首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many microorganisms, the first step of arginine biosynthesis is catalyzed by the classical N-acetylglutamate synthase (NAGS), an enzyme composed of N-terminal amino acid kinase (AAK) and C-terminal histone acetyltransferase (GNAT) domains that bind the feedback inhibitor arginine and the substrates, respectively. In NAGS, three AAK domain dimers are interlinked by their N-terminal helices, conforming a hexameric ring, whereas each GNAT domain sits on the AAK domain of an adjacent dimer. The arginine inhibition of Pseudomonas aeruginosa NAGS was strongly hampered, abolished, or even reverted to modest activation by changes in the length/sequence of the short linker connecting both domains, supporting a crucial role of this linker in arginine regulation. Linker cleavage or recombinant domain production allowed the isolation of each NAGS domain. The AAK domain was hexameric and inactive, whereas the GNAT domain was monomeric/dimeric and catalytically active although with ~50-fold-increased and ~3-fold-decreased K(m)(glutamate) and k(cat) values, respectively, with arginine not influencing its activity. The deletion of N-terminal residues 1 to 12 dissociated NAGS into active dimers, catalyzing the reaction with substrate kinetics and arginine insensitivity identical to those for the GNAT domain. Therefore, the interaction between the AAK and GNAT domains from different dimers modulates GNAT domain activity, whereas the hexameric architecture appears to be essential for arginine inhibition. We proved the closeness of the AAK domains of NAGS and N-acetylglutamate kinase (NAGK), the enzyme that catalyzes the next arginine biosynthesis step, shedding light on the origin of classical NAGS, by showing that a double mutation (M26K L240K) in the isolated NAGS AAK domain elicited NAGK activity.  相似文献   

2.
N-acetyl-L-glutamate kinase (NAGK) catalyzes the second, generally controlling, step of arginine biosynthesis. In yeasts, NAGK exists either alone or forming a metabolon with N-acetyl-L-glutamate synthase (NAGS), which catalyzes the first step and exists only within the metabolon. Yeast NAGK (yNAGK) has, in addition to the amino acid kinase (AAK) domain found in other NAGKs, a ~150-residue C-terminal domain of unclear significance belonging to the DUF619 domain family. We deleted this domain, proving that it stabilizes yNAGK, slows catalysis and modulates feed-back inhibition by arginine. We determined the crystal structures of both the DUF619 domain-lacking yNAGK, ligand-free as well as complexed with acetylglutamate or acetylglutamate and arginine, and of complete mature yNAGK. While all other known arginine-inhibitable NAGKs are doughnut-like hexameric trimers of dimers of AAK domains, yNAGK has as central structure a flat tetramer formed by two dimers of AAK domains. These dimers differ from canonical AAK dimers in the -110° rotation of one subunit with respect to the other. In the hexameric enzymes, an N-terminal extension, found in all arginine-inhibitable NAGKs, forms a protruding helix that interlaces the dimers. In yNAGK, however, it conforms a two-helix platform that mediates interdimeric interactions. Arginine appears to freeze an open inactive AAK domain conformation. In the complete yNAGK structure, two pairs of DUF619 domains flank the AAK domain tetramer, providing a mechanism for the DUF619 domain modulatory functions. The DUF619 domain exhibits the histone acetyltransferase fold, resembling the catalytic domain of bacterial NAGS. However, the putative acetyl CoA site is blocked, explaining the lack of NAGS activity of yNAGK. We conclude that the tetrameric architecture is an adaptation to metabolon formation and propose an organization for this metabolon, suggesting that yNAGK may be a good model also for yeast and human NAGSs.  相似文献   

3.
Novel bifunctional N-acetylglutamate synthase/kinases (NAGS/K) that catalyze the first two steps of arginine biosynthesis and are homologous to vertebrate N-acetylglutamate synthase (NAGS), an essential cofactor-producing enzyme in the urea cycle, were identified in Maricaulis maris and several other bacteria. Arginine is an allosteric inhibitor of NAGS but not NAGK activity. The crystal structure of M. maris NAGS/K (mmNAGS/K) at 2.7 Å resolution indicates that it is a tetramer, in contrast to the hexameric structure of Neisseria gonorrhoeae NAGS. The quaternary structure of crystalline NAGS/K from Xanthomonas campestris (xcNAGS/K) is similar, and cross-linking experiments indicate that both mmNAGS/K and xcNAGS are tetramers in solution. Each subunit has an amino acid kinase (AAK) domain, which is likely responsible for N-acetylglutamate kinase (NAGK) activity and has a putative arginine binding site, and an N-acetyltransferase (NAT) domain that contains the putative NAGS active site. These structures and sequence comparisons suggest that the linker residue 291 may determine whether arginine acts as an allosteric inhibitor or activator in homologous enzymes in microorganisms and vertebrates. In addition, the angle of rotation between AAK and NAT domains varies among crystal forms and subunits within the tetramer. A rotation of 26° is sufficient to close the predicted AcCoA binding site, thus reducing enzymatic activity. Since mmNAGS/K has the highest degree of sequence homology to vertebrate NAGS of NAGS and NAGK enzymes whose structures have been determined, the mmNAGS/K structure was used to develop a structural model of human NAGS that is fully consistent with the functional effects of the 14 missense mutations that were identified in NAGS-deficient patients.  相似文献   

4.
In Saccharomyces cerevisiae, which uses the nonlinear pathway of arginine biosynthesis, the first two enzymes, N-acetylglutamate synthase (NAGS) and N-acetylglutamate kinase (NAGK), are controlled by feedback inhibition. We have previously shown that NAGS and NAGK associate in a complex, essential to synthase activity and protein level [Abadjieva, A., Pauwels, K., Hilven, P. & Crabeel, M. (2001) J. Biol. Chem.276, 42869-42880]. The NAGKs of ascomycetes possess, in addition to the catalytic domain that is shared by all other NAGKs and whose structure has been determined, a C-terminal domain of unknown function and structure. Exploring the role of these two domains in the synthase/kinase interaction, we demonstrate that the ascomycete-specific domain is required to maintain synthase activity and protein level. Previous results had suggested a participation of the third enzyme of the pathway, N-acetylglutamylphosphate reductase, in the metabolon. Here, genetic analyses conducted in yeast at physiological level, or in a heterologous background, clearly demonstrate that the reductase is dispensable for synthase activity and protein level. Most importantly, we show that the arginine feedback regulation of the NAGS and NAGK enzymes is mutually interdependent. First, the kinase becomes less sensitive to arginine feedback inhibition in the absence of the synthase. Second, and as in Neurospora crassa, in a yeast kinase mutant resistant to arginine feedback inhibition, the synthase becomes feedback resistant concomitantly. We conclude that the NAGS/NAGK metabolon promotes the co-ordination of the catalytic activities and feedback regulation of the first two, flux controlling, enzymes of the arginine pathway.  相似文献   

5.
N-acetyl-l-glutamate synthase (NAGS), the first enzyme of arginine biosynthesis in bacteria/plants and an essential urea cycle activator in animals, is, respectively, arginine-inhibited and activated. Arginine binds to the hexameric ring-forming amino acid kinase (AAK) domain of NAGS. We show that arginine inhibits Pseudomonas aeruginosa NAGS by altering the functions of the distant, substrate binding/catalytic GCN5-related N-acetyltransferase (GNAT) domain, increasing , decreasing Vmax and triggering substrate inhibition by AcCoA. These effects involve centrally the interdomain linker, since we show that linker elongation or two-residue linker shortening hampers and mimics, respectively, arginine inhibition. We propose a regulatory mechanism in which arginine triggers the expansion of the hexameric NAGS ring, altering AAK-GNAT domain interactions, and the modulation by these interactions of GNAT domain functions, explaining arginine regulation.  相似文献   

6.
N-acetylglutamate synthase (NAGS) catalyzes the conversion of AcCoA and L-glutamate to CoA and N-acetyl-L-glutamate (NAG), an obligate cofactor for carbamyl phosphate synthetase I (CPSI) in the urea cycle. NAGS deficiency results in elevated levels of plasma ammonia which is neurotoxic. We report herein the first crystal structure of human NAGS, that of the catalytic N-acetyltransferase (hNAT) domain with N-acetyl-L-glutamate bound at 2.1 Å resolution. Functional studies indicate that the hNAT domain retains catalytic activity in the absence of the amino acid kinase (AAK) domain. Instead, the major functions of the AAK domain appear to be providing a binding site for the allosteric activator, L-arginine, and an N-terminal proline-rich motif that is likely to function in signal transduction to CPS1. Crystalline hNAT forms a dimer similar to the NAT-NAT dimers that form in crystals of bifunctional N-acetylglutamate synthase/kinase (NAGS/K) from Maricaulis maris and also exists as a dimer in solution. The structure of the NAG binding site, in combination with mutagenesis studies, provide insights into the catalytic mechanism. We also show that native NAGS from human and mouse exists in tetrameric form, similar to those of bifunctional NAGS/K.  相似文献   

7.
N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in l-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by l-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with l-arginine bound and in the active R-state complexed with CoA and l-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of l-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by ∼10 Å and decreases its height by ∼20Å. AAK dimers move 5Å outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by ∼4°. The NAT domains rotate ∼109° relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the l-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity.l-Arginine biosynthesis in most micro-organisms and plants involves the initial acetylation of l-glutamate by N-acetylglutamate synthase (NAGS, EC 2.3.1.1)2 to produce N-acetylglutamate (NAG). NAG is then converted by NAG kinase (NAGK, EC 2.7.2.8) to NAG-phosphate and subsequently to N-acetylornithine (1, 2). Two alternative reactions are used to remove the acetyl group from acetylornithine. The linear pathway uses N-acetylornithine deacetylase (EC 3.5.1.16) to catalyze the metal-dependent hydrolysis of the acetyl group to form l-ornithine and acetate, whereas the acetyl recycling pathway transfers the acetyl group from N-acetylornithine to l-glutamate, producing l-ornithine and NAG. This reaction is catalyzed by ornithine acetyltransferase (EC 2.3.1.35).In the linear pathway, NAGS is the only target of feedback inhibition by l-arginine. In contrast, in the acetyl cycling pathway l-arginine may inhibit NAGS and NAGK or ornithine acetyltransferase (3). Structure determinations of l-arginine-insensitive (4) and l-arginine-sensitive NAGKs (5) provided insights into the structural basis of l-arginine inhibition of NAGK. l-Arginine-insensitive Escherichia coli (ec) NAGK is a homodimer (4), whereas l-arginine-sensitive NAGKs from Thermotoga maritima (tm) and Pseudomonas aeruginosa (pa) are hexamers formed by pair-wise interlacing of the N-terminal helices of three ecNAGK-like dimers, to create a second type of dimer interface. l-Arginine binding to a site close to the C terminus induces global conformational changes that expands the ring by ∼8 Å and decreases the tilt of the ecNAGK-like dimers relative to the plane of the ring by ∼6°. The inhibition mechanism was proposed to involve the enlargement of an active site located close to the l-arginine-binding site.Because of the sequence similarity between NAGK and NAGS, it was speculated that they may have similar l-arginine-binding sites and hexameric ring structures (5). However, our recent structural determination of NAGS from Neisseria gonorrhoeae (ng) revealed the active site to be located in the NAT domain, >25 Å away from the proposed l-arginine-binding site (6). Therefore, the allosteric mechanism of NAGS is likely to be different from that of l-arginine-sensitive NAGKs. Here we compare the structures of ngNAGS in the inactive T-state with l-arginine bound and in the R-state complexed with CoA and l-glutamate and determine the structural basis for the allosteric inhibition of NAGS by l-arginine.  相似文献   

8.
Maricaulis maris N-acetylglutamate synthase/kinase (mmNAGS/K) catalyzes the first two steps in l-arginine biosynthesis and has a high degree of sequence and structural homology to human N-acetylglutamate synthase, a regulator of the urea cycle. The synthase activity of both mmNAGS/K and human NAGS are regulated by l-arginine, although l-arginine is an allosteric inhibitor of mmNAGS/K, but an activator of human NAGS. To investigate the mechanism of allosteric inhibition of mmNAGS/K by l-arginine, we have determined the structure of the mmNAGS/K complexed with l-arginine at 2.8 Å resolution. In contrast to the structure of mmNAGS/K in the absence of l-arginine where there are conformational differences between the four subunits in the asymmetric unit, all four subunits in the l-arginine liganded structure have very similar conformations. In this conformation, the AcCoA binding site in the N-acetyltransferase (NAT) domain is blocked by a loop from the amino acid kinase (AAK) domain, as a result of a domain rotation that occurs when l-arginine binds. This structural change provides an explanation for the allosteric inhibition of mmNAGS/K and related enzymes by l-arginine. The allosterically regulated mechanism for mmNAGS/K differs significantly from that for Neisseria gonorrhoeae NAGS (ngNAGS). To define the active site, several residues near the putative active site were mutated and their activities determined. These experiments identify roles for Lys356, Arg386, Asn391 and Tyr397 in the catalytic mechanism.  相似文献   

9.
Major aspects of the pathway of de novo arginine biosynthesis via acetylated intermediates in microorganisms must be revised in light of recent enzymatic and genomic investigations. The enzyme N-acetylglutamate synthase (NAGS), which used to be considered responsible for the first committed step of the pathway, is present in a limited number of bacterial phyla only and is absent from Archaea. In many Bacteria, shorter proteins related to the Gcn5-related N-acetyltransferase family appear to acetylate l-glutamate; some are clearly similar to the C-terminal, acetyl-coenzyme A (CoA) binding domain of classical NAGS, while others are more distantly related. Short NAGSs can be single gene products, as in Mycobacterium spp. and Thermus spp., or fused to the enzyme catalyzing the last step of the pathway (argininosuccinase), as in members of the Alteromonas-Vibrio group. How these proteins bind glutamate remains to be determined. In some Bacteria, a bifunctional ornithine acetyltransferase (i.e., using both acetylornithine and acetyl-CoA as donors of the acetyl group) accounts for glutamate acetylation. In many Archaea, the enzyme responsible for glutamate acetylation remains elusive, but possible connections with a novel lysine biosynthetic pathway arose recently from genomic investigations. In some Proteobacteria (notably Xanthomonadaceae) and Bacteroidetes, the carbamoylation step of the pathway appears to involve N-acetylornithine or N-succinylornithine rather than ornithine. The product N-acetylcitrulline is deacetylated by an enzyme that is also involved in the provision of ornithine from acetylornithine; this is an important metabolic function, as ornithine itself can become essential as a source of other metabolites. This review insists on the biochemical and evolutionary implications of these findings.  相似文献   

10.
Unwinding of double-stranded DNA into single-stranded intermediates required for various fundamental life processes is catalyzed by helicases, a family of mono-, di- or hexameric motor proteins fueled by nucleoside triphosphate hydrolysis. The three-dimensional crystal structure of the hexameric helicase RepA encoded by plasmid RSF1010 has been determined by X-ray diffraction at 2.4 A resolution. The hexamer shows an annular structure with 6-fold rotational symmetry and a approximately 17 A wide central hole, suggesting that single-stranded DNA may be threaded during unwinding. Homologs of all five conserved sequence motifs of the DnaB-like helicase family are found in RepA, and the topography of the monomer resembles RecA and the helicase domain of the bacteriophage T7 gp4 protein. In a modeled complex, ATP molecules are located at the subunit interfaces and clearly define adenine-binding and ATPase catalytic sites formed by amino acid residues located on adjacent monomers; most remarkable is the "arginine finger" Arg207 contributing to the active site in the adjacent monomer. This arrangement of active-site residues suggests cooperativity between monomers in ATP hydrolysis and helicase activity of RepA. The mechanism of DNA unwinding remains elusive, as RepA is 6-fold symmetric, contrasting the recently published asymmetric structure of the bacteriophage T7 gp4 helicase domain.  相似文献   

11.
Arabidopsis genes encoding enzymes for each of the eight steps in L-arginine (Arg) synthesis were identified, based upon sequence homologies with orthologs from other organisms. Except for N-acetylglutamate synthase (NAGS; EC 2.3.1.1), which is encoded by two genes, all remaining enzymes are encoded by single genes. Targeting predictions for these enzymes, based upon their deduced sequences, and subcellular fractionation studies, suggest that most enzymes of Arg synthesis reside within the plastid. Synthesis of the L-ornthine (Orn) intermediate in this pathway from L-glutamate occurs as a series of acetylated intermediates, as in most other organisms. An N-acetylornithine:glutamate acetyltransferase (NAOGAcT; EC 2.3.1.35) facilitates recycling of the acetyl moiety during Orn formation (cyclic pathway). A putative N-acetylornithine deacetylase (NAOD; EC 3.5.1.16), which participates in the "linear" pathway for Orn synthesis in some organisms, was also identified. Previous biochemical studies have indicated that allosteric regulation of the first and, especially, the second steps in Orn synthesis (NAGS; N-acetylglutamate kinase (NAGK), EC 2.7.2.8) by the Arg end-product are the major sites of metabolic control of the pathway in organisms using the cyclic pathway. Gene expression profiling for pathway enzymes further suggests that NAGS, NAGK, NAOGAcT and NAOD are coordinately regulated in response to changes in Arg demand during plant growth and development. Synthesis of Arg from Orn is further coordinated with pyrimidine nucleotide synthesis, at the level of allocation of the common carbamoyl-P intermediate.  相似文献   

12.
FK506‐binding protein 22 (FKBP22) from the psychrotophic bacterium Shewanella sp. SIB1 (SIB1 FKBP22) is a homodimeric protein with peptidyl prolyl cis‐trans isomerase (PPIase) activity. Each monomer consists of the N‐terminal domain responsible for dimerization and C‐terminal catalytic domain. To reveal interactions at the dimer interface of SIB1 FKBP22, the crystal structure of the N‐domain of SIB1 FKBP22 (SN‐FKBP22, residues 1‐68) was determined at 1.9 Å resolution. SN‐FKBP22 forms a dimer, in which each monomer consists of three helices (α1, α2, and α3N). In the dimer, two monomers have head‐to‐head interactions, in which residues 8–64 of one monomer form tight interface with the corresponding residues of the other. The interface is featured by the presence of a Val‐Leu knot, in which Val37 and Leu41 of one monomer interact with Val41 and Leu37 of the other, respectively. To examine whether SIB1 FKBP22 is dissociated into the monomers by disruption of this knot, the mutant protein V37R/L41R‐FKBP22, in which Val37 and Leu41 of SIB1 FKBP22 are simultaneously replaced by Arg, was constructed and biochemically characterized. This mutant protein was indistinguishable from the SIB1 FKBP22 derivative lacking the N‐domain in oligomeric state, far‐UV CD spectrum, thermal denaturation curve, PPIase activity, and binding ability to a folding intermediate of protein, suggesting that the N‐domain of V37R/L41R‐FKBP22 is disordered. We propose that a Val‐Leu knot at the dimer interface of SIB1 FKBP22 is important for dimerization and dimerization is required for folding of the N‐domain.  相似文献   

13.
PII is a highly conserved regulatory protein found in organisms across the three domains of life. In cyanobacteria and plants, PII relieves the feedback inhibition of the rate-limiting step in arginine biosynthesis catalyzed by N-acetylglutamate kinase (NAGK). To understand the molecular structural basis of enzyme regulation by PII, we have determined a 2.5-A resolution crystal structure of a complex formed between two homotrimers of PII and a single hexamer of NAGK from Arabidopsis thaliana bound to the metabolites N-acetylglutamate, ADP, ATP, and arginine. In PII, the T-loop and Trp(22) at the start of the alpha1-helix, which are both adjacent to the ATP-binding site of PII, contact two beta-strands as well as the ends of two central helices (alphaE and alphaG) in NAGK, the opposing ends of which form major portions of the ATP and N-acetylglutamate substrate-binding sites. The binding of Mg(2+).ATP to PII stabilizes a conformation of the T-loop that favors interactions with both open and closed conformations of NAGK. Interactions between PII and NAGK appear to limit the degree of opening and closing of the active-site cleft in opposition to a domain-separating inhibitory effect exerted by arginine, thus explaining the stimulatory effect of PII on the kinetics of arginine-inhibited NAGK.  相似文献   

14.
Bleomycin (Bm) N-acetyltransferase, BAT, is a self-resistance determinant in Bm-producing Streptomyces verticillus ATCC15003. In our present study, we crystallized BAT under both a terrestrial and a microgravity environment in the International Space Station. In addition to substrate-free BAT, the crystal structures of BAT in a binary complex with CoA and in a ternary complex with Bm and CoA were determined. BAT forms a dimer structure via interaction of its C-terminal domains in the monomers. However, each N-terminal domain in the dimer is positioned without mutual interaction. The tunnel observed in the N-terminal domain of BAT has two entrances: one that adopts a wide funnel-like structure necessary to accommodate the metal-binding domain of Bm, and another narrow entrance that accommodates acetyl-CoA (AcCoA). A groove formed on the dimer interface of two BAT C-terminal domains accommodates the DNA-binding domain of Bm. In a ternary complex of BAT, BmA2, and CoA, a thiol group of CoA is positioned near the primary amine of Bm at the midpoint of the tunnel. This proximity ensures efficient transfer of an acetyl group from AcCoA to the primary amine of Bm. Based on the BAT crystal structure and the enzymatic kinetic study, we propose that the catalytic mode of BAT takes an ordered-like mechanism.  相似文献   

15.
Phosphotransacetylase (EC 2.3.1.8) catalyzes reversible transfer of the acetyl group from acetyl phosphate to coenzyme A (CoA), forming acetyl-CoA and inorganic phosphate. Two crystal structures of phosphotransacetylase from the methanogenic archaeon Methanosarcina thermophila in complex with the substrate CoA revealed one CoA (CoA1) bound in the proposed active site cleft and an additional CoA (CoA2) bound at the periphery of the cleft. The results of isothermal titration calorimetry experiments are described, and they support the hypothesis that there are distinct high-affinity (equilibrium dissociation constant [KD], 20 microM) and low-affinity (KD, 2 mM) CoA binding sites. The crystal structures indicated that binding of CoA1 is mediated by a series of hydrogen bonds and extensive van der Waals interactions with the enzyme and that there are fewer of these interactions between CoA2 and the enzyme. Different conformations of the protein observed in the crystal structures suggest that domain movements which alter the geometry of the active site cleft may contribute to catalysis. Kinetic and calorimetric analyses of site-specific replacement variants indicated that there are catalytic roles for Ser309 and Arg310, which are proximal to the reactive sulfhydryl of CoA1. The reaction is hypothesized to proceed through base-catalyzed abstraction of the thiol proton of CoA by the adjacent and invariant residue Asp316, followed by nucleophilic attack of the thiolate anion of CoA on the carbonyl carbon of acetyl phosphate. We propose that Arg310 binds acetyl phosphate and orients it for optimal nucleophilic attack. The hypothesized mechanism proceeds through a negatively charged transition state stabilized by hydrogen bond donation from Ser309.  相似文献   

16.
Leptospira interrogans is the causative agent for leptospirosis, a zoonotic disease of global importance. In contrast with most other micro-organisms, L. interrogans employs a pyruvate pathway to synthesize isoleucine and LiCMS (L. interrogans citramalate synthase) catalyses the first reaction of the pathway which converts pyruvate and acetyl-CoA into citramalate, thus making it an attractive target for the development of antibacterial agents. We report here the crystal structures of the catalytic domain of LiCMS and its complexes with substrates, and kinetic and mutagenesis studies of LiCMS, which together reveal the molecular basis of the high substrate specificity and the catalytic mechanism of LiCMS. The catalytic domain consists of a TIM barrel flanked by an extended C-terminal region. It forms a homodimer in the crystal structure, and the active site is located at the centre of the TIM barrel near the C-terminal ends of the beta-strands and is composed of conserved residues of the beta-strands of one subunit and the C-terminal region of the other. The substrate specificity of LiCMS towards pyruvate against other alpha-oxo acids is dictated primarily by residues Leu(81), Leu(104) and Tyr(144), which form a hydrophobic pocket to accommodate the C(2)-methyl group of pyruvate. The catalysis follows the typical aldol condensation reaction, in which Glu(146) functions as a catalytic base to activate the methyl group of acetyl-CoA to form an enolated acetyl-CoA intermediate and Arg(16) as a general acid to stabilize the intermediate.  相似文献   

17.
Pantothenate kinase (PanK) catalyzes the first step in CoA biosynthesis and there are three human genes that express four isoforms with highly conserved catalytic core domains. Here we report the homodimeric structures of the catalytic cores of PanK1alpha and PanK3 in complex with acetyl-CoA, a feedback inhibitor. Each monomer adopts a fold of the actin kinase superfamily and the inhibitor-bound structures explain the basis for the allosteric regulation by CoA thioesters. These structures also provide an opportunity to investigate the structural effects of the PanK2 mutations that have been implicated in neurodegeneration. Biochemical and thermodynamic analyses of the PanK3 mutant proteins corresponding to PanK2 mutations show that mutant proteins with compromised activities and/or stabilities correlate with a higher incidence of the early onset of disease.  相似文献   

18.
N-acetylglutamate synthase (NAGS) is a mitochondrial enzyme that catalyzes the formation of N-acetylglutamate, an essential allosteric activator of carbamyl phosphate synthetase I, the first enzyme of the urea cycle. Liver NAGS deficiency has previously been found in a small number of patients with hyperammonemia. The mouse and human NAGS genes have recently been cloned and expressed in our laboratory. We searched for mutations in the NAGS gene of two families with presumed NAGS deficiency. The exons and exon/intron boundaries of the NAGS gene were sequenced from genomic DNA obtained from the parents of an infant from the Faroe Islands who died in the neonatal period and from two Hispanic sisters who presented with acute neonatal hyperammonemia. Both parents of the first patient were found to be heterozygous for a null mutation in exon 4 (TGG-->TAG, Trp324Ter). Both sisters from the second family were homozygous for a single base deletion in exon 4 (1025delG) causing a frameshift and premature termination of translation. The finding of deleterious mutations in the NAGS gene confirms the genetic origin of NAGS deficiency. This disorder can now be diagnosed by DNA testing allowing for carrier detection and prenatal diagnosis.  相似文献   

19.
Microbial degradation of phenylacetic acid proceeds via the hybrid pathway that includes formation of a coenzyme A thioester, ring hydroxylation, non‐oxygenolytic ring opening, and β‐oxidation‐like reactions. A phenylacetic acid degradation protein PaaG is a member of the crotonase superfamily, and is a candidate non‐oxygenolytic ring‐opening enzyme. The crystal structure of PaaG from Thermus thermophilus HB8 was determined at a resolution of 1.85 Å. PaaG consists of three identical subunits related by local three‐fold symmetry. The monomer is comprised of a spiral and a helical domain with a fold characteristic of the crotonase superfamily. A putative active site residue, Asp136, is situated in an active site cavity and surrounded by several hydrophobic and hydrophilic residues. The active site cavity is sufficiently large to accommodate a ring substrate. Two conformations are observed for helix H2 located adjacent to the active site. Helix H2 is kinked at Asn81 in two subunits, whereas it is kinked at Leu77 in the other subunit, and the side chain of Tyr80 is closer to Asp136. This indicates that catalytic reaction of PaaG may proceed with large conformational changes at the active site. Asp136 is the only conserved polar residue in the active site. It is located at the same position as those of 4‐chlorobenzoyl‐CoA dehalogenase and peroxisomal Δ32‐enoyl‐CoA isomerase, indicating that PaaG may undergo isomerization or a ring‐opening reaction via a Δ32‐enoyl‐CoA isomerase‐like mechanism. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Biosynthesis of the enediyne natural product dynemicin in Micromonospora chersina is initiated by DynE8, a highly reducing iterative type I polyketide synthase that assembles polyketide intermediates from the acetate units derived solely from malonyl-CoA. To understand the substrate specificity and the evolutionary relationship between the acyltransferase (AT) domains of DynE8, fatty acid synthase, and modular polyketide synthases, we overexpressed a 44-kDa fragment of DynE8 (hereafter named ATDYN10) encompassing its entire AT domain and the adjacent linker domain. The crystal structure at 1.4 Å resolution unveils a α/β hydrolase and a ferredoxin-like subdomain with the Ser-His catalytic dyad located in the cleft between the two subdomains. The linker domain also adopts a α/β fold abutting the AT catalytic domain. Co-crystallization with malonyl-CoA yielded a malonyl-enzyme covalent complex that most likely represents the acyl-enzyme intermediate. The structure explains the preference for malonyl-CoA with a conserved arginine orienting the carboxylate group of malonate and several nonpolar residues that preclude α-alkyl malonyl-CoA binding. Co-crystallization with acetyl-CoA revealed two noncovalently bound acetates generated by the enzymatic hydrolysis of acetyl-CoA that acts as an inhibitor for DynE8. This suggests that the AT domain can upload the acyl groups from either malonyl-CoA or acetyl-CoA onto the catalytic Ser651 residue. However, although the malonyl group can be transferred to the acyl carrier protein domain, transfer of the acetyl group to the acyl carrier protein domain is suppressed. Local structural differences may account for the different stability of the acyl-enzyme intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号