首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The guinea-pig intestine was found to harbor nerve fibers containing immunoreactive cholecystokinin (CCK), gastrin-releasing peptide (GRP), neurotensin or - endorphin. Such fibers occurred in the myenteric and submucous ganglia and in the smooth muscle. GRP- and CCK-fibers, in addition, were found in the mucosa. Following colchicine treatment, neuronal perikarya in the myenteric ganglia displayed CCK-, GRP-, or -endorphin immunoreactivity. CCK-immunoreactive perikarya were located also in the submucous ganglia. Neurotensin-immunoreactive cell bodies could not be detected. The presence of immunoreactive neuronal perikarya in intramural ganglia indicates that CCK-, GRP- and -endorphin-containing fibers are intrinsic to the gut wall. GRP, neurotensin, and -endorphin were identified in extracts of smooth muscle by immunochemical and Chromatographic analysis.CCK-8, GRP and neurotensin contracted the isolated taenia coli. Tetrodotoxin reduced the response to CCK-8 but not that to GRP and neurotensin, suggesting that the two latter peptides act directly on smooth muscle receptors. The effect of CCK-8 is partly mediated by cholinergic nerves, since not only tetrodotoxin but also atropine greatly reduced the CCK-8-induced contractile response. The substance P (SP) antagonist, (d-Pro2, d-Trp7,9)-SP1–11 had no effect on the CCK-8-induced contraction of the taenia. CCK-8 enhanced the SP-mediated (atropine-resistant) contractile response to electrical stimulation but not that mediated by acetylcholine. -Endorphin had no effect on the tension of the muscle but reduced the response to electrical stimulation (cholinergic as well as SP-mediated) through a naloxone-sensitive mechanism.While CCK-8 and -endorphin seem to play neuromodulatory roles in the taenia coli, the significance of GRP and neurotensin remains enigmatic.  相似文献   

2.
3.
4.
β-1,4-endoglucanses, a.k.a. cellulases, are parasitism genes that facilitate root penetration and migration by plant-parasitic nematodes. Rotylenchulus reniformis is a sedentary semi-endoparasite for which little molecular data has been collected. In this report, we describe the isolation and characterization of a predicted glycosyl hydrolase family 5 cellulase from R. reniformis that we have named Rr-eng-1. The Rr-eng-1 cDNA was 1,341 bp long and was comprised of a 19 bp 5'-untranslated region (UTR), a 1,245 bp open reading frame (ORF), and an 80 bp 3'-UTR. The Rr-eng-1 genomic sequence was 2,325 bp. Alignment of the cDNA and genomic sequences revealed seven introns and eight exons for Rr-eng-1. BLASTN analysis showed the Rr-eng-1 cDNA was most homologous to the Hg-eng-6 mRNA from Heterodera glycines. Southern blot analysis indicated that at least three Rr-eng-1-like sequences were present in the R. reniformis genome. Translation of the Rr-eng-1 ORF yielded a 414 amino acid peptide (Rr-ENG-1) having an N-terminal signal sequence for secretion. No cellulose binding module (CBM) was detected in Rr-ENG-1; however, a putative CBM linker sequence N-terminal to the catalytic domain was present. Rr-ENG-1 was most homologous to Hg-ENG-6 but also shared a number of intron splice positions with Mi-ENG-2. Quantitative RT-PCR indicated that Rr-eng-1 was highly expressed in the J2 and adult vermiform life-stages with a sharp decline in expression detected in sedentary females.  相似文献   

5.
In this study, a novel avian β-defensin (AvBD) was isolated from duck pancreas. The complete nucleotide sequence of the gene contained an 195 bp open reading frame encoding 64 amino acids. Homology, characterization and comparison of the gene with AvBD from other avian species confirmed that it was duck AvBD2. The mRNA expression of the gene was analyzed in 17 tissues from 21-day-old ducks. AvBD2 was highly expressed in the trachea, crop, heart, bone marrow, and pancreas; moderately expressed in the muscular stomach, small intestine, kidney, spleen, thymus, and bursa of Fabricius; and weakly expressed in skin. We produced and purified recombinant AvBD2 by expressing the gene in Escherichia coli. As expected, the recombinant peptide exhibited strong bactericidal properties against Bacillus cereus, Staphylococcus aureus, and Pasteurella multocida, and weak bactericidal properties against E. coli and Salmonella choleraesuis. In addition, the recombinant protein retained antimicrobial activity against S. aureus under different temperatures (range, −20°C to 100°C) and pH values (range, 3 to 12)  相似文献   

6.
《Process Biochemistry》2010,45(6):851-858
A high β-glucosidase (BGL)-producing strain was isolated and identified as Penicillium pinophilum KMJ601 based on its morphology and internal transcribed spacer rDNA gene sequence. Under the optimal culture conditions, a maximum BGL specific activity of 3.2 U ml−1 (83 U mg-protein−1), one of the highest levels among BGL-producing microorganisms was obtained. An extracellular BGL was purified to homogeneity by sequential chromatography of P. pinophilum culture supernatants on a DEAE-Sepharose column, a gel filtration column, and then on a Mono Q column. The relative molecular weight of P. pinophilum BGL was determined to be 120 kDa by SDS-PAGE and size exclusion chromatography, indicating that the enzyme is a monomer. The hydrolytic activity of the BGL had a pH optimum of 3.5 and a temperature optimum of 32 °C. P. pinophilum BGL showed a higher activity (Vmax = 1120 U mg-protein−1) than most BGLs purified from other sources. The internal amino acid sequences of P. pinophilum BGL showed a significant homology with hydrolases from glycoside hydrolase family 3. Although BGLs have been purified and characterized from several other sources, P. pinophilum BGL is distinguished from other BGLs by its high activity.  相似文献   

7.
Plant enzyme activities in the rhizosphere potentially are a resource for improved plant nutrition, soil fertility, bioremediation, and disease resistance. Here we report that a border cell specific β-galactosidase is secreted into the acidic extracellular environment surrounding root tips of pea, as well as bean, alfalfa, barrel medic, sorghum, and maize. No enzyme activity was detected in radish and Arabidopsis, species that do not produce viable border cells. The secreted enzyme activity was inhibited by galactose and 2-phenylethyl 1-thio-β-d-galactopyranoside (PETG) at concentrations that altered root growth without causing cell death. A tomato galactanase encoding gene was used as a probe to isolate a full length pea cDNA clone (BRDgal1) from a root cap-border cell cDNA library. Southern blot analysis using full length BRDgal1 as a probe revealed 1–2 related sequences within the pea genome. BRDgal1 mRNA expression was analysed by whole mount in situ hybridization (WISH) and found to occur in the outermost peripheral layer of the cap and in suspensions of detached border cells. No expression was detected within the body of the root cap. Repeated efforts to develop viable hairy root clones expressing BRDgal1 antisense mRNA under the control of the CaMV35S promoter, whose expression in the root cap is limited to cells at the root cap periphery only during root emergence, were unsuccessful. These data suggest that altered expression of this enzyme is deleterious to early root development. The first two authors contributed equally to the completion of this project.  相似文献   

8.
Cloned human 1,4N-acetylgalactosaminyltransferase (GalNAcT) catalyses the synthesis of the glycosphingolipids GM2, GD2, and gangliotriosylceramide. To determine the subcellular location of this enzyme and whether it exists in intermolecular disulfide bonded species, we stably transfected Chinese hamster ovary (CHO) cells with three myc epitope-tagged forms of the GalNAcT gene: the native enzyme; the lumenal domain of GalNAcT fused to the cytoplasmic and transmembrane domains ofN-acetylglucosaminyltransferase I (GNT); and the transmembrane and lumenal domains of GalNAcT fused to the cytoplasmic domain of the Iip33 form of human invariant chain in order to retain the enzyme in the endoplasmic reticulum (ER). Immunoelectron microscopic analysis with anti-myc revealed that GalNAcT/myc was present throughout the Golgi stack, the GNT/GalNAcT/myc form was restricted primarily to the medial Golgi cisternae, and the Iip33/GalNAcT/myc form was restricted to the ER. Cells transfected with each of the three constructs contained high levels of GM2 synthase activityin vitro, but only the GalNAcT/myc form and the GNT/GalNAcT/myc forms were able to synthesize the GM2 productin vivo. The enzyme produced by all three constructs was present in the transfected cells in a disulfide bonded form having a molecular size consistent with that of a homodimer or higher aggregate.Abbreviations GSL glycosphingolipid(s) - CHO Chinese hamster ovary - GSL structures: GM2 GalNAc1,4(NeuAc2,3)Gal1,4GlcCer - GD2 GalNac1,4(NeuAc2,8NeuAc2,3)Gal1,4GlcCer - GM3 NeuAc2,3Gal1,4GlcCer - Gg3 GalNAc1,4Gal1,4GlcCer - LacCer Gal1,4GlcCer - GlcCer glucosylceramide - PBS-BSA phosphate buffered saline pH 7.4 containing 1% bovine serum albumin - GalNAcT N-acetylgalactosaminyltransferase - GNT N-acetylglucosaminyltransferase I - Iip33 p33 form of human invariant chain - HPTLC high performance thin layer chromatography - PCR polymerase chain reaction - BFA Brefeldin A This paper is dedicated to Professor Sen-itiroh Hakomori on the occasion of his 65th birthday.  相似文献   

9.
Ceratocystis cacaofunesta is an ascomycete responsible for the lethal wilt disease of cacao (Theobroma cacao L.). Marker-assisted selection combined with conventional breeding is one powerful approach to improve cacao resistance to Ceratocystis wilt. In this study we screened a set of ESTs obtained from cacao elicited with C. cacaofunesta to identify EST-SSRs and test their efficacy for mapping. Among the 3,432 ESTs analysed, 384 contained SSRs and 428 EST-SSRs were identified, mainly dinucleotides (78.5 %), with four repeats (75.23 %), and preferentially AG/CT motif (25.47 %). Gene ontology function was assigned to the ESTs containing SSRs: 4.04 % belonged to “defense response” category, with 20.69 % of them to the sub-category “defense response to fungi”. In relation to the ORF, the same quantity of EST-SSRs was observed in the 5′ UTR, ORF and the 3′ UTR (about 30 %). From the 428 EST-SSRs identified, 12 were polymorphic, revealing a total of 41 alleles. The number of alleles per locus ranged from 2 to 6, with an average of 3.41. Four EST-SSRs were mapped on the F2 Sca 6 × ICS 1 population segregating for Ceratocystis wilt, and were distributed on the 2, 3, 4 and 8 linkage groups. These markers will have potential applications in linkage mapping and will be valuable for the research community to improve the cacao breeding program.  相似文献   

10.
We have identified and characterized a new member of the human synuclein gene family, γ-synuclein (SNCG). This gene is composed of five exons, which encode a 127 amino acid protein that is highly homologous to α-synuclein, which is mutated in some Parkinson’s disease families, and to β-synuclein. The γ-synuclein gene is localized to chromosome 10q23 and is principally expressed in the brain, particularly in the substantia nigra. We have determined its genomic sequence, and established conditions for sequence analysis of each of the exons. The γ-synuclein gene, also known as BCSG1, was recently found to be overexpressed in advanced infiltrating carcinoma of the breast. Our survey of the EST database indicated that it might also be overexpressed in an ovarian tumor. Received: 6 February 1998 / Accepted: 8 April 1998  相似文献   

11.
Xue Y  Shao W 《Biotechnology letters》2004,26(19):1511-1515
A thermostable beta-xylosidase from a hyperthermophilic bacterium, Thermotoga maritima, was over-expressed in Escherichia coli using the T7 polymerase expression system. The expressed beta-xylosidase was purified in two steps, heat treatment and immobilized metal affinity chromatography, and gave a single band on SDS-PAGE. The maximum activity on p-nitrophenyl beta-D-xylopyranoside was at 90 degrees C and pH 6.1. The purified enzyme had a half-life of over 22-min at 95 degrees C, and retained over 57% of its activity after holding a pH ranging from 5.4 to 8.5 for 1 h at 80 degrees C. Among all tested substrates, the purified enzyme had specific activities of 275, 50 and 29 U mg(-1) on pNPX, pNPAF, and pNPG, respectively. The apparent Michaelis constant of the beta-xylosidase was 0.13 mM for p NPX with a V (max) of 280 U mg(-1). When the purified beta-xylosidase was added to xylanase, corncob xylan was hydrolized completely to xylose.  相似文献   

12.
A genomic DNA fragment, encoding a thermotolerant β-glucosidase, of the obligate anaerobe Thermotoga petrophila RKU-1 was cloned after PCR amplification into Escherichia coli strain BL21 CodonPlus. The purified cloned enzyme was a monomeric, 51.5?kDa protein (by SDS-PAGE) encoded by 1.341?kb gene. The estimated K (m) and V (max) values against p-nitrophenyl-β-D-glucopyranoside were 2.8?mM and 42.7?mmol?min(-1)?mg(-1), respectively. The enzyme was also active against other p-nitrophenyl substrates. Possible catalytic sites involved in hydrolyzing different p-nitrophenyl substrates are proposed based on docking studies of enzyme with its substrates. Because of its unique characters, this enzyme is a potential candidate for industrial applications.  相似文献   

13.
A β-glucuronidase has been isolated from pig kidney and purified 1600-fold using sodium desoxycholate precipitation, ammonium sulphate fractionation, heat treatment and chromatography on Sephadex G200, DEAE-cellulose (DE-52) and hydroxyapatite. The enzyme activity was assayed using oestrone 3-glucuronide as substrate; the final specific activity was 254 nmol oestrone/min/mg of protein. The purified enzyme showed apparent homogeneity in gel filtration and polyacrylamide gel electrophoresis. The pig kidney β-glucuronidase has a single pH optimum of 4.0–4.4 in acetate- and 5.4 in citrate-buffer; an activation energy of 16,800 cal/mol and a molecular weight of 275,000 were estimated. The KM for oestrone 3-glucuronide was 22.6 μM. The enzyme was not inhibited by N-ethylmaleimide nor by dithioerythritol, however, it was strongly inhibited by Hg2+. Oestradiol-17β 3-glucuronide and oestriol 3-glucuronide acted as competitive inhibitors, whereas oestradiol-17β 17β-glucuronide, oestriol 16α-glucuronide, testosterone 17-glucuronide and cholesteryl 3-glucuronide were uncompetitive, pregnanediol 3-glucuronide was noncompetitive, and Cortisol 21-glucuronide gave a mixed type inhibition. The synthetic β-d-glucuronides of phenolphthalein, p-nitrophenol, naphthol, 6-bromo-naphthol and methylumbelliferone all inhibited the hydrolysis of oestrone 3-glucuronide; the inhibition was of a more complex type than simple competitive inhibition.  相似文献   

14.
A procedure is described for the preparation of extensively purified β-d-glucosidase (EC 3.2.1.21) from the cytosol fraction of rat kidney. The specific activity of the β-glucosidase in the high speed supernatant (100 000 × g, 90 min) fraction of rat kidney homogenate is 700-fold greater than that in the same fraction from heart, skeletal muscle, lung, spleen, brain or liver. β-Glucosidase activity co-chromatographs with β-d-galactosidase, β-d-fucosidase, α-l-arabinosidase and β-d-xylosidase activities through the last four column steps of the purification and their specific activities are 0.26, 0.39, 0.028 and 0.017 relative to that of β-glucosidase, respectively. The specific activity of the apparently homogeneous β-glucosidase is 115 000 nmol of glucose released from 4-methylumbelliferyl-β-d-glucopyranoside per mg protein per h. All five glycosidase activities possess similar pH dependency (pH optimum, 6–7) and heat lability, and co-migrate on polyacrylamide disc gels at ph 8.9 (RF, 0.67). β-Glucosidase activity is inhibited competitively by glucono-(1 → 5)-lactone (KI, 0.61 mM) and non-competitively by a variety of sulfhydryl reagents including N-ethylmaleimide, p-chloromercuribenzoate, 5,5′-dithio-bis(2-nitrobenzoic acid), and iodoacetic acid. Although the enzyme will release glucose from p-nitrophenyl and 4-methylumbelliferyl derivatives of β-d-glucose, it will not hydrolyze xylosyl-O-serine, β-d-glucocerebroside, lactose, galactosylovalbumin or trehalose. The enzyme consists of a single polypeptide chain with a molecular weight of 50 000–58 000, has a sedimentation coefficient of 4.41 S and contains a relatively large number of acidic amino acids. A study of the distribution of β-glucosidase activity in various regions of the dissected rat kidney indicates that the enzyme is probably contained in cells of the proximal convulated tubule. The enzyme is also present in relatively large ammounts in the villus cells, but not crypt cells, of the intestine. the physiological subtrates and function of the enzyme are unknown.  相似文献   

15.
Terminal sialic acid in the lipopolysaccharides (LPSs) of mucosal pathogens is an important virulence factor. Here we report the characterization of a Helicobacter sialyltransferase involved in the biosynthesis of sialylated LPS in Helicobacter bizzozeronii, the only non-pylori gastric Helicobacter species isolated from humans thus far. Starting from the genome sequences of canine and human strains, we identified potential sialyltransferases downstream of three genes involved in the biosynthesis of N-acetylneuraminic acid. One of these candidates showed monofunctional α,2,3-sialyltransferase activity with a preference for N-acetyllactosamine as a substrate. The LPSs from different strains were shown by SDS-PAGE and high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) to contain sialic acid after neuraminidase treatment. The expression of this sialyltransferase and sialyl-LPS appeared to be a phase-variable characteristic common to both human and canine H. bizzozeronii strains. The sialylation site of the LPSs of two H. bizzozeronii strains was determined to be NeuAc-Hex-HexNAc, suggesting terminal 3'-sialyl-LacNAc. Moreover, serological typing revealed the possible presence of sialyl-Lewis X in two additional strains, indicating that H. bizzozeronii could also mimic the surface glycans of mammalian cells. The expression of sialyl-glycans may influence the adaptation process of H. bizzozeronii during the host jump from dogs to humans.  相似文献   

16.
β-Catenin is an evolutionarily conserved molecule that functions as a crucial effector in both cell-to-cell adhesion and Wnt signaling. To gain a better understanding of its role in the development of hair follicles, we cloned the cDNA sequence of the β-catenin gene from the skin of Aohan fine-wool sheep and performed a variety of bioinformatics analyses. We obtained the full-length sequence, which was 4573-bp long and contained a 2346-bp open reading frame encoding a protein of 781 amino acids. The protein had a predicted molecular weight of 85.4 kDa and a theoretical isoelectric point of 5.57. Domain architecture analysis of the β-catenin protein revealed an armadillo repeat region, which is a common feature of β-catenin in other species. The ovine β-catenin gene shares 97.91%, 94.25%, 94.59%, 83.89%, and 89.39% sequence identity with its homologs in Bos taurus, Homo sapiens, Sus scrofa, Gallus gallus, and Mus musculus, respectively, while the amino acid sequence is more than 99% identical with each of these species. The expression of β-catenin mRNA was detected in the heart, liver, spleen, lung, kidney, skin, muscle, and adipose tissue. Expression levels were maximal in the lung and minimal in the muscle, and the difference in expression in these tissues was significant (P < 0.01). Western blot analysis revealed the presence of the β-catenin protein in all tissues examined; expression was lowest in the skin and adipose tissues.  相似文献   

17.
18.
Summary -Xylosidase was obtained from Aureobasidium pullulans CBS 58475 with an activity of 0.35 units/ml culture filtrate. The production of the enzyme was strongly inducible. -Xylosidase was purified in two steps by anion exchange and gel-permeation chromatography to high purity. The enzyme is a glycoprotein with an apparent molecular mass of 224 kDa in sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and separates into two subunits of equal molecular mass. After SDS-PAGE -xylosidase could be renatured and stained with methylumbelliferyl--xylopyranoside. The enzyme was able to split substrates of other glycosidases. The maximum activity was reached at pH 4.5 and 80° C. -Xylosidase showed high stability over a broad pH range from pH 2.0 to 9.5 and up to 70° C. Analysis of cleavage patterns revealed that the enzyme was a typical glycosidase. Larger oligosaccharides consisting of xylose were degraded by an exomechanism together with a transxylosylation reaction.  相似文献   

19.
UDP-GalNAc:polypeptide GalNAc transferase (ppGalNAcT; EC 2.4.1.41) catalyzes the first step in mucin-type O-glycosylation. To date, several members of this large enzyme family have been analyzed in detail. In this study we present cloning, expression and characterization of the first representative of this type of glycosyltransferase from mollusk origin, namely from Biomphalaria glabrata. The full length sequence of the respective gene was obtained by screening of a cDNA library using homology-based PCR. The entire gene codes for a protein consisting of 600 amino acids comprising the features of a typical type II membrane protein containing a cytoplasmic tail at the N-terminus, a transmembrane and a catalytic domain as well as a ricin-like motif at the C-terminus. Sequence comparison with ppGalNAcTs from various species revealed high similarities in terms of structural architecture. The enzyme is O-glycosylated but does not have any putative N-glycosylation sites. All four tested acceptor peptides were functional substrates, with Muc2 being the best one. Further biochemical parameters tested, confirmed a close relationship to the family of yet known ppGalNAcTs.  相似文献   

20.
The major β-1,3-glucanase from Tenebrio molitor (TLam) was purified to homogeneity (yield, 6%; enrichment, 113 fold; specific activity, 4.4 U/mg). TLam has a molecular weight of 50 kDa and a pH optimum of 6. It is an endoglucanase that hydrolyzes β-1,3-glucans as laminarin and yeast β-1,3-1,6-glucan, but is inactive toward other polysaccharides (as unbranched β-1,3-glucans or mixed β-1,3-1,4-glucan from cereals) or disaccharides. The enzyme is not inhibited by high substrate concentrations and has low processivity (0.6). TLam has two ionizable groups involved in catalysis, and His, Tyr and Arg residues plus a divalent ion at the active site. A Cys residue important for TLam activity is exposed after laminarin binding. The cDNA coding for this enzyme was cloned and sequenced. It belongs to glycoside hydrolase family 16, and is related to other insect glucanases and glucan-binding proteins. Sequence analysis and homology modeling allowed the identification of some residues (E174, E179, H204, Y304, R127 and R181) at the active site of the enzyme, which may be important for TLam activity. TLam efficiently lyses fungal cells, suggesting a role in making available walls and cell contents to digestion and in protecting the midgut from pathogen infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号