首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that the beta-1,4-endoglucanase (EGase) belonging to glycoside hydrolase family 45 cloned from the mulberry longicorn beetle, Apriona germari (Ag-EGase I), is composed of 237 amino acid residues and has a potential N-glycosylation site at 97-100 amino acid residues (NSTF). We here describe the N-glycosylation and its role for enzymatic activity of the Ag-EGase I. The N-glycosylation of Ag-EGase I was revealed by the treatment of tunicamycin to the recombinant virus-infected insect Sf9 cells and by endoglycosidase F to the purified recombinant Ag-EGase I, demonstrating that the carbohydrate moieties are not necessary for secretion but essential for Ag-EGase I enzyme activity. To further elucidate the functional role of the N-glycosylation in Ag-EGase I, we have assayed the cellulase enzyme activity in Thr99Gln mutant. Lack of N-glycosylation in Ag-EGase I showed no substantial enzyme activity. This result demonstrates that N-glycosylation at site 97-100 amino acid residues (NSTF) is essential for enzyme activity.  相似文献   

2.
We have previously cloned a cellulase [β-1,4-endoglucanase (EGase), EC 3.2.1.4] cDNA (Ag-EGase I) belonging to glycoside hydrolase family (GHF) 45 from the mulberry longicorn beetle, Apriona germari. We report here the gene structure, expression and enzyme activity of an additional celluase (Ag-EGase II) from A. germari and also described the gene structure of Ag-EGase I. The Ag-EGase II gene spans 1033 bp and consisted of two introns and three exons coding for 239 amino acid residues. The 2713-bp-long genomic DNA of Ag-EGase I also consisted of two introns and three exons. The Ag-EGase II showed 61% protein sequence identity to Ag-EGase I and 51% to another beetle, Phaedon cochleariae, cellulase, belonging to GHF 45. The catalytic sites of GHF 45 are conserved in Ag-EGase II. The Ag-EGase II has 14 conserved cysteine residues and three putative N-glycosylation sites. Northern blot analysis confirmed midgut-specific expression of Ag-EGase II, suggesting that the midgut is the prime site for cellulase synthesis in A. germari larvae. The cDNA encoding Ag-EGase II was expressed as a 36-kDa polypeptide in baculovirus-infected insect Sf9 cells and the enzyme activity of the purified recombinant Ag-EGase II was approximately 812 U/mg of recombinant Ag-EGase II. The enzymatic properties of the purified recombinant Ag-EGase II showed the highest activity at 50 °C and pH 6.0, and were stable at 60 °C at least for 10 min.  相似文献   

3.
In this study, we report a novel cellulase [β-1,4-endoglucanase (EGase), EC 3.2.1.4] cDNA (Bh-EGase II) belonging to the glycoside hydrolase family (GHF) 45 from the beetle Batocera horsfieldi. The Bh-EGase II gene spans 720 bp and consists of a single exon coding for 239 amino acid residues. Bh-EGase II showed 93.72% protein sequence identity to Ag-EGase II from the beetle Apriona germari. The GHF 45 catalytic site is conserved in Bh-EGase II. Bh-EGase II has three putative N-glycosylation sites at 56–58 (N–K–S), 99–101 (N–S–T), and 237–239 (N–Y–S), respectively. The cDNA encoding Bh-EGase II was expressed in baculovirus-infected insect BmN cells and Bombyx mori larvae. Recombinant Bh-EGase II from BmN cells and larval hemolymph had an enzymatic activity of approximately 928 U/mg. The enzymatic catalysis of recombinant Bh-EGase II showed the highest activity at 50 °C and pH 6.0.  相似文献   

4.
5.
A novel endogenous beta-1,4-endoglucanase (Ag-EGase III) gene belonging to the glycoside hydrolase family (GHF) 5 was cloned from the mulberry longicorn beetle, Apriona germari. The Ag-EGase III gene spans 1061 bp and consists of a single exon coding for 325 amino acid residues. The Ag-EGase III showed 89% protein sequence identity to another beetle, Psacothea hilaris, cellulase belonging to GHF 5. The Ag-EGase III has the potential proton donor and nucleophile amino acids conserved in GHF 5 and two putative N-glycosylation sites. Northern blot and Western blot analyses showed that Ag-EGases were expressed in the gut; Ag-EGase III and Ag-EGase I were expressed in three gut regions, and no Ag-EGase II was found in hindgut, indicating that the foregut and midgut are the prime sites for cellulase synthesis in A. germari larvae. The cDNA encoding Ag-EGase III was expressed as a 47-kDa polypeptide in baculovirus-infected insect Sf9 cells and the enzyme activity of the purified recombinant Ag-EGase III was approximately 1037 U per mg of recombinant Ag-EGase III. The enzymatic property of the purified recombinant Ag-EGase III showed the highest activity at 55 degrees C and pH 6.0, and was stable at 60 degrees C at least for 10 min. In addition, the N-glycosylation of Ag-EGase III was revealed by treatment with tunicamycin of recombinant virus-infected insect Sf9 cells and with endoglycosidase F of purified recombinant Ag-EGase III, demonstrating that the carbohydrate moieties are not necessary for enzyme activity.  相似文献   

6.
Glycoprotein gIV, a structural component of bovine herpesvirus type 1, stimulates high titers of virus-neutralizing antibody. The protein contains three potential sites for the addition of N-linked carbohydrates. Three mutants were constructed by oligonucleotide-directed mutagenesis, in each case changing one N-linked glycosylation site from Asn-X-Thr/Ser to Ser-X-Thr/Ser. A fourth mutant was altered at two sites. The altered forms of the gIV gene were cloned into a vaccinia virus transfer vector to generate recombinant vaccinia viruses expressing mutant proteins. Analysis of these mutants revealed that only two (residues 41 and 102) of the three (residues 41, 102, and 411) potential sites for the addition of N-linked glycans are actually utilized. Absence of glycans at residue 41 (gN1) showed no significant effect on the conformation of the protein or induction of a serum neutralizing antibody response. However, mutant proteins lacking glycans at residue 102 (gN2) or residues 41 and 102 (gN1N2) showed altered reactivity with conformation-dependent gIV-specific monoclonal antibodies. These mutants also induced significantly lower serum neutralizing antibody responses than wild-type gIV. Nonetheless, each of the mutant proteins were modified by the addition of O-glycans and transported to the cell surface. Our results demonstrate that absence of N-linked glycans at one (residue 102) or both (residues 41 and 102) utilized N-linked glycosylation sites alters the conformation but does not prevent processing and transport of gIV to the cell surface.  相似文献   

7.
Carbohydrates comprise about 50% of the mass of gp120, the external envelope glycoprotein of simian immunodeficiency virus (SIV) and human immunodeficiency virus. We identified 11 replication-competent derivatives of SIVmac239 lacking two, three, four, or five potential sites for N-linked glycosylation. These sites were located within and around variable regions 1 and 2 of the surface envelope protein of the virus. Asn (AAT) of the canonical N-linked glycosylation recognition sequence (Asn X Ser/Thr) was changed in each case to the structurally similar Gln (CAG or CAA) such that two nucleotide changes in the codon would be required for reversion. Replication of one triple mutant (g456), however, was severely impaired. A revertant of the g456 mutant was recovered from CEMx174 cells with a Met-to-Val compensatory substitution at position 144, 2 amino acids upstream of attachment site 5. Thus, a debilitating loss of sites for N-linked glycosylation can be compensated for by amino acid changes not involving the Asn-X-Ser/Thr consensus motif. These results provide a framework to begin testing the hypothesis that carbohydrates form a barrier that can limit the humoral immune responses to the virus.  相似文献   

8.
The transforming growth factor-beta 1 (TGF beta 1) and -beta 2 (414) precursors both contain three predicted sites of N-linked glycosylation within their pro regions. These are located at amino acid residues 72, 140, and 241 for the TGF beta 2 (414) precursor and at residues 82, 136, and 176 for the TGF beta 1 precursor; both proteins contain mannose-6-phosphate (M-6-P) residues. The major sites of M-6-P addition are at Asn (82) and Asn (136), the first two sites of glycosylation, for the TGF beta 1 precursor. We now show that the major site of M-6-P addition within the TGF beta 2 (414) precursor is at Asn241, the third glycosylation site. To determine the importance of N-linked glycosylation to the secretion of TGF beta 1 and -beta 2, site-directed mutagenesis was used to change the Asn residues to Ser residues; the resulting DNAs were transfected into COS cells, and their supernatants were assayed for TGF beta activity. Substitution of Asn (241) of the TGF beta 2 (414) precursor resulted in an 82% decrease in secreted TGF beta 2 bioactivity. Mutation at Asn72 resulted in a 44% decrease, while mutation at Asn140 was without effect. Elimination of all three glycosylation sites resulted in undetectable levels of TGF beta 2. These results were compared with similar mutations made in the cDNA encoding the TGF beta 1 precursor. Mutagenesis of the two M-6-P-containing sites (Asn82 and Asn136) resulted in an 83% decrease in secreted TGF beta 1; replacement of Asn82 and Asn136 with Ser individually resulted in 85% and 42% decreases in activity, respectively. Substitution of Asn176 with Ser was without effect, while substitution of all three sites of glycosylation resulted in undetectable levels of TGF beta 1 activity, similar to the results obtained with TGF beta 2. The nine Cys residues within the mature region of TGF beta 1 were mutated to serine, and their effects on TGF beta 1 secretion were evaluated. Mutation of most Cys residues resulted in undetectable levels of TGF beta 1 protein or activity in conditioned medium. Mutation of Cys (355) led to the secretion of inactive TGF beta 1 monomers, suggesting that this residue is either directly involved in dimer formation or required for correct interchain disulfide bond formation.  相似文献   

9.
DARPP-32 (dopamine- and cAMP-regulated phosphorprotein, Mr = 32,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) is an inhibitor of protein phosphatase-1 and is enriched in dopaminoceptive neurons possessing the D1 dopamine receptor. Purified bovine DARPP-32 was phosphorylated in vitro by casein kinase II to a stoichiometry greater than 2 mol of phosphate/mol of protein whereas two structurally and functionally related proteins, protein phosphatase inhibitor-1 and G-substrate, were poor substrates for this enzyme. Sequencing of chymotryptic and thermolytic phosphopeptides from bovine DARPP-32 phosphorylated by casein kinase II suggested that the main phosphorylated residues were Ser45 and Ser102. In the case of rat DARPP-32, the identification of these phosphorylation sites was confirmed by manual Edman degradation. The phosphorylated residues are located NH2-terminal to acidic amino acid residues, a characteristic of casein kinase II phosphorylation sites. Casein kinase II phosphorylated DARPP-32 with an apparent Km value of 3.4 microM and a kcat value of 0.32 s-1. The kcat value for phosphorylation of Ser102 was 5-6 times greater than that for Ser45. Studies employing synthetic peptides encompassing each phosphorylation site confirmed this difference between the kcat values for phosphorylation of the two sites. In slices of rat caudate-putamen prelabeled with [32P]phosphate, DARPP-32 was phosphorylated on seryl residues under basal conditions. Comparison of thermolytic phosphopeptide maps and determination of the phosphorylated residue by manual Edman degradation identified the main phosphorylation site in intact cells as Ser102. In vitro, DARPP-32 phosphorylated by casein kinase II was dephosphorylated by protein phosphatases-1 and -2A. Phosphorylation by casein kinase II did not affect the potency of DARPP-32 as an inhibitor of protein phosphatase-1, which depended only on phosphorylation of Thr34 by cAMP-dependent protein kinase. However, phosphorylation of DARPP-32 by casein kinase II facilitated phosphorylation of Thr34 by cAMP-dependent protein kinase with a 2.2-fold increase in the Vmax and a 1.4-fold increase in the apparent Km. Phosphorylation of DARPP-32 by casein kinase II in intact cells may therefore modulate its phosphorylation in response to increased levels of cAMP.  相似文献   

10.
Site directed mutagenesis of the rat ovarian luteinizing hormone (LH) receptor cDNA was performed at each of the six potential N-linked glycosylation sites to determine the effect of putative carbohydrate chains on the activity of the membrane receptor. The conversion of Asn173 to Gln resulted in the total loss of hormone binding to the surface of the transfected cell. Mutant receptors synthesized with substitutions at the remaining potential N-linked glycosylation positions of 77, 152, 269, 277 and 291 revealed no significant change in the hormone affinity. However Asn77Gln and Asn152Gln exhibited significant decreases (approximately 80%) in the number of high affinity hormone binding sites. The changes in hormone binding activity upon elimination of the potential glycosylation sites at 77, 152 and 173 indicate the presence of functional carbohydrate chains at these positions in the rat ovarian LH/hCG receptor.  相似文献   

11.
Sequence analysis of Candida rugosa lipase 1 (LIP1) predicts the presence of three N-linked glycosylation sites at asparagine 291, 314, 351. To investigate the relevance of sugar chains in the activation and stabilization of LIP1, we directed site mutagenesis to replace the above mentioned asparagine with glutamine residues. Comparison of the activity of mutants with that of the wild-type (wt) lipase indicates that both 314 and 351 Asn to Gln substitutions influence, although at a different extent, the enzyme activity both in hydrolysis and esterification reactions, but they do not alter the enzyme water activity profiles in organic solvents or temperature stability. Introduction of Gln to replace Asn351 is likely to disrupt a stabilizing interaction between the sugar chain and residues of the inner side of the lid in the enzyme active conformation. The effect of deglycosylation at position 314 is more difficult to explain and might suggest a more general role of the sugar moiety for the structural stability of lipase 1. Conversely, Asn291Gln substitution does not affect the lipolytic or the esterase activity of the mutant that behaves essentially as the wt enzyme. This observation supports the hypothesis that changes in activity of Asn314Gln and Asn351Gln mutants are specifically due to deglycosylation.  相似文献   

12.
The primary sequence of the esterase 6 (EST6) enzyme ofDrosophila melanogaster contains four potential N-linked glycosylation sites, at residues 21, 399, 435, and 485. Here we determine the extent to which EST6 is glycosylated and how the glycosylation affects the biochemistry and physiology of the enzyme. We have abolished each of the four potential glycosylation sites by replacing the required Asn residues with Gln byin vitro mutagenesis. Five mutant genes were made, four containing mutations of each site individually and the fifth site containing all four mutations. Germline transformation was used to introduce the mutant genes into a strain ofD. melanogaster null for EST6. Electrophoretic and Western blot comparisons of the mutant strains and wild-type controls showed that each of the four potential N-linked glycosylation sites in the wild-type protein is glycosylated. However, the fourth site is not utilized on all EST6 molecules, resulting in two molecular forms of the enzyme. Digestion with specific endoglycosidases showed that the glycan attached at the second site is of the high-mannose type, while the other three sites carry more complex oligosaccharides. The thermostability of the enzyme is not affected by abolition of the first, third, or fourth glycosylation sites but is reduced by abolition of the second site. Anomalously, abolition of all four sites together does not reduce thermostability. Quantitative comparisons of EST6 activities showed that abolition of glycosylation does not affect the secretion of the enzyme into the male sperm ejaculatory duct, its transfer to the female vagina during mating, or its subsequent translocation into her hemolymph. However, the activity of the mutant enzymes does not persist in the female's hemolymph for as long as wild-type esterase 6. The latter effect may compromise the role of the transferred enzyme in stimulating egg-laying and delaying receptivity to remating.  相似文献   

13.
Using PCR mutagenesis to disrupt the NXT/S N-linked glycosylation motif of the Env protein, we created 27 mutants lacking 1 to 5 of 14 N-linked glycosylation sites within regions of gp120 lying outside of variable loops 1 to 4 within simian immunodeficiency virus strain 239 (SIV239). Of 18 mutants missing N-linked glycosylation sites predicted to lie within 10 A of CD4 contact sites, the infectivity of 12 was sufficient to measure sensitivity to neutralization by soluble CD4 (sCD4), pooled immune sera from SIV239-infected rhesus macaques, and monoclonal antibodies known to neutralize certain derivatives of SIV239. Three of these 12 mutants (g3, lacking the 3rd glycan at position 79; g11, lacking the 11th glycan at position 212; and g3,11, lacking both the 3rd and 11th glycans) were approximately five times more sensitive to neutralization by sCD4 than wild-type (WT) SIV239. However, these same mutants were no more sensitive to neutralization than WT by pooled immune sera. The other 9 of 12 replication-competent mutants in this group were no more sensitive to neutralization than the WT by any of the neutralizing reagents. Six of the nine mutants that did not replicate appreciably had three or more glycosylation sites eliminated; the other three replication-deficient strains involved mutation of site 15. Our results suggest that elimination of glycan attachment sites 3 and 11 enhanced the exposure of contact residues for CD4. Thus, glycans at positions 3 and 11 of SIV239 gp120 may be particularly important for shielding the CD4-binding site from antibody recognition.  相似文献   

14.
Bence M  Sahin-Tóth M 《The FEBS journal》2011,278(22):4338-4350
Human chymotrypsin C (CTRC) plays a protective role in the pancreas by mitigating premature trypsinogen activation through degradation. Mutations that abolish activity or secretion of CTRC increase the risk for chronic pancreatitis. The aim of the present study was to determine whether human CTRC undergoes asparagine-linked (N-linked) glycosylation and to examine the role of this modification in CTRC folding and function. We abolished potential sites of N-linked glycosylation (Asn-Xaa-Ser/Thr) in human CTRC by mutating the Asn residues to Ser individually or in combination, expressed the CTRC mutants in HEK 293T cells and determined their glycosylation state using PNGase F and endo H digestion. We found that human CTRC contains a single N-linked glycan on Asn52. Elimination of N-glycosylation by mutation of Asn52 (N52S) reduced CTRC secretion about 10-fold from HEK 293T cells but had no effect on CTRC activity or inhibitor binding. Overexpression of the N52S CTRC mutant elicited endoplasmic reticulum stress in AR42J acinar cells, indicating that N-glycosylation is required for folding of human CTRC. Despite its important role, Asn52 is poorly conserved in other mammalian CTRC orthologs, including the rat which is monoglycosylated on Asn90. Introduction of the Asn90 site in a non-glycosylated human CTRC mutant restored full glycosylation but only partially rescued the secretion defect. We conclude that N-linked glycosylation of human CTRC is required for efficient folding and secretion; however, the N-linked glycan is unimportant for enzyme activity or inhibitor binding. The position of the N-linked glycan is critical for optimal folding, and it may vary among the otherwise highly homologous mammalian CTRC sequences.  相似文献   

15.
TMPRSS13, a member of the type II transmembrane serine protease (TTSP) family, harbors four N-linked glycosylation sites in its extracellular domain. Two of the glycosylated residues are located in the scavenger receptor cysteine-rich (SRCR) protein domain, while the remaining two sites are in the catalytic serine protease (SP) domain. In this study, we examined the role of N-linked glycosylation in the proteolytic activity, autoactivation, and cellular localization of TMPRSS13. Individual and combinatory site-directed mutagenesis of the glycosylated asparagine residues indicated that glycosylation of the SP domain is critical for TMPRSS13 autoactivation and catalytic activity toward one of its protein substrates, the prostasin zymogen. Additionally, SP domain glycosylation-deficient TMPRSS13 displayed impaired trafficking of TMPRSS13 to the cell surface, which correlated with increased retention in the endoplasmic reticulum. Importantly, we showed that N-linked glycosylation was a critical determinant for subsequent phosphorylation of endogenous TMPRSS13. Taken together, we conclude that glycosylation plays an important role in regulating TMPRSS13 activation and activity, phosphorylation, and cell surface localization.  相似文献   

16.
T Watanabe  N Wada  J Y Chou 《Biochemistry》1992,31(12):3051-3058
Human germ cell alkaline phosphatase (GCAP), which shares 98% amino acid sequence identity with the placental AP (PLAP), is expressed by malignant trophoblasts. Protein sequence analysis suggests that the Ser residue at position 92 is the putative active site of GCAP which contains two recognition sequences (Asn122-Thr-Thr124 and Asn249-Arg-Thr251) for asparagine-linked glycosylation. To examine the roles of the Ser residue and glycan moieties on GCAP activity and processing, we altered the GCAP cDNA by site-directed mutagenesis and expressed the GCAP mutants in COS-1 cells. Substitution of Ser-92 with either a Thr (S92T) or an Ala (S92A) residue yielded a GCAP devoid of catalytic activity, suggesting that the Ser codon 92 is the active site of GCAP. Six GCAP mutants that lack one or both glycosylation sites were constructed by substituting either Asn-122 or Asn-249 with an Asp residue or either Thr-124 or Thr-251 with an Ala residue. The mature GCAP migrated as a 65-kDa product, but GCAP mutants lacking one or both glycosylation sites migrated as 62- or 58-kDa polypeptides, respectively, indicating that both sites were glycosylated. All six glycosylated mutants were active enzymatically and, in addition, were equally sensitive to heat, L-leucine, and EDTA inhibition as the parental enzyme. GCAP as well as its two active-site and six glycosylation mutants could be released from the plasma membrane of transfected COS-1 cells by the proteinase bromelain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The type II transmembrane serine protease dipeptidyl peptidase IV (DPPIV), also known as CD26 or adenosine deaminase binding protein, is a major regulator of various physiological processes, including immune, inflammatory, nervous, and endocrine functions. It has been generally accepted that glycosylation of DPPIV and of other transmembrane dipeptidyl peptidases is a prerequisite for enzyme activity and correct protein folding. Crystallographic studies on DPPIV reveal clear N-linked glycosylation of nine Asn residues in DPPIV. However, the importance of each glycosylation site on physiologically relevant reactions such as dipeptide cleavage, dimer formation, and adenosine deaminase (ADA) binding remains obscure. Individual Asn-->Ala point mutants were introduced at the nine glycosylation sites in the extracellular domain of DPPIV (residues 39-766). Crystallographic and biochemical data demonstrate that N-linked glycosylation of DPPIV does not contribute significantly to its peptidase activity. The kinetic parameters of dipeptidyl peptidase cleavage of wild-type DPPIV and the N-glycosylation site mutants were determined by using Ala-Pro-AFC and Gly-Pro-pNA as substrates and varied by <50%. DPPIV is active as a homodimer. Size-exclusion chromatographic analysis showed that the glycosylation site mutants do not affect dimerization. ADA binds to the highly glycosylated beta-propeller domain of DPPIV, but the impact of glycosylation on binding had not previously been determined. Our studies indicate that glycosylation of DPPIV is not required for ADA binding. Taken together, these data indicate that in contrast to the generally accepted view, glycosylation of DPPIV is not a prerequisite for catalysis, dimerization, or ADA binding.  相似文献   

18.
11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD 1) is a microsomal enzyme responsible for the reversible interconversion of active 11beta-hydroxyglucocorticoids into inactive 11-ketosteroids and by this mechanism regulates access of glucocorticoids to the glucocorticoid receptor. The enzyme has also been proven to participate in xenobiotic carbonyl compound detoxification. 11beta-HSD 1 is anchored within the membranes of the endoplasmic reticulum (ER) by its N-terminus, whereby its active site protrudes into the lumen of the ER. In the primary structure of 11beta-HSD 1 three Asn-X-Ser glycosylation motifs have been identified. However, the importance of N-linked glycosylation of 11beta-HSD 1 for catalytic activity has been controversely discussed. To clarify if glycosylation is essential for enzyme activity, we performed deglycosylation experiments of native 11beta-HSD 1 from human liver as well as site-directed mutagenesis to remove potential glycosylation sites upon overexpression in Pichia pastoris. The altered proteins were examined regarding their catalytic activity towards their physiological glucocorticoid substrates. The molecular size of the various 11beta-HSD 1 forms was analyzed by immunoblotting with a polyclonal antibody raised against 11beta-HSD 1 protein from human liver. By stepwise enzymatic deglycosylation of native 11beta-HSD 1 we could demonstrate that all potential glycosylation sites carry N-linked oligosaccharide residues under physiological conditions. Interestingly, complete deglycosylation did not affect enzyme activity, neither in the reductive (cortisone) nor in the oxidative (cortisol) direction. Upon overexpression in the yeast P. pastoris, 11beta-HSD 1 did not undergo glycosylation, but, in spite of this, yielded a fully active enzyme. Our results conclusively demonstrate that 11beta-HSD 1 does not need to be glycosylated to perform its physiological role as glucocorticoid oxidoreductase.  相似文献   

19.
CD38 is a type II transmembrane protein with 25% of its molecular mass consisting of glycosyl moieties. It has long been predicted that the carbohydrate moieties of glycoproteins play important roles in the physical function and structural stability of the proteins on cell surfaces. To determine the structural/functional significance of glycosylation of the human CD38, the four potential N-linked glycosylation sites asparagine residues, N100, N164, N209 and N219 were mutated. The mutant (CD38mu) and wild-type (CD38wt) were expressed separately in Escherichia coli, HeLa, and MCF-7 cells. SDS-polyacrylamide gel electrophoresis under reducing conditions and western blotting indicated that the molecular mass of the CD38wt is 45 kDa, and that of the CD38mu is 34 kDa in HeLa cells. Importantly, the CD38mu protein expressed in HeLa cells, showed the high molecular weight oligomers in addition to the 34 kDa monomeric form. Similarly, in E. coli, the CD38wt formed dimers and other oligomers besides the monomeric form. Moreover, MCF-7 cells stably transfected with CD38wt cDNA, also revealed the presence of cross-linked oligomers when treated with a N-linked glycosylation inhibitor tunicamycin (TM). These results suggested that the N-linked glycosylation of CD38 plays a crucial role in the structure stability by preventing the formation inter-molecular cross-links. In addition, immunostaining, enzyme activity (cyclase), and western blotting data revealed that the glycosylation of human CD38 protein is not required for its localization to the cell membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号