首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Androgenic and estrogenic steroids enhance muscle growth in a number of species; however, the mechanism by which anabolic steroids enhance muscle growth is not known. Castrated male cattle (steers) provide a particularly good model system in which to study the effects of anabolic steroids on muscle growth because they respond dramatically to treatment with both estrogens and androgens. The goal of this study was to determine if treatment of bovine satellite cell (BSC) cultures with 17beta-estradiol (E(2)) or trenbolone (a synthetic androgen) directly affects proliferation rate or level of mRNA for estrogen receptor (ER)-alpha, androgen receptor, and growth factors that have been shown to affect muscle growth (insulin-like growth factor (IGF)-I, IGF binding protein (IGFBP)-3, and myostatin). BSC cultures were established from the semimembranosus muscles of steers and then treated for 48 h with various concentrations of E(2) or trenbolone ranging from 0.001 to 10 nM. IGF-I mRNA levels in proliferating BSC cultures were significantly increased at 0.01 (1.9-times control values, P < 0.02) and at 0.1, 1, and 10 nM E(2) (2.9-, 3.5-, and 3.5-times control values, respectively, P < 0.0001). Additionally both 1 and 10 nM trenbolone increased IGF-I mRNA levels to 1.7-times control values (P < 0.02). ER-alpha mRNA was detectable in BSC cultures, and levels were increased (2.3-times control levels, P < 0.001) in cultures treated with 0.001 nM E(2) but not in cultures treated with higher concentrations of E(2). Androgen receptor mRNA levels also were increased (1.5-times control levels, P < 0.02) in cultures treated with 0.001 nM trenbolone but not by treatment with higher concentrations of trenbolone. Levels of IGFBP-3 were increased (1.4-times control values, P < 0.02) by treatment with 0.001 nM E(2) but not by treatment with high concentrations of E(2). Myostatin mRNA levels were not affected by any concentration of either of the steroids. Although, levels of IGF-I mRNA were 10-times greater (P < 0.02) in fused BSC cultures than in proliferating cultures, treatment of fused cultures for 48 h with 10 nM E(2) increased IGF-I mRNA levels (2.5-times control levels, P < 0.02). Both E(2) and trenbolone increased (3)H-thymidine incorporation rate (1.5-times control levels, P < 0.001) in BSC cultures in media containing serum from which IGFBP-3 had been removed by anti-IGFBP-3 affinity chromatography. In summary, treatment of BSC cultures with either E(2) or trenbolone increased IGF-I mRNA level and proliferation rate, thus, establishing that these steroids have direct anabolic effects on cells present in the BSC culture.  相似文献   

2.
We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-beta superfamily members myostatin and TGF-beta1 have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-beta1 or myostatin significantly (P < 0.01) increases levels of IGFBP-3 and -5 mRNA. We have previously shown that immunoneutralization of IGFBP-3 decreases the proliferation-suppressing activity of TGF-beta1 and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P < 0.05) decreases the DNA synthesis-suppressing activity of these molecules. Simultaneous immunoneutralization of both IGFBP-3 and IGFBP-5 in TGF-beta1 or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-beta1 or myostatin treatment (P < 0.05). Even though immunoneutralization of IGFBP-3 and -5 increased DNA synthesis rates in TGF-beta1 or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-beta and myostatin to suppress proliferation of PEMC.  相似文献   

3.
During the development and regeneration of skeletal muscle,many growth factors,such asbasic fibroblast growth factor (bFGF,FGF-2) and myostatin,have been shown to play regulating roles.bFGF contributes to promote proliferation and to inhibit differentiation of skeletal muscle,whereas myostatinplays a series of contrasting roles.In order to elucidate whether the expression of bFGF has any relationshipwith the expression of myostatin in skeletal muscle cells,we constructed a eukaryotic expression vector forthe expression of exogenous bFGF in murine C2C12 myoblasts.Quantitative RT-PCR assays indicated thatwith the increase of the expression of exogenous bFGF gene,the expression of endogenous myostatin genewas suppressed at mRNA level and protein level.  相似文献   

4.
Myostatin is a member of the transforming growth factor (TGF)-beta superfamily, known for its ability to inhibit muscle growth. It can also regulate metabolism and glucose uptake in a number of tissues. To determine the mechanism of myostatin's effect on glucose uptake, we evaluated its actions using choriocarcinoma cell lines that are widely used as models for placental cells. Protein and mRNA were determined using immunoblotting and RT-PCR/PCR, respectively. Glucose uptake was assessed by uptake of radiolabeled deoxyglucose in vitro. All choriocarcinoma cell lines tested i.e., BeWo, JEG, and Jar, are used as models of placental cells, and all expressed myostatin protein and mRNA. Treatment of BeWo cells with myostatin resulted in inhibition of glucose uptake in a concentration-dependent manner (P < 0.01). At all concentrations tested, follistatin, a functional inhibitor of myostatin, completely blocked the inhibitory effect of myostatin (40 nM) on glucose uptake by BeWo cells (0.4 nM, P < 0.05). Follistatin treatment alone also increased glucose uptake (0.4 and 4 nM, P < 0.001; 40 nM, P < 0.05). Because BeWo cells proliferated and greater cell densities were achieved, glucose uptake declined irrespective of treatment. Myostatin treatment of BeWo cells did not alter the levels of myostatin receptor, ActRII A/B proteins. The levels of glucose transport proteins also remained unaltered in BeWo cells with myostatin treatment. This study has shown that myostatin specifically inhibits glucose uptake into BeWo cells, suggesting that locally produced myostatin may control glucose metabolism within the placenta.  相似文献   

5.
We examined the temporal relationship between portacaval anastomosis (PCA), weight gain, changes in skeletal muscle mass and molecular markers of protein synthesis, protein breakdown, and satellite cell proliferation and differentiation. Male Sprague-Dawley rats with end to side PCA (n=24) were compared with sham-operated pair-fed rats (n=24). Whole body weight, lean body mass, and forelimb grip strength were determined at weekly intervals. The skeletal muscle expression of the ubiquitin proteasome system, myostatin, its receptor (the activin 2B receptor) and its signal, cyclin-dependent kinase inhibitor (CDKI) p21, insulin-like growth factor (IGF)-I and its receptor (IGF-I receptor-alpha), and markers of satellite cell proliferation and differentiation were quantified. PCA rats did not gain body weight and had lower lean body mass, forelimb grip strength, and gastrocnemius muscle weight. The skeletal muscle expression of the mRNA of ubiquitin proteasome components was higher in PCA rats in the first 2 wk followed by a lower expression in the subsequent 2 wk (P<0.01). The mRNA and protein of myostatin, activin 2B receptor, and CDKI p21 were higher, whereas IGF-I and its receptor as well as markers of satellite cell function (proliferating nuclear cell antigen, myoD, myf5, and myogenin) were lower at weeks 3 and 4 following PCA (P < 0.05). We conclude that PCA resulted in uninhibited proteolysis in the initial 2 wk. This was followed by an adaptive response in the later 2 wk consisting of an increased expression of myostatin that may have contributed to reduced muscle protein synthesis, impaired satellite cell function, and lower skeletal muscle mass.  相似文献   

6.
7.
Fibroblasts represent one of the in vivo sites of insulin-like growth factor-I (IGF-I) production. In this study rat dermal fibroblasts in culture were used as a model system to assess the effect of activation of protein kinase-C on the levels of the mRNAs encoding IGF-I and another growth factor, basic fibroblast growth factor (bFGF). IGF-I and bFGF mRNA levels were determined using a solution hybridization/RNase protection assay. Treatment of cells in serum-free medium containing 0.25% BSA (MEM + BSA) with the tumor-promoting phorbol ester phorbol 12-myristate 13-acetate (PMA) decreased IGF-I and increased bFGF mRNA levels in a time- and dose-dependent fashion. The peak effect of 100 nM PMA on IGF-I mRNA levels occurred at 9 h, whereas the peak effect on bFGF mRNA levels occurred after 3 h of incubation. In dose-response studies, half-maximal inhibition of IGF-I mRNA levels was achieved with approximately 0.08 nM PMA, while half-maximal stimulation of bFGF mRNA levels was achieved with approximately 3 nM PMA. Inhibition of protein synthesis with cycloheximide abrogated the effect of PMA on bFGF mRNA levels, but only partially inhibited the effect of PMA on IGF-I mRNA levels. Studies employing sphingosine or staurosporine to inhibit protein kinase-C or preincubation in high doses of PMA to down-regulate protein kinase-C suggested that the effect of PMA on IGF-I and bFGF mRNA levels was mediated by activation of protein kinase-C, although both staurosporine and sphingosine had independent effects on the levels of these mRNAs and down-regulation of protein kinase-C had a sustained effect on IGF-I mRNA levels. Ligands known to activate protein kinase-C were then tested. Treatment of cells with 100 micrograms/ml of the synthetic diacylglycerol 1-oleoyl-2-acetyl-sn-glycerol decreased IGF-I mRNA levels to 25% and increased bFGF mRNA levels to 520% of the level present in cells maintained in MEM + BSA. Treatment of cells with thrombin or bradykinin also decreased IGF-I mRNA levels and increased bFGF mRNA levels, but whereas the effect of thrombin on IGF-I mRNA levels was marked, the effect of bradykinin was minimal, and whereas the effect of thrombin on bFGF mRNA levels was sustained, the effect of bradykinin was transient.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
A new skeletal muscle cell line, rat myoblast omega or RMo, has been characterized with regard to the effects of three growth factors: basic fibroblast growth factor (bFGF), insulin-like growth factor I (IGF-I), and transforming growth factor beta (TGF-beta). Results indicate a differential response of these factors on both cell proliferation and differentiation. Exposure to bFGF and IGF-I stimulate proliferation, while TGF-beta has no effect on cell number. RMo cell differentiation, as indicated by skeletal myosin synthesis, is enhanced by IGF-I, whereas both bFGF and TGF-beta suppress differentiation. These responses are in agreement with the effects of bFGF, IGF-I, and TGF-beta on myogenic cells cultured from fetal and postnatal muscle, thereby suggesting that RMo cells can serve as a model system for the study of growth factor effects on skeletal muscle cells.  相似文献   

9.
Fibroblast growth factors interact with appropriate endothelial cell (EC) surface receptors and initiate intracellular signal cascades, which participate in modulating blood vessel growth. EC, upon exposure to basic fibroblast growth factors (bFGFs) undergo profound functional alterations, which depend on their actual sensitivity and involve gene expression and de novo protein synthesis. We investigated the effects of bFGF on signaling pathways of EA.hy926 cells in different environments. EC were cultured under normal gravity (1 g) and simulated microgravity (micro g) using a three-dimensional (3D) clinostat. Microgravity induced early and late apoptosis, extracellular matrix proteins, endothelin-1 (ET-1) and TGF-beta(1) expression. Microgravity reduced eNOS mRNA within 24 h. Moreover, a six- to eightfold higher amount of IL-6 and IL-8 was secreted within 24 h micro g. In addition, microgravity induced a duplication of NF-kappaB p50, while p65 was quadrupled. At 1 g, bFGF application (4 h) reduced ET-1, TGF-beta(1) and eNOS gene expression. After 24 h, bFGF enhanced fibronectin, VEGF, Flk-1, Flt-1, the release of IL-6, IL-8, and TGF-beta(1). Furthermore, bFGF promoted apoptosis, reduced NFkB p50, but enhanced NFkB p65. After 4 h micro g, bFGF decreased TGF-beta(1), eNOS, and ET-1 gene expression. After 24 h micro g, bFGF elevated fibronectin, Flk-1 and Flt-1 protein, and reduced IL-6 and IL-8 compared with vehicle treated micro g cultures. In micro g, bFGF enhanced NF-KappaB p50 by 50%, Bax by 25% and attenuated p65, activation of caspase-3 and annexin V-positive cells. bFGF differently changes intracellular signals in ECs depending whether it is applied under microgravity or normal gravity conditions. In microgravity, bFGF contributes to protect the EC from apoptosis.  相似文献   

10.
11.
12.
In several physiological paradigms, secretion of FSH and LH are not coordinately regulated. Because these hormones appear to be produced by a single cell type in the anterior pituitary gland, their discordant regulation must be related to differential intracellular responses to various stimuli. Estradiol-17beta (estradiol) has been shown to influence secretion of both FSH and LH and some of its effects are mediated directly on the gonadotrope. Changes in expression of intrapituitary factors such as activin and follistatin may mediate effects of estradiol and account for discordant patterns of FSH and LH. The aims of this study were 1) to determine if estradiol alters expression of genes encoding activin, follistatin, or both in ovine pituitary cells; and 2) to observe the effects of immunoneutralizing activin B in vitro on gonadotropin secretion. Pituitary cells from five ewes in the anestrous season were cultured for 24 h with estradiol (0.01 or 1.0 nM). Estradiol reduced basal secretion of FSH in a dose-dependent manner (P: < 0.001) and simultaneously increased basal secretion of LH (P: < 0.001). Decreased secretion of FSH in estradiol-treated cultures was accompanied by suppressed levels of FSHbeta subunit mRNA (P: < 0.001). Amounts of mRNA for activin beta(B) were reduced in a dose-dependent manner by estradiol (27% +/- 4.9% at 0.01 nM, P: < 0.02; and 46% +/- 3.9% at 1.0 nM, P: < 0.002). In contrast, mRNA for follistatin was not affected by treatment with estradiol. Treatment of pituitary cells with an antibody to activin B reduced secretion of FSH by 50% (P: < 0.01) without influencing secretion of LH. These data lead us to conclude that discordant secretion of gonadotropins can be induced by estradiol acting directly at the pituitary level. The inhibitory effect of estradiol on FSH secretion may be mediated indirectly through decreased pituitary expression of the activin gene.  相似文献   

13.
Gene expression of vascular endothelial growth factor (VEGF), and to a lesser extent of transforming growth factor-beta(1) (TGF-beta(1)) and basic fibroblast growth factor (bFGF), has been found to increase in rat skeletal muscle after a single exercise bout. In addition, acute hypoxia augments the VEGF mRNA response to exercise, which suggests that, if VEGF is important in muscle angiogenesis, hypoxic training might produce greater capillary growth than normoxic training. Therefore, we examined the effects of exercise training (treadmill running at the same absolute intensity) in normoxia and hypoxia (inspired O(2) fraction = 0.12) on rat skeletal muscle capillarity and on resting and postexercise gene expression of VEGF, its major receptors (flt-1 and flk-1), TGF-beta(1), and bFGF. Normoxic training did not alter basal or exercise-induced VEGF mRNA levels but produced a modest twofold increase in bFGF mRNA (P < 0.05). Rats trained in hypoxia exhibited an attenuated VEGF mRNA response to exercise (1.8-fold compared 3.4-fold with normoxic training; P < 0.05), absent TGF-beta(1) and flt-1 mRNA responses to exercise, and an approximately threefold (P < 0.05) decrease in bFGF mRNA levels. flk-1 mRNA levels were not significantly altered by either normoxic or hypoxic training. An increase in skeletal muscle capillarity was observed only in hypoxically trained rats. These data show that, whereas training in hypoxia potentiates the adaptive angiogenic response of skeletal muscle to a given absolute intensity of exercise, this was not evident in the gene expression of VEGF or its receptors when assessed at the end of training.  相似文献   

14.
In vivo and in vitro luteinization were investigated in the porcine ovary, with emphasis on expression of steroidogenic acute regulatory protein (StAR). StAR mRNA and protein as well as cytochrome P450 side-chain cleavage mRNA (P450scc) increased during the luteal phase in the corpus luteum (CL) and were absent in regressed CL. Cytochrome P450 aromatase mRNA (P450arom) was not detectable at any time in CL. In vitro luteinization of granulosa cells occurred over 96 h in culture, during which P450arom mRNA was present at 1 h after cell isolation but not detectable at 6 h; and P450scc and StAR mRNAs were first detectable at 6 h and 48 h, respectively. Incubation of cultures with insulin-like growth factor I (IGF-I, 10 ng/ml), dibutyryl cAMP (cAMP, 300 microM), or their combination, induced measurable StAR mRNA at 24 h (p < 0.05), increased progesterone accumulation at 48 h, and elevated both StAR and P450scc expression through 96 h. Incubation of luteinized granulosa cells with epidermal growth factor (EGF, 10 nM) changed their phenotype from epithelioid to fibroblastic, eliminated steady-state StAR expression, and interfered with cAMP induction of StAR mRNA and progesterone accumulation. EGF had little apparent effect on P450scc mRNA abundance. It is concluded that StAR expression characterizes luteinization, and early luteinization is induced by cAMP and IGF-I in vitro. Further, EGF induces a morphological and functional phenotype that appears similar to an earlier stage of granulosa cell function.  相似文献   

15.
16.
17.
18.
FSH regulation of inhibin alpha-, beta(B)-subunit and follistatin mRNA was investigated in cultured chicken granulosa cells, which were isolated and pooled according to size from the F(4) + F(5) follicles, small yellow follicles (SYF), and large white follicles (LWF). In experiment 1 (four replicate experiments), granulosa cells were cultured, and the effect of FSH (50 ng/ml) on the growth of cells from the different follicles was examined at 24 and 48 h of culture. Cell viability was >95% for all of the granulosa cell cultures at 24 and 48 h. At 24 h, the number of granulosa cells in both the FSH-treated and the untreated cultures for all follicle types was numerically greater than the number of cells originally plated. At 48 h, FSH-treated cultures for all follicle types had twice (P: < 0. 05) the number of cells as the untreated cultures. In experiment 2 (three replicate experiments), FSH increased expression of the mRNA for inhibin alpha-subunit in LWF granulosa cells at 4 and 24 h to detectable levels and increased inhibin alpha-subunit protein accumulation to detectable levels by 24 h in granulosa cells from the LWF. FSH also increased (P: < 0.05) mRNA levels for the inhibin alpha-subunit at 4 and 24 h in SYF granulosa cells and at 24 h in F(4) + F(5) granulosa cells. The effects of FSH on follistatin and ss(B)-subunit were variable with respect to follicle development and culture duration. These results suggest that FSH plays an important role in stimulating the production of mRNA and protein for the inhibin alpha-subunit in small prehierarchical follicles.  相似文献   

19.
The role of TNF-alpha in muscle catabolism is well established, but little is known about the mechanisms of its catabolic action. One possibility could be that TNF-alpha impairs the production of local growth factors like IGF-I. The aim of this study was to investigate whether TNF-alpha can directly inhibit IGF-I gene and protein expression in muscle. First, we investigated whether the acute inflammation induced by endotoxin injection changes IGF-I and TNF-alpha mRNA in rat tibialis anterior muscle. Endotoxin rapidly increased TNF-alpha mRNA (7-fold at 1 h, P < 0.001) and later decreased IGF-I mRNA (-73% at 12 h, P < 0.001). Furthermore, in a model of C2C12 myotubes, TNF-alpha strongly inhibited IGF-I mRNA and protein (-73 and -47% after 72 h, P < 0.001 and P < 0.01, respectively). Other proinflammatory cytokines failed to inhibit IGF-I mRNA. The effect of TNF-alpha on IGF-I mRNA was not mediated by nitric oxide, and the activation of NF-kappaB was insufficient to inhibit IGF-I expression. Taken together, our data suggest that TNF-alpha induced in muscle after LPS injection can locally inhibit IGF-I expression. The inhibition of muscle IGF-I production could contribute to the catabolic effect of TNF-alpha.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号