首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Seven African swine fever virus structural proteins were localized in the virion by immunoelectron microscopy. African swine fever virus-infected cells were incubated, before or after embedding and thin sectioning, with monoclonal antibodies specific for different structural proteins, and after labeling with protein A-gold complexes, the samples were examined in the electron microscope. Proteins p14 and p24 were found in the external region of the virion, proteins p12, p72, p17, and p37 were found in the intermediate layers, and protein p150 was found in the nucleoid and in one vertex. A monoclonal antibody that recognized protein p150 as well as p220, a virus-induced, nonstructural protein, could also bind to a component present in the nucleus of both uninfected and virus-infected cells.  相似文献   

2.
An analysis of the binding properties of a collection of monoclonal antibodies to African swine fever virus particles showed that virus field isolates passaged in porcine macrophages changed antigenically more than a strain of a cell-adapted virus passaged in Vero cells. From seven clones isolated from the spleen of a field-infected pig, we found four clones that had the same antigenic properties, one clone that had large changes in proteins p150 and p27 and small changes in proteins p37 and p14, and two clones that had minor changes in proteins p150 and p27, respectively. An analysis of the binding properties of the monoclonal antibodies to 23 field isolates from Africa, Europe, and America showed that the African isolates differed among themselves more than the European and the American isolates; in this study we found changes in 8 of the 10 virus proteins tested. The most variable proteins in the African isolates were p150, p27, p14, and p12. In contrast to the African isolates, protein p12 from the non-African viruses did not change. The clustering of the field virus isolates in six antigenic homology groups indicated the existence of a complex variety of African swine fever virus serotypes.  相似文献   

3.
African swine fever virus attachment protein.   总被引:9,自引:8,他引:1       下载免费PDF全文
Treatment of African swine fever virus particles with nonionic detergents released proteins p35, p17, p14, and p12 from the virion. Of these proteins, only p12 bound to virus-sensitive Vero cells but not to virus-resistant L or IBRS2 cells. The binding of p12 was abolished by whole African swine fever virus and not by similar concentrations of subviral particles that lacked the external proteins. A monoclonal antibody (24BB7) specific for p12 precipitated a protein that, when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the absence of 2-mercaptoethanol, showed a molecular mass of 17 kDa (p17*) instead of 12 kDa as found in the presence of 2-mercaptoethanol. The relationship between these two proteins was confirmed by the conversion of p17* to p12 when the former was isolated from polyacrylamide gels in the absence of 2-mercaptoethanol and subsequently treated with the reducing agent. The supernatant obtained after immunoprecipitation with the p12-specific antibody lacked the virus-binding protein.  相似文献   

4.
African swine fever virus (ASFV) polyprotein pp220, encoded by the CP2475L gene, is an N-myristoylated precursor polypeptide that, after proteolytic processing, gives rise to the major structural proteins p150, p37, p34, and p14. These proteins localize at the core shell, a matrix-like virus domain placed between the DNA-containing nucleoid and the inner envelope. In this study, we have examined the role of polyprotein pp220 in virus morphogenesis by means of an ASFV recombinant, v220i, containing an inducible copy of the CP2475L gene regulated by the Escherichia coli repressor-operator system. Under conditions that repress pp220 expression, the virus yield of v220i was about 2.6 log units lower than that of the parental virus or of the recombinant grown under permissive conditions. Electron microscopy revealed that pp220 repression leads to the assembly of icosahedral particles virtually devoid of the core structure. Analysis of recombinant v220i by immunoelectron microscopy, immunoblotting, and DNA hybridization showed that mutant particles essentially lack, besides the pp220-derived products, a number of major core proteins as well as the viral DNA. On the other hand, transient expression of the CP2475L gene in COS cells showed that polyprotein pp220 assembles into electron-dense membrane-bound coats, whereas a mutant nonmyristoylated version of pp220 does not associate with cellular membranes but forms large cytoplasmic aggregates. Together, these findings indicate that polyprotein pp220 is essential for the core assembly and suggest that its myristoyl moiety may function as a membrane-anchoring signal to bind the developing core shell to the inner viral envelope.  相似文献   

5.
C Simn-Mateo  G Andrs    E Viuela 《The EMBO journal》1993,12(7):2977-2987
This report shows that African swine fever virus (ASFV)--a large DNA-containing virus--synthesizes a polyprotein to produce several of its structural proteins. By immunoprecipitation analysis, we have found that ASFV polyprotein is a 220 kDa myristoylated polypeptide (pp220) which, after proteolytic processing, gives rise to four major structural proteins: p150, p37, p34 and p14. Processing of the ASFV polyprotein takes place at the consensus sequence Gly-Gly-X and occurs through an ordered cascade of proteolytic cleavages. So far, polyprotein processing as a mechanism of gene expression had been found only in positive-strand RNA viruses and retroviruses. According to the results presented here, ASFV is the first example of a DNA virus that synthesizes a polyprotein as a strategy of gene expression.  相似文献   

6.
A Angulo  E Viuela    A Alcamí 《Journal of virology》1993,67(9):5463-5471
The African swine fever virus protein p12, involved in virus attachment to the host cell, has an apparent molecular mass of 17 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. We have also identified 12- and 10-kDa forms of the p12 protein in infected Vero cells and found that the mature 17-kDa protein is the only form present in virus particles. The p12 protein has been produced in large amounts in Spodoptera frugiperda insect cells infected with a recombinant baculovirus. A 17-kDa protein that possessed the biological properties of the viral protein was produced, since it bound to susceptible Vero cells and not to receptor-negative L cells, which do not support virus replication. The binding of the baculovirus-expressed protein p12 to Vero cells was specifically blocked by virus particles. In addition, the recombinant protein purified by immunoaffinity chromatography blocked the specific binding of virus particles to susceptible cells and prevented infection, demonstrating that the p12 protein mediates the attachment of virions to specific receptors and indicating that blocking the p12-mediated interaction between African swine fever virus and receptors in Vero cells can inhibit infection. However, although antibodies specific for protein p12 are induced in natural infections and in animals inoculated with inactivated virus or recombinant protein p12, these antisera did not inhibit virus binding to the host cell or neutralize virus infectivity.  相似文献   

7.
Three African swine fever virus structural proteins of relative molecular weights 150,000, 37,000, and 34,000 (p150, p37, and p34) are derived from precursors with relative molecular weights 220,000, 60,000, and 39,000 (pp220, pp60, and pp39) by proteolytic cleavage after the second Gly residue in the sequence Gly-Gly-Ala/Gly. A search of the National Biomedical Research Foundation Data Bank revealed that several adenovirus proteins, ubiquitin, and an interferon-induced 15-kDa protein are also derived from precursors that are cleaved at the sequence Gly-Gly-X, where X is often an amino acid residue with a hydrophobic side chain. The sequence Gly-Gly-X together with other physical properties of the protein seems to be a recognition sequence for the processing of a variety of viral and cellular proteins.  相似文献   

8.
Complete nucleotide sequence of African swine fever (ASF) virus genome was determined in 1993-1999. Deletion mutants with low virulence for pigs were obtained. Genes of structural (p72, p54, p12, cleavage products pp220 and pp60, hemagglutinin) and nonstructural (p32) proteins were mapped. The significance of different proteins in virus adsorption and resistance to challenge was elucidated, their location in infected cell and virion was determined. Lipid composition of the virus was studied. A protocol of virion morphogenesis was suggested, which explains their morphology. Apoptosis, consumption coagulopathy, and development of delayed type hypersensitivity are regarded as the main pathogenetic mechanisms. Antigens acting as targets and inductors of immune cytological reactions and antibodies mediating suppression of virus reproduction were determined.  相似文献   

9.
Phosphorylation of African swine fever virus proteins in vitro and in vivo   总被引:3,自引:0,他引:3  
M L Salas  J Salas  E Vi?uela 《Biochimie》1988,70(5):627-635
  相似文献   

10.
The African swine fever (ASF) virus polyprotein pp220 is processed at Gly-Gly-X sites by a virally encoded SUMO-like protease to produce matrix proteins p150, p37, p34, and p14. Four Gly-Gly-X sites are used to produce the matrix proteins, but the polyprotein contains an additional 15 sites potentially recognized by the protease. This study shows that cleavage occurs at many, if not all, Gly-Gly-X sites, and at steady state, p150 and p34 are minor products of processing. Significantly, only the final structural proteins, p150 and p34, were found in mature virions, suggesting that there is a mechanism for excluding incorrectly processed forms. ASF virus is assembled on the cytoplasmic face of the endoplasmic reticulum, and the distribution of pp220 products between membranes and cytosol was studied. Incorrectly processed forms of p34 were recovered from both the cytosol and membrane fractions. Interestingly, p34 was only detected in the membrane fraction, and of the many processed forms bound to membranes, only p34 was protected from trypsin, suggesting envelopment. The majority of the incorrectly processed forms of p150 were recovered from the cytosol. Again, the correct product of processing, p150, was selectively recruited to membranes. Sucrose density centrifugation showed that membrane-associated forms of p34 and p150 assembled into large structures suggestive of a viral matrix, while cytosolic and/or incorrectly processed forms of pp220 did not. Taken together, these results suggest that association with cellular membranes is important for regulating the correct processing of pp220 and the packaging of matrix proteins into virions.  相似文献   

11.
African swine fever virus induces in convalescent pigs antibodies that neutralized the virus before and after binding to susceptible cells, inhibiting both virus attachment and internalization. A further analysis of the neutralization mechanisms mediated by the different viral proteins showed that antibodies to proteins p72 and p54 are involved in the inhibition of a first step of the replication cycle related to virus attachment, while antibodies to protein p30 are implicated in the inhibition of virus internalization.  相似文献   

12.
Assembly of African swine fever virus: role of polyprotein pp220.   总被引:7,自引:5,他引:2       下载免费PDF全文
Polyprotein processing is a common strategy of gene expression in many positive-strand RNA viruses and retroviruses but not in DNA viruses. African swine fever virus (ASFV) is an exception because it encodes a polyprotein, named pp220, to produce several major components of the virus particle, proteins p150, p37, p34, and p14. In this study, we analyzed the assembly pathway of ASFV and the contribution of the polyprotein products to the virus structure. Electron microscopic studies revealed that virions assemble from membranous structures present in the viral factories. Viral membranes became polyhedral immature virions after capsid formation on their convex surface. Beneath the lipid envelope, two distinct domains appeared to assemble consecutively: first a thick protein layer that we refer to as core shell and then an electron-dense nucleoid, which was identified as the DNA-containing domain. Immunofluorescence studies showed that polyprotein pp220 is localized in the viral factories. At the electron microscopic level, antibodies to pp220 labeled all identifiable forms of the virus from the precursor viral membranes onward, thus indicating an early role of the polyprotein pp220 in ASFV assembly. The subviral localization of the polyprotein products, examined on purified virions, was found to be the core shell. In addition, quantitative studies showed that the polyprotein products are present in equimolar amounts in the virus particle and account for about one-fourth of its total protein content. Taken together, these results suggest that polyprotein pp220 may function as an internal protein scaffold which would mediate the interaction between the nucleoid and the outer layers similarly to the matrix proteins of other viruses.  相似文献   

13.
We have identified an open reading frame (ORF), CP530R, within the EcoRI C' fragment of the African swine fever virus (ASFV) genome that encodes a polyprotein of 62 kDa (pp62). Antisera raised against different regions of ORF CP530R recognized a polypeptide of 62 kDa in ASFV-infected cells during the late phase of virus replication, after the onset of viral DNA synthesis. Pulse-chase experiments showed that polyprotein pp62 is posttranslationally processed to give rise to two proteins of 35 kDa (p35) and 15 kDa (p15). This proteolytic processing was found to take place at the consensus sequence Gly-Gly-X through an ordered cascade of proteolytic cleavages like that which also occurs with ASFV polyprotein pp220 (C. Simón-Mateo, G. Andrés, and E. Viñuela, EMBO J. 12:2977-2987, 1993). Immunofluorescence studies showed that polyprotein pp62 is localized in the viral factories. In addition, immunoprecipitation analysis of purified virus particles showed that mature products p35 and p15 are major structural proteins. According to these results, polyprotein processing represents an essential strategy for the maturation of ASFV structural proteins.  相似文献   

14.
由非洲猪瘟病毒(ASFV)引起的非洲猪瘟(ASF)给我国养猪业带来了不可估量的经济损失,严重阻碍了我国养猪业的发展,研发ASFV快速诊断试剂是目前最重要的内容之一。CP204L基因编码ASFV结构蛋白p30。本研究以克隆ASFV的CP204L基因为基础,通过基因重组技术,加入His标签,将构建的重组质粒命名为pET-28a-CP204L。将重组质粒转化至大肠杆菌BL21(DE3)感受态细胞,37℃经1mmol/L异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达6h,表达蛋白进行SDS-PAGE鉴定和Western Blot检测。重组蛋白纯化后免疫小鼠制备筛选单克隆抗体,Western Blot和IFA验证单抗的结合特异性。结果表明,重组的pET-28a-CP204L诱导后表达蛋白为30kD,以不可溶性包涵体形式存在;表达蛋白利用His标签进行纯化,获得纯化蛋白2mg,单克隆抗体筛选获得5株IgG亚型的ASFV p30蛋白的单抗,且均具有良好的结合活性。本研究为发展ASFV检测方法提供了基础。  相似文献   

15.
猪瘟病毒在PK细胞和MPK细胞中繁殖过程的研究   总被引:15,自引:2,他引:13  
以猪瘟病毒疫苗Thiverval株(T株)为实验材料,研究该病毒株在PK15细胞中增殖的基本特性与规律。在PK15细胞中,猪瘟病毒T株在感染后12h即可检测到子代病毒粒子。接毒后48h,几乎所有的细胞都被病毒感染;到60h,释放到培养液中有活性的病毒粒子达到最高峰,为107TCID50/mL。培养液中的病毒粒子在37℃半寿期只有3个小时。同时,建立了MPK细胞CSFVT株的感染模式,其CSFV的滴度可达108TCID50/mL。在此基础上,用抗CSFV包膜蛋白E2和非结构蛋白p120的单克隆抗体显示了病毒在细胞中增殖的部位,进而应用电镜技术观察到成熟的病毒粒子及可能处在不同发育阶段的子代病毒粒子  相似文献   

16.
An examination by electron microscopy of the viral assembly sites in Vero cells infected with African swine fever virus showed the presence of large clusters of mitochondria located in their proximity. These clusters surround viral factories that contain assembling particles but not factories where only precursor membranes are seen. Immunofluorescence microscopy revealed that these accumulations of mitochondria are originated by a massive migration of the organelle to the virus assembly sites. Virus infection also promoted the induction of the mitochondrial stress-responsive proteins p74 and cpn 60 together with a dramatic shift in the ultrastructural morphology of the mitochondria toward that characteristic of actively respiring organelles. The clustering of mitochondria around the viral factory was blocked in the presence of the microtubule-disassembling drug nocodazole, indicating that these filaments are implicated in the transport of the mitochondria to the virus assembly sites. The results presented are consistent with a role for the mitochondria in supplying the energy that the virus morphogenetic processes may require and make of the African swine fever virus-infected cell a paradigm to investigate the mechanisms involved in the sorting of mitochondria within the cell.  相似文献   

17.
African swine fever virus (ASFV) encodes two polyprotein precursors named pp220 and pp62 that are sequentially processed during viral infection, giving rise to six major structural proteins. These reside at the core shell, a matrix domain located between the endoplasmic reticulum-derived inner envelope and the DNA-containing nucleoid. Proteolytic processing of the polyprotein precursors is catalyzed by the viral proteinase pS273R, a cysteine proteinase that shares sequence similarity with the SUMO1-processing peptidases. We describe here the construction and characterization of an ASFV recombinant, vS273Ri, that inducibly expresses the ASFV proteinase. Using vS273Ri, we show that repression of proteinase expression inhibits polyprotein processing and strongly impairs infective virus production. Electron microscopic examination of vS273Ri-infected cells showed that inhibition of proteolytic processing leads to the assembly of defective icosahedral particles containing a noncentered electron-dense nucleoid surrounded by an abnormal core shell of irregular thickness. The analysis of purified extracellular defective particles revealed that they contain the unprocessed pp220 and pp62 precursors, as well as the major DNA-binding nucleoid proteins p10 and pA104R. Altogether, these results indicate that the proteolytic processing of the polyproteins is not required for their incorporation into the assembling particles nor for the incorporation of the DNA-containing nucleoid. Instead, the ASFV proteinase is involved in a late maturational step that is essential for proper core assembly and infectivity.  相似文献   

18.
A Vero cell line persistently infected with African swine fever virus was established by infecting the cells in the presence of 10 mM NH4Cl (Vero-P cell line). The virus derived from the Vero-P cultures infected Vero cells, and virus titers were comparable to those obtained in Vero cells acutely infected with African swine fever virus. The structural proteins of the virus from Vero-P cells were similar to those of the virus produced in lytic infections. Virus production was low when the Vero-P cells were growing logarithmically and increased considerably in confluent cultures when lysis appeared in a fraction of the cell population.  相似文献   

19.
C Cobbold  J T Whittle    T Wileman 《Journal of virology》1996,70(12):8382-8390
African swine fever (ASF) virus is a large enveloped DNA virus assembled in the cytoplasm of cells. In this study, the membrane compartments involved in the envelopment of ASF virus were investigated. A monoclonal antibody recognizing p73, the major structural protein of ASF virus, was generated to analyze the binding of p73 to membranes during the assembly of the virus. Approximately 50% of the intracellular pool of p73 associated with membranes as a peripheral membrane protein. Binding was rapid and complete within 15 min of synthesis. Subcellular membrane fractionation showed that newly synthesized p73 molecules cosedimented with endoplasmic reticulum (ER) membranes and remained associated with the ER during a 2-h chase. A similar distribution on gradients was recorded for p17, a structural membrane protein of ASF virus. The results suggested that the ER was involved in the assembly of ASF virus. A protease protection assay demonstrated a time-dependent envelopment of the membrane bound, but not cytosolic, pool of p73. Envelopment of p73 took place 1 h after binding to membranes and was completed 1 h before the first detection of p73 in virions secreted from cells. Envelopment was unaffected by brefeldin A and monensin, drugs that block membrane transport between the ER and Golgi. Taken together the results provide evidence for the binding of ASF virus structural proteins to a specific membrane compartment and implicate a role for the ER in the assembly and envelopment of ASF virus.  相似文献   

20.
Nucleocytoplasmic shuttling activity of the African swine fever virus p37 protein, a major structural protein of this highly complex virus, has been recently reported. The systematic characterization of the nuclear export ability of this protein constituted the major purpose of the present study. We report that both the N- and C-terminal regions of p37 protein are actively exported from the nucleus to the cytoplasm of yeast and mammalian cells. Moreover, experiments using leptomycin B and small interfering RNAs targeting the CRM1 receptor have demonstrated that the export of p37 protein is mediated by both the CRM1-dependent and CRM1-independent nuclear export pathways. Two signals responsible for the CRM1-mediated nuclear export of p37 protein were identified at the N terminus of the protein, and an additional signal was identified at the C-terminal region, which mediates the CRM1-independent nuclear export. Interestingly, site-directed mutagenesis revealed that hydrophobic amino acids are critical to the function of these three nuclear export signals. Overall, our results demonstrate that two distinct pathways contribute to the strong nuclear export of full-length p37 protein, which is mediated by three independent nuclear export signals. The existence of overlapping nuclear export mechanisms, together with our observation that p37 protein is localized in the nucleus at early stages of infection and exclusively in the cytoplasm at later stages, suggests that the nuclear transport ability of this protein may be critical to the African swine fever virus replication cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号