Second, we tested in a common garden if U. ornatrix larvae present any behavior to avoid ant predation, and if there were genetic differences among populations. We observed that most larvae moved away from the vicinity of the EFNs (flowers and fruits) to the plant leaves. Of the larvae that moved to leaves, only 10% were attacked by ants while 89% of larvae that stayed near the fruit/flower were attacked. There was a significant difference among populations in the frequency of larvae that moved to the leaves and the frequency of larvae attacked by ants. We discuss the possible causes of the geographical differences observed and propose future research directions in this system.  相似文献   

17.
F. F. Xu  J. Chen 《Insectes Sociaux》2010,57(3):343-349
In facultative ant–plant interactions, ants may compete with each other for food provided by extrafloral nectar (EFN) plants. We studied resource competition and plant defense in a guild of ants that use the same EFN resource provided by two species of Passiflora in a seasonal rain forest in tropical China. At least 22 ant species were recorded using the EFN resource, although some of those species were rare. Among these ants, Paratrechina sp.1 and Dolichoderus thoracicus were more aggressive than other species. Ant aggressiveness measured as ant behavioral dominance index (BDI) was positively correlated with ant abundance on the Passiflora species studied. Ant BDI was also positively correlated to the protection that ants provided against herbivory. In Passiflora siamica, the number of workers patrolling on the plants did negatively correlate with average leaf loss per plant. We conclude that in this facultative Passiflora–ant system, plant defense upon herbivore was indeed influenced by the total number of ants present on plant and the aggressiveness of these ants.  相似文献   

18.
Plants bearing extrafloral nectaries (EFNs) vary the secretion of nectar between day and night, which creates turnover in the composition of interacting ant species. Daily variation in the composition of ant species foraging on vegetation is commonly observed, but its mechanisms are poorly understood. We evaluated the daily variation in nectar availability and interspecific aggressiveness between ants as possible regulatory mechanisms of the turnover in ant–plant interactions. We hypothesized that (i) plants would interact with more ant species during periods of higher secretion of nectar and that (ii) aggressive ant species would compete for nectar, creating a daily turnover of species collecting nectar. We tested this hypothesis by measuring the production of nectar during the day and night and by experimentally removing EFNs of Bionia coriacea (=Camptosema coriaceum) (Nees & Mart.) Benth. (Fabaceae: Faboideae) plants in a Brazilian savanna (Cerrado). We then compared the abundance and composition of ant species between those treatments and during the day. Our results indicate that more ant workers forage on plants during the day, when nectar was sugary, while more ant species forage at night, when aggressiveness between ant species was lower. We also detected a day/night turnover in ant species composition. Ant species foraging for nectar during the day were not the same at night, and this turnover did not occur on plants without EFNs. Both dominant ant species, diurnal Camponotus crassus (Hymenoptera: Formicidae) and nocturnal Camponotus rufipes (Hymenoptera: Formicidae), were the most aggressive species, attacking other ants in their specific periods of forage while also being very aggressive toward each other. However, this aggressiveness did not occur in the absence of nectar, which allowed non‐aggressive nocturnal ant species to forage only during the daytime, disrupting the turnover. We conclude that extrafloral‐nectar presence and interspecific aggressiveness between ants, along with other environmental factors, are important mechanisms creating turnovers in ants foraging on plants.  相似文献   

19.
The ability of some ant species (including Camponotus spp.) to forage on vertebrate urine to extract urea may extend their niche in competitive and strongly nitrogen‐limited environments. We examined the preference of Camponotus terebrans, a sand‐dwelling ant widespread in southern Australia, for baits including urine, and the duration of their foraging on those baits. We baited ants with liquid stains of urine (human and kangaroo), urea in water (2.5%. 3.5%, 7.0%, 10.0%) and sucrose in water (20% and 40%) poured directly on the ground, as well as hard baits in plots drawn on sandy soil (Kangaroo Island, South Australia). We counted individuals of this mostly nocturnal species to determine their attraction to different baits for one month. We checked plant growth on the plots after nine and 13 months. Ants collected insects and meat; they foraged for at least 29 days on stains. Ants were most numerous on 10% urea, followed by 7% urea, 3.5% urea, urine (which contains ~2.5% urea) and 2.5% urea, 40% sucrose and 20% sucrose; sucrose was less attractive to them than equimolar urea bait. Ants were attracted to human, kangaroo, and unidentified urines, and they collected bird guano. Baits and ant foraging did not affect plant recruitment in plots. We observed incidentally Camponotus consobrinus foraging on urine, which may be a common resource for this genus at the site. The remarkable ability of C. terebrans to extract nitrogen from dry sand over weeks explains partly its success on sandy soils. Foraging on urine may be an important strategy to address nitrogen limitation on sandy soils and exploit commensally niches in which hosts are kangaroos, wallabies and other vertebrates. The understanding of plant–vertebrate interactions must factor in the role of ants as commensal organisms. Such ants could also reduce greenhouse gas emissions from urine.  相似文献   

20.
Herbivory is an ecological process that is known to generate different patterns of selection on defensive plant traits across populations. Studies on this topic could greatly benefit from the general framework of the Geographic Mosaic Theory of Coevolution (GMT). Here, we hypothesize that herbivory represents a strong pressure for extrafloral nectary (EFN) bearing plants, with differences in herbivore and ant visitor assemblages leading to different evolutionary pressures among localities and ultimately to differences in EFN abundance and function. In this study, we investigate this hypothesis by analyzing 10 populations of Anemopaegma album (30 individuals per population) distributed through ca. 600 km of Neotropical savanna and covering most of the geographic range of this plant species. A common garden experiment revealed a phenotypic differentiation in EFN abundance, in which field and experimental plants showed a similar pattern of EFN variation among populations. We also did not find significant correlations between EFN traits and ant abundance, herbivory and plant performance across localities. Instead, a more complex pattern of ant–EFN variation, a geographic mosaic, emerged throughout the geographical range of A. album. We modeled the functional relationship between EFNs and ant traits across ant species and extended this phenotypic interface to characterize local situations of phenotypic matching and mismatching at the population level. Two distinct types of phenotypic matching emerged throughout populations: (1) a population with smaller ants (Crematogaster crinosa) matched with low abundance of EFNs; and (2) seven populations with bigger ants (Camponotus species) matched with higher EFN abundances. Three matched populations showed the highest plant performance and narrower variance of EFN abundance, representing potential plant evolutionary hotspots. Cases of mismatched and matched populations with the lowest performance were associated with abundant and highly detrimental herbivores. Our findings provide insights on the ecology and evolution of plant–ant guarding systems, and suggest new directions to research on facultative mutualistic interactions at wide geographic scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号