首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
MOTIVATION: Improved comparisons of multiple sequence alignments (profiles) with other profiles can identify subtle relationships between protein families and motifs significantly beyond the resolution of sequence-based comparisons. RESULTS: The local alignment of multiple alignments (LAMA) method was modified to estimate alignment score significance by applying a new measure based on Fisher's combining method. To verify the new procedure, we used known protein structures, sequence annotations and cyclical relations consistency analysis (CYRCA) sets of consistently aligned blocks. Using the new significance measure improved the sensitivity of LAMA without altering its selectivity. The program performed better than other profile-to-profile methods (COMPASS and Prof_sim) and a sequence-to-profile method (PSI-BLAST). The testing was large scale and used several parameters, including pseudo-counts profile calculations and local ungapped blocks or more extended gapped profiles. This comparison provides guidelines to the relative advantages of each method for different cases. We demonstrate and discuss the unique advantages of using block multiple alignments of protein motifs.  相似文献   

2.
MOTIVATION: A tool that simultaneously aligns multiple protein sequences, automatically utilizes information about protein domains, and has a good compromise between speed and accuracy will have practical advantages over current tools. RESULTS: We describe COBALT, a constraint based alignment tool that implements a general framework for multiple alignment of protein sequences. COBALT finds a collection of pairwise constraints derived from database searches, sequence similarity and user input, combines these pairwise constraints, and then incorporates them into a progressive multiple alignment. We show that using constraints derived from the conserved domain database (CDD) and PROSITE protein-motif database improves COBALT's alignment quality. We also show that COBALT has reasonable runtime performance and alignment accuracy comparable to or exceeding that of other tools for a broad range of problems. AVAILABILITY: COBALT is included in the NCBI C++ toolkit. A Linux executable for COBALT, and CDD and PROSITE data used is available at: ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/cobalt  相似文献   

3.
MOTIVATION: Due to the importance of considering secondary structures in aligning functional RNAs, several pairwise sequence-structure alignment methods have been developed. They use extended alignment scores that evaluate secondary structure information in addition to sequence information. However, two problems for the multiple alignment step remain. First, how to combine pairwise sequence-structure alignments into a multiple alignment and second, how to generate secondary structure information for sequences whose explicit structural information is missing. RESULTS: We describe a novel approach for multiple alignment of RNAs (MARNA) taking into consideration both the primary and the secondary structures. It is based on pairwise sequence-structure comparisons of RNAs. From these sequence-structure alignments, libraries of weighted alignment edges are generated. The weights reflect the sequential and structural conservation. For sequences whose secondary structures are missing, the libraries are generated by sampling low energy conformations. The libraries are then processed by the T-Coffee system, which is a consistency based multiple alignment method. Furthermore, we are able to extract a consensus-sequence and -structure from a multiple alignment. We have successfully tested MARNA on several datasets taken from the Rfam database.  相似文献   

4.
In this work we present a web-based tool for estimating multiple alignment quality using Bayesian hypothesis testing. The proposed method is very simple, easily implemented and not time consuming with a linear complexity. We evaluated method against a series of different alignments (a set of random and biologically derived alignments) and compared the results with tools based on classical statistical methods (such as sFFT and csFFT). Taking correlation coefficient as an objective criterion of the true quality, we found that Bayesian hypothesis testing performed better on average than the classical methods we tested. This approach may be used independently or as a component of any tool in computational biology which is based on the statistical estimation of alignment quality. AVAILABILITY: http://www.fmi.ch/groups/functional.genomics/tool.htm. SUPPLEMENTARY INFORMATION: Supplementary data are available from http://www.fmi.ch/groups/functional.genomics/tool-Supp.htm.  相似文献   

5.
We present a method, called BlockMatch, for aligning two blocks, where a block is an RNA multiple sequence alignment with the consensus secondary structure of the alignment in Stockholm format. The method employs a quadratic-time dynamic programming algorithm for aligning columns and column pairs of the multiple alignments in the blocks. Unlike many other tools that can perform pairwise alignment of either single sequences or structures only, BlockMatch takes into account the characteristics of all the sequences in the blocks along with their consensus structures during the alignment process, thus being able to achieve a high-quality alignment result. We apply BlockMatch to phylogeny reconstruction on a set of 5S rRNA sequences taken from fifteen bacteria species. Experimental results showed that the phylogenetic tree generated by our method is more accurate than the tree constructed based on the widely used ClustalW tool. The BlockMatch algorithm is implemented into a web server, accessible at http://bioinformatics.njit.edu/blockmatch. A jar file of the program is also available for download from the web server.  相似文献   

6.
Protein multiple sequence alignment is an important bioinformatics tool. It has important applications in biological evolution analysis and protein structure prediction. A variety of alignment algorithms in this field have achieved great success. However, each algorithm has its own inherent deficiencies. In this paper, permutation similarity is proposed to evaluate several protein multiple sequence alignment algorithms that are widely used currently. As the permutation similarity method only concerns the relative order of different protein evolutionary distances, without taking into account the slight difference between the evolutionary distances, it can get more robust evaluations. The longest common subsequence method is adopted to define the similarity between different permutations. Using these methods, we assessed Dialign, Tcoffee, ClustalW and Muscle and made comparisons among them.  相似文献   

7.
SUMMARY: BLAST statistics have been shown to be extremely useful for searching for significant similarity hits, for amino acid and nucleotide sequences. Although these statistics are well understood for pairwise comparisons, there has been little success developing statistical scores for multiple alignments. In particular, there is no score for multiple alignment that is well founded and treated as a standard. We extend the BLAST theory to multiple alignments. Following some simple assumptions, we present and justify a significance score for multiple segments of a local multiple alignment. We demonstrate its usefulness in distinguishing high and moderate quality multiple alignments from low quality ones, with supporting experiments on orthologous vertebrate promoter sequences.  相似文献   

8.
Veeser S  Dunn MJ  Yang GZ 《Proteomics》2001,1(7):856-870
In proteomic research, two-dimensional electrophoresis (2-D) is an important tool for investigating differential patterns of qualitative and quantitative protein expression. The strength of the technique is due to its unrivalled power of being able to separate simultaneously thousands of proteins. The key to the comparison of 2-D protein profiles, however, lies in the use of a fast and robust image matching process which is essential to the subsequent quantification procedure. To satisfy the growing demand for a robust and fully automatic method of matching 2-D gel protein separation profiles, we describe in this paper a novel registration technique based on image intensity distribution rather than selected features. The method uses a multiresolution representation of the gel profiles and exploits the fact that coarse approximations to the optimal matching can be extracted efficiently from low-resolution images. This permits the removal of misalignments at different scales in a systematic manner and the strength of the new method has been confirmed by a double blind trial of 111 2-D gel pairs. The proposed method requires neither landmarks nor an a priori image alignment, and takes about five seconds for processing a typical gel pair on a standard personal computer.  相似文献   

9.
SEGID: identifying interesting segments in (multiple) sequence alignments   总被引:2,自引:0,他引:2  
SUMMARY: SEGID is a tool for finding conserved regions (regions of high scores) for a given (multiple) sequence alignment. It takes a (multiple) sequence alignment as its input and converts the alignment into a sequence of numbers, where each number is the alignment score of a column. Three algorithms are used to identify regions of high scores. A graphical interface is provided to present those identified regions. AVAILABILITY: Free from http://www.cs.cityu.edu.hk/~lwang/segid/subject to copyright restrictions.  相似文献   

10.
SUMMARY: SQUINT is a sequence alignment tool, and combines both automated progressive sequence alignment with facilities for manual editing. The program imports nucleotide or amino acid sequence multiple alignment files in standard formats, and permits users to view two translations of the same multiple alignment simultaneously. Edits in one view are instantaneously reflected in the other, and the scoring cost of the changes are shown in real-time. Progressive multiple alignments, using a variety of alignment parameters, can be performed on any block of sequences, including blocks embedded in the existing alignment. AVAILABILITY: The software is freely available for download at http://www.cebl.auckland.ac.nz  相似文献   

11.
In this paper, we develop a segmental semi-Markov model (SSMM) for protein secondary structure prediction which incorporates multiple sequence alignment profiles with the purpose of improving the predictive performance. The segmental model is a generalization of the hidden Markov model where a hidden state generates segments of various length and secondary structure type. A novel parameterized model is proposed for the likelihood function that explicitly represents multiple sequence alignment profiles to capture the segmental conformation. Numerical results on benchmark data sets show that incorporating the profiles results in substantial improvements and the generalization performance is promising. By incorporating the information from long range interactions in /spl beta/-sheets, this model is also capable of carrying out inference on contact maps. This is an important advantage of probabilistic generative models over the traditional discriminative approach to protein secondary structure prediction. The Web server of our algorithm and supplementary materials are available at http://public.kgi.edu/-wild/bsm.html.  相似文献   

12.
Prediction of membrane segments in sequences of membrane proteins is well known and important problem. Accuracy of the solution of this problem by methods that don't use homology search in additional data bank can be improved. There is a lack of testing data in this area because of small amount of real structures of membrane proteins. In this work, we create a testing set of structural alignments of membrane proteins, in which positioning of the membrane segments reflects agreement of known 3D-structures of proteins in the alignment. We propose a method for predicting position of membrane segments in multiple alignment based on forward-backward algorithm from HMM theory. This method not only allows to predict positions of membrane segments but also forms probability membrane profile, which can be used in multiple alignment methods that take into account secondary structure information about sequences. Method is implemented in computer program available on the World-Wide Web site http://bioinf.fbb.msu.ru/fwdbck/. Proposed method provides results better than MEMSAT method, which is nearly only tool for prediction of membrane segments in multiple alignments without additional homology search.  相似文献   

13.
MOTIVATION: Multiple sequence alignment is an important tool in computational biology. In order to solve the task of computing multiple alignments in affordable time, the most commonly used multiple alignment methods have to use heuristics. Nevertheless, the computation of optimal multiple alignments is important in its own right, and it provides a means of evaluating heuristic approaches or serves as a subprocedure of heuristic alignment methods. RESULTS: We present an algorithm that uses the divide-and-conquer alignment approach together with recent results on search space reduction to speed up the computation of multiple sequence alignments. The method is adaptive in that depending on the time one wants to spend on the alignment, a better, up to optimal alignment can be obtained. To speed up the computation in the optimal alignment step, we apply the alpha(*) algorithm which leads to a procedure provably more efficient than previous exact algorithms. We also describe our implementation of the algorithm and present results showing the effectiveness and limitations of the procedure.  相似文献   

14.
ABSTRACT: BACKGROUND: ProGraphMSA is a state-of-the-art multiple sequence alignment tool which produces phylogenetically sensiblegap patterns while maintaining robustness by allowing alternative splicings and errors in the branching pattern ofthe guide tree. RESULTS: This is achieved by incorporating a graph-based sequence representation combined with the advantages of thephylogeny-aware gap placement algorithm of Prank. Further, we account for variations in the substitution patternby implementing context-specific profiles as in CS-Blast and by estimating amino acid frequencies from inputdata. CONCLUSIONS: ProGraphMSA shows good performance and competitive execution times in various benchmarks.  相似文献   

15.
Kim J  Ma J 《Nucleic acids research》2011,39(15):6359-6368
Multiple sequence alignment, which is of fundamental importance for comparative genomics, is a difficult problem and error-prone. Therefore, it is essential to measure the reliability of the alignments and incorporate it into downstream analyses. We propose a new probabilistic sampling-based alignment reliability (PSAR) score. Instead of relying on heuristic assumptions, such as the correlation between alignment quality and guide tree uncertainty in progressive alignment methods, we directly generate suboptimal alignments from an input multiple sequence alignment by a probabilistic sampling method, and compute the agreement of the input alignment with the suboptimal alignments as the alignment reliability score. We construct the suboptimal alignments by an approximate method that is based on pairwise comparisons between each single sequence and the sub-alignment of the input alignment where the chosen sequence is left out. By using simulation-based benchmarks, we find that our approach is superior to existing ones, supporting that the suboptimal alignments are highly informative source for assessing alignment reliability. We apply the PSAR method to the alignments in the UCSC Genome Browser to measure the reliability of alignments in different types of regions, such as coding exons and conserved non-coding regions, and use it to guide cross-species conservation study.  相似文献   

16.
MOTIVATION: The power of multi-sequence comparison for biological discovery is well established. The need for new capabilities to visualize and compare cross-species alignment data is intensified by the growing number of genomic sequence datasets being generated for an ever-increasing number of organisms. To be efficient these visualization algorithms must support the ability to accommodate consistently a wide range of evolutionary distances in a comparison framework based upon phylogenetic relationships. RESULTS: We have developed Phylo-VISTA, an interactive tool for analyzing multiple alignments by visualizing a similarity measure for multiple DNA sequences. The complexity of visual presentation is effectively organized using a framework based upon interspecies phylogenetic relationships. The phylogenetic organization supports rapid, user-guided interspecies comparison. To aid in navigation through large sequence datasets, Phylo-VISTA leverages concepts from VISTA that provide a user with the ability to select and view data at varying resolutions. The combination of multiresolution data visualization and analysis, combined with the phylogenetic framework for interspecies comparison, produces a highly flexible and powerful tool for visual data analysis of multiple sequence alignments. AVAILABILITY: Phylo-VISTA is available at http://www-gsd.lbl.gov/phylovista. It requires an Internet browser with Java Plug-in 1.4.2 and it is integrated into the global alignment program LAGAN at http://lagan.stanford.edu  相似文献   

17.
Accurate multiple sequence alignments of proteins are very important to several areas of computational biology and provide an understanding of phylogenetic history of domain families, their identification and classification. This article presents a new algorithm, REFINER, that refines a multiple sequence alignment by iterative realignment of its individual sequences with the predetermined conserved core (block) model of a protein family. Realignment of each sequence can correct misalignments between a given sequence and the rest of the profile and at the same time preserves the family's overall block model. Large-scale benchmarking studies showed a noticeable improvement of alignment after refinement. This can be inferred from the increased alignment score and enhanced sensitivity for database searching using the sequence profiles derived from refined alignments compared with the original alignments. A standalone version of the program is available by ftp distribution (ftp://ftp.ncbi.nih.gov/pub/REFINER) and will be incorporated into the next release of the Cn3D structure/alignment viewer.  相似文献   

18.
MOTIVATION: Recently, the concept of the constrained sequence alignment was proposed to incorporate the knowledge of biologists about structures/functionalities/consensuses of their datasets into sequence alignment such that the user-specified residues/nucleotides are aligned together in the computed alignment. The currently developed programs use the so-called progressive approach to efficiently obtain a constrained alignment of several sequences. However, the kernels of these programs, the dynamic programming algorithms for computing an optimal constrained alignment between two sequences, run in (gamman2) memory, where gamma is the number of the constraints and n is the maximum of the lengths of sequences. As a result, such a high memory requirement limits the overall programs to align short sequences only. RESULTS: We adopt the divide-and-conquer approach to design a memory-efficient algorithm for computing an optimal constrained alignment between two sequences, which greatly reduces the memory requirement of the dynamic programming approaches at the expense of a small constant factor in CPU time. This new algorithm consumes only O(alphan) space, where alpha is the sum of the lengths of constraints and usually alpha < n in practical applications. Based on this algorithm, we have developed a memory-efficient tool for multiple sequence alignment with constraints. AVAILABILITY: http://genome.life.nctu.edu.tw/MUSICME.  相似文献   

19.
A method for simultaneous alignment of multiple protein structures   总被引:1,自引:0,他引:1  
Shatsky M  Nussinov R  Wolfson HJ 《Proteins》2004,56(1):143-156
Here, we present MultiProt, a fully automated highly efficient technique to detect multiple structural alignments of protein structures. MultiProt finds the common geometrical cores between input molecules. To date, most methods for multiple alignment start from the pairwise alignment solutions. This may lead to a small overall alignment. In contrast, our method derives multiple alignments from simultaneous superpositions of input molecules. Further, our method does not require that all input molecules participate in the alignment. Actually, it efficiently detects high scoring partial multiple alignments for all possible number of molecules in the input. To demonstrate the power of MultiProt, we provide a number of case studies. First, we demonstrate known multiple alignments of protein structures to illustrate the performance of MultiProt. Next, we present various biological applications. These include: (1) a partial alignment of hinge-bent domains; (2) identification of functional groups of G-proteins; (3) analysis of binding sites; and (4) protein-protein interface alignment. Some applications preserve the sequence order of the residues in the alignment, whereas others are order-independent. It is their residue sequence order-independence that allows application of MultiProt to derive multiple alignments of binding sites and of protein-protein interfaces, making MultiProt an extremely useful structural tool.  相似文献   

20.
Pfam contains multiple alignments and hidden Markov model based profiles (HMM-profiles) of complete protein domains. The definition of domain boundaries, family members and alignment is done semi-automatically based on expert knowledge, sequence similarity, other protein family databases and the ability of HMM-profiles to correctly identify and align the members. Release 2.0 of Pfam contains 527 manually verified families which are available for browsing and on-line searching via the World Wide Web in the UK at http://www.sanger.ac.uk/Pfam/ and in the US at http://genome.wustl. edu/Pfam/ Pfam 2.0 matches one or more domains in 50% of Swissprot-34 sequences, and 25% of a large sample of predicted proteins from the Caenorhabditis elegans genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号