首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A human cell line (U5A) lacking the type I interferon (IFN) receptor chain 2 (IFNAR2c) was used to determine the role of the IFNAR2c cytoplasmic domain in regulating IFN-dependent STAT activation, interferon-stimulated gene factor 3 (ISGF3) and c-sis-inducible factor (SIF) complex formation, gene expression, and antiproliferative effects. A panel of U5A cells expressing truncation mutants of IFNAR2c on their cell surface were generated for study. Janus kinase (JAK) activation was detected in all mutant cell lines; however, STAT1 and STAT2 activation was observed only in U5A cells expressing full-length IFNAR2c and IFNAR2c truncated at residue 462 (R2.462). IFNAR2c mutants truncated at residues 417 (R2. 417) and 346 (R2.346) or IFNAR2c mutant lacking tyrosine residues in its cytoplasmic domain (R2.Y-F) render the receptor inactive. A similar pattern was observed for IFN-inducible STAT activation, STAT complex formation, and STAT-DNA binding. Consistent with these data, IFN-inducible gene expression was ablated in U5A, R2.Y-F, R2.417, and R2.346 cell lines. The implications are that tyrosine phosphorylation and the 462-417 region of IFNAR2c are independently obligatory for receptor activation. In addition, the distal 53 amino acids of the intracellular domain of IFNAR2c are not required for IFN-receptor mediated STAT activation, ISFG3 or SIF complex formation, induction of gene expression, and inhibition of thymidine incorporation. These data demonstrate for the first time that both tyrosine phosphorylation and a specific domain of IFNAR2c are required in human cells for IFN-dependent coupling of JAK activation to STAT phosphorylation, gene induction, and antiproliferative effects. In addition, human and murine cells appear to require different regions of the cytoplasmic domain of IFNAR2c for regulation of IFN responses.  相似文献   

3.
An ability to sense pathogens by a number of specialized cell types including the dendritic cells plays a central role in host's defenses. Activation of these cells through the stimulation of the pathogen-recognition receptors induces the production of a number of cytokines including Type I interferons (IFNs) that mediate the diverse mechanisms of innate immunity. Type I IFNs interact with the Type I IFN receptor, composed of IFNAR1 and IFNAR2 chains, to mount the host defense responses. However, at the same time, Type I IFNs elicit potent anti-proliferative and pro-apoptotic effects that could be detrimental for IFN-producing cells. Here, we report that the activation of p38 kinase in response to pathogen-recognition receptors stimulation results in a series of phosphorylation events within the IFNAR1 chain of the Type I IFN receptor. This phosphorylation promotes IFNAR1 ubiquitination and accelerates the proteolytic turnover of this receptor leading to an attenuation of Type I IFN signaling and the protection of activated dendritic cells from the cytotoxic effects of autocrine or paracrine Type I IFN. In this paper we discuss a potential role of this mechanism in regulating the processes of innate immunity.  相似文献   

4.
5.
Type I IFNs are critical players in host innate and adaptive immunity. IFN signaling is tightly controlled to ensure appropriate immune responses as imbalance could result in uncontrolled inflammation or inadequate responses to infection. It is therefore important to understand how type I IFN signaling is regulated. Here we have investigated the mechanism by which suppressor of cytokine signaling 1 (SOCS1) inhibits type I IFN signaling. We have found that SOCS1 inhibits type I IFN signaling not via a direct interaction with the IFN α receptor 1 (IFNAR1) receptor component but through an interaction with the IFNAR1-associated kinase Tyk2. We have characterized the residues/regions involved in the interaction between SOCS1 and Tyk2 and found that SOCS1 associates via its SH2 domain with conserved phosphotyrosines 1054 and 1055 of Tyk2. The kinase inhibitory region of SOCS1 is also essential for its interaction with Tyk2 and inhibition of IFN signaling. We also found that Tyk2 is preferentially Lys-63 polyubiquitinated and that this activation reaction is inhibited by SOCS1. The consequent effect of SOCS1 inhibition of Tyk2 not only results in a reduced IFN response because of inhibition of Tyk2 kinase-mediated STAT signaling but also negatively impacts IFNAR1 surface expression, which is stabilized by Tyk2.  相似文献   

6.
Type I interferons serve as the first line of defense against pathogen invasion. Binding of IFNs to its receptors, IFNAR1 and IFNAR2, is leading to activation of the IFN response. To determine whether structural perturbations observed during binding are propagated to the cytoplasmic domain, multiple mutations were introduced into the transmembrane helix and its surroundings. Insertion of one to five alanine residues near either the N or C terminus of the transmembrane domain (TMD) likely promotes a rotation of 100° and a translation of 1.5 Å per added residue. Surprisingly, the added alanines had little effect on the binding affinity of IFN to the cell surface receptors, STAT phosphorylation, or gene induction. Similarly, substitution of the juxtamembrane residues of the TMD with alanines, or replacement of the TMD of IFNAR1 with that of IFNAR2, did not affect IFN binding or activity. Finally, only the addition of 10 serine residues (but not 2 or 4) between the extracellular domain of IFNAR1 and the TMD had some effect on signaling. Bioinformatic analysis shows a correlation between high sequence conservation of TMDs of cytokine receptors and the ability to transmit structural signals. Sequence conservation near the TMD of IFNAR1 is low, suggesting limited functional importance for this region. Our results suggest that IFN binding to the extracellular domains of IFNAR1 and IFNAR2 promotes proximity between the intracellular domains and that differential signaling is a function of duration of activation and affinity of binding rather than specific conformational changes transmitted from the outside to the inside of the cell.  相似文献   

7.
Interferons (IFNs) are pleiotropic cytokines involved in the regulation of physiological and pathological processes. Upon interaction with their specific receptors, IFNs activate the Jak/STAT signalling pathway. Numerous studies suggest, however, that the classical Jak/STAT pathway cannot alone account for the wide range of IFN's biological effects. To better understand the role of alternative signalling pathways in the type I IFNs response, we analyzed novel tyrosine-phosphorylated proteins following IFN-alpha2 stimulation. We showed for the first time that the Grb2-associated binder 2 (Gab2) protein is differentially phosphorylated upon the IFN subtype employed and the cells stimulated. We demonstrated that IFNAR1 physically interacts with Gab2. Moreover, the cellular content of Gab2 varies as a function of IFN receptor chain expression levels, and in particular of the ratio of IFNAR1 to IFNAR2, suggesting that Gab2 and IFNAR2 compete for interaction with IFNAR1. Analysis of Gab2 deletion mutants indicates that IFNAR1 might interact with a Gab2 region containing p85-PI3'kinase binding sites. Our results shed new light on recent data involving both Gab2 and type I IFNs in osteoclastogenesis and oncogenesis.  相似文献   

8.
Interferon (IFN)-lambda 1, -lambda 2, and -lambda 3 are the latest members of the class II cytokine family and were shown to have antiviral activity. Their receptor is composed of two chains, interleukin-28R/likely interleukin or cytokine or receptor 2 (IL-28R/LICR2) and IL-10R beta, and mediates the tyrosine phosphorylation of STAT1, STAT2, STAT3, and STAT5. Here, we show that activation of this receptor by IFN-lambda 1 can also inhibit cell proliferation and induce STAT4 phosphorylation, further extending functional similarities with type I IFNs. We used IL-28R/LICR2-mutated receptors to identify the tyrosines required for STAT activation, as well as antiproliferative and antiviral activities. We found that IFN-lambda 1-induced STAT2 tyrosine phosphorylation is mediated through tyrosines 343 and 517 of the receptor, which showed some similarities with tyrosines from type I IFN receptors involved in STAT2 activation. These two tyrosines were also responsible for antiviral and antiproliferative activities of IFN-lambda 1. By contrast, STAT4 phosphorylation (and to some extent STAT3 activation) was independent from IL-28R/LICR2 tyrosine residues. Taken together, these observations extend the functional similarities between IFN-lambdas and type I IFNs and shed some new light on the mechanisms of activation of STAT2 and STAT4 by these cytokines.  相似文献   

9.
10.
11.
12.
The function of the signal-transducing receptor subunit glycoprotein 130 (gp130) in the IL-6-receptor complex has previously been studied using carboxyl-terminal deletion mutants or a truncated molecule of approximately 60 membrane-proximal amino acids (containing box 1 and box 2) linked to the individual gp130 tyrosine motifs. However, the redundancy of the tyrosine motifs within the cytoplasmic part of gp130 has been neglected. Here we describe the analysis of the function of the individual cytoplasmic tyrosine residues of gp130 in the context of the full-length receptor protein in IL-6 signaling as measured by STAT activation, acute phase protein induction, and stimulation of proliferation. Add-back receptor mutants containing only one cytoplasmic tyrosine have been generated and tested for their efficiency in IL-6 signal transduction. Our studies revealed that tyrosine motifs which have been described to recruit STAT proteins are not equivalent with respect to their potential to activate STAT factors and acute phase protein gene promoters: the two distal tyrosines, Tyr905 and Tyr915, of gp130 were more potent than Tyr767 and Tyr814. Surprisingly, Tyr905 and Tyr915 mediate acute phase protein gene promoter activation stronger than the wild-type receptor containing all six cytoplasmic tyrosine residues. In contrast, Ba/F3 cells stably transfected with add-back receptors containing Tyr767 or Tyr905 were more sensitive to IL-6-induced proliferation than cells expressing the other add-back receptor mutants. Thus, the tyrosine residues in the cytoplasmic part of gp130 were found to contribute differentially to IL-6 signal transduction in the full- length gp130 protein.  相似文献   

13.
The antiviral and antiproliferative activities of human type I interferons (IFNs) are mediated by two transmembrane receptor subunits, IFNAR1 and IFNAR2. To elucidate the role of IFNAR1 in IFN binding and the establishment of biological activity, specific residues of IFNAR1 were mutated. Residues (62)FSSLKLNVY(70) of the S5-S6 loop of the N-terminal subdomain of IFNAR1 and tryptophan-129 of the second subdomain of IFNAR1 were shown to be crucial for IFN-alpha binding and signaling and establishment of biological activity. Mutagenesis of peptide (278)LRV in the third subdomain shows that these residues are critical for IFN-alpha-induced biological activity but not for ligand binding. These data, together with the sequence homology of IFNAR1 with cytokine receptors of known structure and the recently resolved NMR structure of IFNAR2, led to the establishment of a three-dimensional model of the human IFN-alpha/IFNAR1/IFNAR2 complex. This model predicts that following binding of IFN to IFNAR1 and IFNAR2 the receptor complex assumes a "closed form", in which the N-terminal domain of IFNAR1 acts as a lid, resulting in the activation of intracellular kinases. Differences in the primary sequence of individual IFN-alpha subtypes and resulting differences in binding affinity, duration of ligand/receptor association, or both would explain differences in intracellular signal intensities and biological activity observed for individual IFN-alpha subtypes.  相似文献   

14.
ITAM-coupled receptors play an essential role in regulating macrophage activation and function by cross-regulating signaling from heterologous receptors. We investigated mechanisms by which ITAM-associated receptors inhibit type I IFN (IFN-α/β) signaling in primary human macrophages and tested the effects of simultaneous ligation of ITAM-associated receptors and TLR4 on TLR4-induced Jak-STAT signaling that is mediated by autocrine IFN-β. Preligation of ITAM-coupled β2 integrins and FcγRs inhibited proximal signaling by the type I IFN receptor IFNAR. Cross-inhibition of IFNAR signaling by β2 integrins resulted in decreased Jak1 activation and was mediated by partial downregulation of the IFNAR1 subunit and MAPK-dependent induction of USP18, which blocks the association of Jak1 with IFNAR2. Simultaneous engagement of ITAM-coupled β2 integrins or Dectin-1 with TLR4 did not affect TLR4-induced direct activation of inflammatory target genes such as TNF or IL6 but abrogated subsequent induction of IFN response genes that is mediated by autocrine IFN-β signaling. Type I IFNs promote macrophage death postinfection by Listeria monocytogenes. Consequently, attenuation of IFN responses by β2 integrins protected primary human macrophages from L. monocytogenes-induced apoptosis. These results provide a mechanism for cross-inhibition of type I IFN signaling by ITAM-coupled β2 integrins and demonstrate that ITAM signaling qualitatively modulates macrophage responses to pathogen-associated molecular patterns and pathogens by selectively suppressing IFN responses.  相似文献   

15.
16.
Exogenous cytokine therapy can induce systemic toxicity, which might be prevented by activating endogenously produced cytokines in local cell niches. Here we developed antibody-based activators of cytokine signaling (AcCS), which recognize cytokines only when they are bound to their cell surface receptors. AcCS were developed for type I interferons (IFNs), which induce cellular activities by binding to cell surface receptors IFNAR1 and IFNAR2. As a potential alternative to exogenous IFN therapy, AcCS were shown to potentiate the biological activities of natural IFNs by ∼100-fold. Biochemical and structural characterization demonstrates that the AcCS stabilize the IFN-IFNAR2 binary complex by recognizing an IFN-induced conformational change in IFNAR2. Using IFN mutants that disrupt IFNAR1 binding, AcCS were able to enhance IFN antiviral potency without activating antiproliferative responses. This suggests AcCS can be used to manipulate cytokine signaling for basic science and possibly for therapeutic applications.  相似文献   

17.
Granulocyte colony-stimulating factor (G-CSF) regulates neutrophil production through activation of its cognate receptor, the G-CSF-R. Previous studies with deletion mutants have shown that the membrane-proximal cytoplasmic domain of the receptor is sufficient for mitogenic signaling, whereas the membrane-distal domain is required for differentiation signaling. However, the function of the four cytoplasmic tyrosines of the G-CSF-R in the control of proliferation, differentiation, and survival has remained unclear. Here we investigated the role of these tyrosines by expressing a tyrosine "null" mutant and single tyrosine "add back" mutants in maturation-competent myeloid 32D cells. Clones expressing the null mutant showed only minimal proliferation and differentiation, with survival also reduced at low G-CSF concentrations. Analysis of clones expressing the add-back mutants revealed that multiple tyrosines contribute to proliferation, differentiation, and survival signals from the G-CSF-R. Analysis of signaling pathways downstream of these tyrosines suggested a positive role for STAT3 activation in both differentiation and survival signaling, whereas SHP-2, Grb2 and Shc appear important for proliferation signaling. In addition, we show that a tyrosine-independent "differentiation domain" in the membrane-distal region of the G-CSF-R appears necessary but not sufficient for mediating neutrophilic differentiation in these cells.  相似文献   

18.
Human type I interferons (IFN) require two receptor chains, IFNAR1 and IFNAR2c for high affinity (pM) binding and biological activity. Our previous studies have shown that the ligand dependent assembly of the type I IFN receptor chains is not identical for all type I IFNs. IFNbeta appears unique in its ability to assemble a stable complex of receptor chains, as demonstrated by the observation that IFNAR2c co-immunoprecipitates with IFNAR1 when cells are stimulated with IFNbeta but not with IFNalpha. The characteristics of such a receptor complex are not well defined nor is it understood if differential signaling events can be mediated by variations in receptor assembly. To further characterize the factors required for formation of such a stable receptor complex we demonstrate using IFN stimulated Daudi cells that (1) IFNAR2c co-immunoprecipitates with IFNAR1 even when tyrosine phosphorylation of receptor chains is blocked with staurosporine, and (2) IFNbeta1b but not IFNalpha2, is present in the immunoprecipitated receptor complex. These results demonstrate that the unique IFNbeta induced assembly of type I IFN receptor chains is independent of receptor tyrosine phosphorylation and the recruitment of additional proteins to the receptor by such events. Furthermore, the presence of IFNbeta1b in the immunoprecipitated IFN receptor complex suggests that IFNbeta interacts and binds differently to the receptor than IFNalpha2. These results suggest that the specific assembly of type I IFN receptor chains is ligand dependent and may represent an early event which leads to the differential biological responses observed among type I IFNs.  相似文献   

19.
20.
The cytoplasmic domain of the human type I IFN receptor chain 2 (IFNAR2c or IFN-alphaRbetaL) was used as bait in a yeast two-hybrid system to identify novel proteins interacting with this region of the receptor. We report here a specific interaction between the cytoplasmic domain of IFN-alphaRbetaL and a previously identified protein, RACK-1 (receptor for activated C kinase). Using GST fusion proteins encoding different regions of the cytoplasmic domain of IFN-alphaRbetaL, the minimum site for RACK-1 binding was mapped to aa 300-346. RACK-1 binding to IFN-alphaRbetaL did not require the first 91 aa of RACK-1, which includes two WD domains, WD1 and WD2. The interaction between RACK-1 and IFN-alphaRbetaL, but not the human IFN receptor chain 1 (IFNAR1 or IFN-alphaRalpha), was also detected in human Daudi cells by coimmunoprecipitation. RACK-1 was shown to be constitutively associated with IFN-alphaRbetaL, and this association was not effected by stimulation of Daudi cells with type I IFNs (IFN-beta1b). RACK-1 itself did not become tyrosine phosphorylated upon stimulation of Daudi cells with IFN-beta1b. However, stimulation of cells with either IFN-beta1b or PMA did result in an increase in detectable immunofluorescence and intracellular redistribution of RACK-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号