首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenovirus virus-associated (VA) RNAI maintains efficient protein synthesis during the late phase of infection by preventing the activation of the double-stranded-RNA-dependent protein kinase, DAI. A secondary structure model for VA RNAI predicts the existence of two stems joined by a complex stem-loop structure, the central domain. The structural consequences of mutations and compensating mutations introduced into the apical stem lend support to this model. In transient expression assays for VA RNA function, foreign sequences inserted into the apical stem were fully tolerated provided that the stem remained intact. Mutants in which the base of the apical stem was disrupted retained partial activity, but truncation of the apical stem abolished the ability of the RNA to block DAI activation in vitro, suggesting that the length and position of the stem are both important for VA RNA function. These results imply that VA RNAI activity depends on secondary structure at the top of the apical stem as well as in the central domain and are consistent with a two-step mechanism involving DAI interactions with both the apical stem and the central domain.  相似文献   

2.
The double-stranded RNA activated protein kinase DAI contains an RNA binding domain consisting of two copies of a double-stranded RNA binding motif. We have investigated the role of RNA structure in the interaction between DAI and the structured single-stranded RNA, adenovirus VA RNAI, which inhibits DAI activation. Mutations in the apical stem, terminal stem, and central domain of the RNA were tested to assess the contribution of these elements to DAI binding in vitro. The data demonstrate that over half a turn of intact apical stem is required for the interaction and that there is a correlation between the binding of apical stem mutants and their ability to function both in vivo and in vitro. There was also evidence of preference for GC-rich sequence in the proximal region of the apical stem. In the central domain the correlation between binding and function of mutant RNAs was poor, suggesting that at least some of this region plays no direct role in binding to DAI, despite its functional importance. Exceptionally, central domain mutations that encroached on the phylogenetically conserved stem 4 of VA RNA disrupted binding, and complementary mutations in this sequence partially restored binding. Measurement of the binding of wild-type VA RNAI to DAI and p20, a truncated form of the protein containing the RNA binding domains alone, under various ionic conditions imply that the major interactions are electrostatic and occur via the protein's RNA binding domain. However, differences between full-length DAI and p20 in their binding to mutants in the conserved stem suggest that regions outside the RNA binding domain also participate in the binding. The additional interactions are likely to be non-ionic, and may be important for preventing DAI activation during virus infection.  相似文献   

3.
K H Mellits  M Kostura  M B Mathews 《Cell》1990,61(5):843-852
Adenovirus VA RNAL maintains protein synthesis by preventing activation of the double-stranded RNA (dsRNA)-dependent protein kinase DAI. There appears to be a single binding site for dsRNA on DAI, and this site is blocked by VA RNAl. VA RNAl binds to purified DAI and can be cross-linked to the enzyme by UV irradiation. To determine the relationship between DAI binding and VA RNAl structure and function, we examined the binding abilities of wild-type and mutant VA RNAs. In several cases, the ability to bind DAI efficiently in vitro did not correlate with function in vivo. Secondary structure analysis suggested that efficient binding requires an apical stem-loop structure, whereas inhibition of DAI activation requires the central domain of the VA RNA molecule. We propose that the duplex stem permits VA RNA to interact with the dsRNA binding site on DAI and inhibits activation by juxtaposing the central domain of the RNA with the enzyme's active site.  相似文献   

4.
The protein kinase DAI, the double-stranded RNA activated inhibitor of translation (also known as PKR), regulates cell growth, virus infection, and other processes. DAI represents a class of proteins containing a recently recognized RNA binding motif, the dsRBM, but little is known about the contacts between these proteins and their RNA ligands. In adenovirus-infected cells, DAI activation is prevented by VA RNAI, a highly structured RNA that binds to the kinase. VA RNA contains three chief structural features: a terminal stem, an apical stem-loop, and a complex central domain. We used enzymatic and chemical footprinting to identify the interactions between DAI and VA RNAI. DAI protects the proximal part of the apical stem structure, an adjacent region in the central domain, and a region surrounding a conserved stem in the central domain from nuclease attack. During binding the RNA undergoes a conformational change that is mainly restricted to the central domain. A similar change is induced by magnesium ions alone. Footprinting and interference binding assays using base-specific chemical probes suggest that the protein does not make major contacts with RNA bases. On the other hand, footprinting with probes specific for the RNA backbone shows that DAI engages in a strong interaction with the minor groove of the apical stem and a weaker interaction in the central domain. A truncated form of DAI, p20, containing only the RNA binding domain, gives a similar protection pattern in the apical stem but protects the central domain less effectively. We conclude that the RNA binding domain of DAI interacts directly with the apical stem and central domain of VA RNA, and that other regions of the protein contribute to interactions with the central domain.  相似文献   

5.
The small (160 nt) adenovirus RNA, VA RNAI, antagonizes the activation of the cellular protein kinase PKR (also known as DAI), a key regulator of gene expression. VA RNA consists of two stems separated by a complex region, the central domain, that is essential for its function. A notable feature of the central domain is a pair of tetranucleotides, GGGU and ACCC, which are mutually complementary and phylogenetically conserved. To investigate their role in the structure and function of VA RNA, we generated three sets of mutations designed to disrupt the putative stem and to restore it with different nucleotides. Substitutions in either of the tetranucleotides abrogated VA RNA function in two independent PKR-based assays, demonstrating the importance of these sequences in vivo. Compensating mutants restored function, indicating that the two tetranucleotides pair in the cell, but all of the compensating mutants were less active than wild-type VA RNA. The effects of the mutations on RNA structure were probed by nuclease sensitivity analysis. Pronounced changes in two loops in the central domain correlated closely with the formation and disruption of the stem, suggesting that the tetranucleotide stem defines a critical element in the structure of the central domain through tertiary interactions with the two loops. A model for the central domain is presented that accommodates these findings and also accounts for the known sites of PKR interaction.  相似文献   

6.
Functional dissection of adenovirus VAI RNA.   总被引:14,自引:8,他引:6       下载免费PDF全文
During the course of adenovirus infection, the VAI RNA protects the translation apparatus of host cells by preventing the activation of host double-stranded RNA-activated protein kinase, which phosphorylates and thereby inactivates the protein synthesis initiation factor eIF-2. In the absence of VAI RNA, protein synthesis is drastically inhibited at late times in infected cells. The experimentally derived secondary structure of VAI RNA consists of two extended base-paired regions, stems I and III, which are joined by a short base-paired region, stem II, at the center. Stems I and II are joined by a small loop, A, and stem III contains a hairpin loop, B. At the center of the molecule and at the 3' side, stems II and III are connected by a short stem-loop (stem IV and hairpin loop C). A fourth, minor loop, D, exists between stems II and IV. To determine sequences and domains critical for function within this VAI RNA structure, we have constructed adenovirus mutants with linker-scan substitution mutations in defined regions of the molecule. Cells infected with these mutants were analyzed for polypeptide synthesis, virus yield, and eIF-2 alpha kinase activity. Our results showed that disruption of base-paired regions in the distal parts of the longest stems, I and III, did not affect function, whereas mutations causing structural perturbations in the central part of the molecule containing stem II, the proximal part of stem III, and the central short stem-loop led to loss of function. Surprisingly, one substitution mutant, sub742, although dramatically perturbing the integrity of the structure of this central portion, showed a wild-type phenotype, suggesting that an RNA with an alternate secondary structure is functional. On the basis of sensitivity to single-strand-specific RNases, we can derive a novel secondary structure for the mutant RNA in which a portion of the sequences may fold to form a structure that resembles the central part of the wild-type molecule, which suggests that only the short stem-loop located in the center of the molecule and the adjoining base-paired regions may define the functional domain. These results also imply that only a portion of the VAI RNA structure may be recognized by the host factor(s).  相似文献   

7.
Adenovirus virus-associated (VA) RNAI is required for efficient protein synthesis at late times of adenoviral infection, and in some other situations where double-stranded RNA (dsRNA) is present. It prevents inhibition of protein synthesis by a dsRNA-activated protein kinase and the secondary structure of VA RNAI is though to be important for its activity. To test this idea and to define structures and sequences responsible for VA RNAI activity, we constructed several mutant VA RNA genes and tested them in a transient expression assay. Activity is unaffected by deletions within a small region near the center of the gene, nt 72-85, but it is greatly diminished by deletion or substitution of sequences on the 3' side of this region. The structures of wild-type and mutant RNAs were examined by nuclease-sensitivity analysis. We propose a model for wild-type VA RNAI which differs from that predicted to be the most stable structure. Surprisingly disruption of the longest duplex region in the molecule is tolerated, provided that adjacent structural elements are not rearranged. However, perturbations of elements located in the center of the structure correlate well with loss of function.  相似文献   

8.
Bacteriophage RNA polymerases are widely used to synthesize defined RNAs on a large scale in vitro. Unfortunately, the RNA product contains a small proportion of contaminating RNAs, including complementary species, which can lead to errors of interpretation. We cloned the gene encoding Ad2 VA RNAI into a vector containing a T7 RNA polymerase promoter in order to generate large quantities of VA RNA for the study of its interaction with the dsRNA-dependent protein kinase DAI. Exact copies of VA RNAI were synthesized efficiently, but were contaminated with small amounts of dsRNA which activated DAI and confounded interpretation of kinase assays. We therefore developed a method to remove the dsRNA contaminants, allowing VA RNAI and mutants to be tested for their ability to activate or inhibit DAI. This method appears to be generally applicable.  相似文献   

9.
H Wood  J Luirink    D Tollervey 《Nucleic acids research》1992,20(22):5919-5925
E.coli 4.5S RNA is homologous to domain IV of eukaryotic SPR7S RNA, the RNA component of the signal recognition particle. The 4.5S RNA is associated in vivo with a 48kD protein (P48), which is homologous to a protein component of the signal recognition particle, SRP54. In addition to secondary structural features, a number of nucleotides are conserved between the 4.5S RNA and domain IV of all other characterised SRP-like RNAs from eubacteria, arachaebacteria and eukaryotes. This domain consists of an extended stem-loop structure; conserved nucleotides lie within the terminal loop and within single-stranded regions bulged from the stem immediately preceding the loop. This conserved region is a candidate for the SRP54/P48 binding site. To determine the functional importance of this region within the 4.5S RNA, mutations were introduced into the 4.5S RNA coding sequence. Mutated alleles were tested for their function in vivo and for the ability of the corresponding RNAs to bind P48 in vitro. Single point mutations in conserved nucleotides within the terminal tetranucleotide loop do not affect P48 binding in vitro and produce only slight growth defects. This suggests that the sequence of the loop may be important for the structure of the molecule rather than for specific interactions with P48. On the other hand, nucleotides within the single-stranded regions bulged from the stem were found to be important both for the binding of P48 to the RNA and for optimal function of the RNA in vivo.  相似文献   

10.
A mechanism for the control of protein synthesis by adenovirus VA RNAI   总被引:55,自引:0,他引:55  
  相似文献   

11.
Suppression of RNA interference by adenovirus virus-associated RNA   总被引:13,自引:0,他引:13       下载免费PDF全文
We show that human adenovirus inhibits RNA interference (RNAi) at late times of infection by suppressing the activity of two key enzyme systems involved, Dicer and RNA-induced silencing complex (RISC). To define the mechanisms by which adenovirus blocks RNAi, we used a panel of mutant adenoviruses defective in virus-associated (VA) RNA expression. The results show that the virus-associated RNAs, VA RNAI and VA RNAII, function as suppressors of RNAi by interfering with the activity of Dicer. The VA RNAs bind Dicer and function as competitive substrates squelching Dicer. Further, we show that VA RNAI and VA RNAII are processed by Dicer, both in vitro and during a lytic infection, and that the resulting short interfering RNAs (siRNAs) are incorporated into active RISC. Dicer cleaves the terminal stem of both VA RNAI and VA RNAII. However, whereas both strands of the VA RNAI-specific siRNA are incorporated into RISC, the 3' strand of the VA RNAII-specific siRNA is selectively incorporated during a lytic infection. In summary, our work shows that adenovirus suppresses RNAi during a lytic infection and gives insight into the mechanisms of RNAi suppression by VA RNA.  相似文献   

12.
The double-stranded RNA (dsRNA)-dependent protein kinase DAI (also termed dsI and P1) possesses two kinase activities; one is an autophosphorylation activity, and the other phosphorylates initiation factor eIF-2. We purified the enzyme, in a latent form, to near homogeneity from interferon-treated human 293 cells. The purified enzyme consisted of a single polypeptide subunit of approximately 70,000 daltons, retained its dependence on dsRNA for activation, and was sensitive to inhibition by adenovirus VA RNAI. Autophosphorylation required a suitable concentration of dsRNA and was second order with respect to DAI concentration, which suggests an intermolecular mechanism in which one DAI molecule phosphorylates a neighboring molecule. Once autophosphorylated, the enzyme could phosphorylate eIF-2 but seemed unable to phosphorylate other DAI molecules, which implies a change in substrate specificity upon activation. VA RNAI blocked autophosphorylation and activation but permitted the activated enzyme to phosphorylate eIF-2. VA RNAI also blocked the binding of dsRNA to the enzyme. The data are consistent with a model in which activation requires the interaction of two molecules of DAI with dsRNA, followed by intermolecular autophosphorylation of the latent enzyme. VA RNAI would block activation by preventing the interaction between DAI and dsRNA.  相似文献   

13.
14.
Adenoviruses use virus-associated RNA I (VAI RNA) to counteract the cellular antiviral response mediated by the interferon-induced, double-stranded-RNA-activated protein kinase PKR. VAI RNA is a highly structured small RNA which consists of two long duplex regions connected at the center by a complex, short stem-loop. This short stem-loop and the adjacent base-paired regions, referred to as the central domain, bind to PKR and inactivate it. Currently it is not known whether binding of VAI RNA to PKR is dependent solely on the secondary (and tertiary) structure of the central domain or whether nucleotide sequences in the central domain are also critical for this interaction. To address this question, 54 VAI mutants with single-base substitution mutations in the central domain of the RNA were constructed, and their capacities to inhibit the autophosphoryation of PKR in vitro were determined. It was found that although about half of the mutants inhibited PKR activity as efficiently as the wild type, a significant number of mutants lost the inhibitory activity substantially, without a perceptible change in their secondary structures. These results indicate that, in addition to secondary structure, at least some nucleotides in the central domain may be critical for the efficient function of VAI RNA.  相似文献   

15.
Human immunodeficiency virus type 1 Rev protein modulates the distribution of viral mRNAs from the nucleus to the cytoplasm by interaction with a highly structured viral RNA sequence, the Rev-responsive element (RRE). To identify the minimal functional elements of RRE, we evaluated mutant RREs for Rev binding in vitro and Rev response in vivo in the context of a Gag expression plasmid. The critical functional elements fold into a structure composed of a stem-loop A, formed by the ends of the RRE, joined to a branched stem-loop B/B1/B2, between bases 49 and 113. The 5' 132 nucleotides of RRE, RREDDE, which possessed a similar structure, bound Rev efficiently but were nonfunctional in vivo, implying separate binding and functional domains within the RRE. Excision of stem-loop A reduced Rev binding significantly and abolished the in vivo Rev response. The B2 branch could be removed without severe impairment of binding, but deletions in the B1 branch significantly reduced binding and function. However, deletion of 12 nucleotides, including the 5' strand of stem B, abolished both binding and function, while excision of the 3' strand of stem B only reduced them. Maintenance of the native RRE secondary structure alone was not sufficient for Rev recognition. Many mutations that altered the primary structure of the critical region while preserving the original RNA conformation were Rev responsive. However, mutations that changed a 5'..CACUAUGGG..3' sequence in the B stem, without affecting the overall structure abolished both in vitro Rev binding and the in vivo Rev response.  相似文献   

16.
Adenoviruses use the virus-encoded virus-associated RNA (VAI RNA) as a defense against cellular antiviral response by blocking the activation of the interferon-induced, double-stranded RNA-activated protein kinase PKR. The structure of VAI RNA consists of two long, imperfectly base-paired duplex regions connected by a complex short stem-loop at the center, referred to as the central domain. By using a series of adenovirus mutants with linker-scan mutations in the VAI RNA gene, we recently showed that the critical elements required for function in the VAI RNA molecule are in the central domain and that these same elements of the central domain are also involved in binding to PKR. In virus-infected cells, VAI RNA interacts with latent kinase, which is bound to ribosomes; this interaction takes place in a complex milieu. To more fully understand the relationship between structure and function and to determine whether the in vivo phenotype of these mutants can be reproduced in vitro, we have now analyzed these mutant VAI alleles for their ability to block the activation of a partially purified PKR from HeLa cells. We have also derived the structure of these mutants experimentally and correlated the structure with function. Without exception, when the structure of the short stem-loop of the central domain was perturbed, the mutants failed to inhibit PKR. Structural disruptions elsewhere in the central domain or in the long duplex regions of the molecule were not deleterious for in vitro function. Thus, these results support our previous findings and underscore the importance of the elements present in the central domain of the VAI RNA for its function. Our results also suggest that the interaction between PKR and VAI RNA involves a precise secondary (and tertiary) structure in the central domain. It has been suggested that VAI RNA does not activate PKR in virus-infected cells because of mismatches in the imperfectly base-paired long duplex regions. We constructed mutant VAI genes in which the imperfectly base-paired duplex regions were converted to perfectly base-paired regions and assayed in vitro for the activation of PKR. As with the wild-type VAI RNA, these mutants failed to activate PKR in vitro, while they were able to block the activation of PKR better than did the wild type. These results suggest that the failure of VAI RNA to activate PKR is not the result of mismatches in the long duplex regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Mutations in stem-loop IIa of yeast U2 RNA cause cold-sensitive growth and cold-sensitive U2 small nuclear ribonucleoprotein function in vitro. Cold-sensitive U2 small nuclear RNA adopts an alternative conformation that occludes the loop and disrupts the stem but does so at both restrictive and permissive temperatures. To determine whether alternative U2 RNA structure causes the defects, we tested second-site mutations in U2 predicted to disrupt the alternative conformation. We find that such mutations efficiently suppress the cold-sensitive phenotypes and partially restore correct U2 RNA folding. A genetic search for additional suppressors of cold sensitivity revealed two unexpected mutations in the base of an adjacent stem-loop. Direct probing of RNA structure in vivo indicates that the suppressors of cold sensitivity act to improve the stability of the essential stem relative to competing alternative structures by disrupting the alternative structures. We suggest that many of the numerous cold-sensitive mutations in a variety of RNAs and RNA-binding proteins could be a result of changes in the stability of a functional RNA conformation relative to a competing structure. The presence of an evolutionarily conserved U2 sequence positioned to form an alternative structure argues that this region of U2 is dynamic during the assembly or function of the U2 small nuclear ribonucleoprotein.  相似文献   

18.
19.
Genes in Caenorhabditis elegans operons are transcribed as polycistronic pre-mRNAs in which downstream gene products are trans spliced to a specialized spliced leader, SL2. SL2 is donated by a 110-nucleotide RNA, SL2 RNA, present in the cell as an Sm-bound snRNP. SL2 RNA can be conceptually folded into a phylogenetically conserved three-stem-loop secondary structure. Here we report an in vivo mutational analysis of the SL2 RNA. Some sequences can be changed without consequence, while other changes result in a substantial loss of trans splicing. Interestingly, the spliced leader itself can be dramatically altered, such that the first stem-loop cannot form, with only a relatively small loss in trans-splicing efficiency. However, the primary sequence of stem II is crucial for SL2 trans splicing. Similarly, the conserved primary sequence of the third stem-loop plays a key role in trans splicing. While mutations in stem-loop III allow snRNP formation, a single nucleotide substitution in the loop prevents trans splicing. In contrast, the analogous region of SL1 RNA is not highly conserved, and its mutation does not abrogate function. Thus, stem-loop III appears to confer a specific function to SL2 RNA. Finally, an upstream sequence, previously predicted to be a proximal sequence element, is shown to be required for SL2 RNA expression.  相似文献   

20.
Sequences from the 5' end of type 1 human immunodeficiency virus RNA dimerize spontaneously in vitro in a reaction thought to mimic the initial step of genomic dimerization in vivo. Dimer initiation has been proposed to occur through a "kissing-loop" interaction involving a specific RNA stem-loop element designated SL1: the RNA strands first interact by base pairing through a six-base GC-rich palindrome in the loop of SL1, whose stems then isomerize to form a longer interstrand duplex. We now report a mutational analysis aimed at defining the features of SL1 RNA sequence and secondary structure required for in vitro dimer formation. Our results confirm that mutations which destroy complementarity in the SL1 loop abolish homodimer formation, but that certain complementary loop mutants can heterodimerize. However, complementarity was not sufficient to ensure dimerization, even between GC-rich loops, implying that specific loop sequences may be needed to maintain a conformation that is competent for initial dimer contact; the central GC pair of the loop palindrome appeared critical in this regard, as did two or three A residues which normally flank the palindrome. Neither the four-base bulge normally found in the SL1 stem nor the specific sequence of the stem itself was essential for the interaction; however, the stem structure was required, because interstrand complementarity alone did not support dimer formation. Electron microscopic analysis indicated that the RNA dimers formed in vitro morphologically resembled those isolated previously from retroviral particles. These results fully support the kissing-loop model and may provide a framework for systematically manipulating genomic dimerization in type 1 human immunodeficiency virus virions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号