首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Runs of homozygosity (ROH) are extended tracts of adjacent homozygous single nucleotide polymorphisms (SNPs) that are more common in unrelated individuals than previously thought. It has been proposed that estimating ROH on a genome-wide level, by making use of the genome-wide single nucleotide polymorphism (SNP) data, will enable to indentify recessive variants underlying complex traits. Here, we examined ROH larger than 1.5 Mb individually and in combination for association with survival in 5974 participants of the Rotterdam Study. In addition, we assessed the role of overall homozygosity, expressed as a percentage of the autosomal genome that is in ROH longer than 1.5 Mb, on survival during a mean follow-up period of 12 years. None of these measures of homozygosity was associated with survival to old age.  相似文献   

2.
3.
A novel locus DFNB90 was mapped to 7p22.1-p15.3 by carrying out a genome scan in a multigenerational consanguineous family from Pakistan with autosomal recessive nonsyndromic hearing impairment (ARNSHI).DFNB90 is the eighth ARNSHI locus mapped to chromosome 7. A multipoint LOD score of 4.0 was obtained at a number of SNP marker loci spanning from rs1468996 (chromosome 7: 5.7 Mb) tors957960 (chromosome 7: 18.8 Mb). The 3-unit support interval and the region of homozygosity for DFNB90 spans from markers rs1553960 (chromosome 7: 4.9 Mb) to rs206198 (chromosome 7: 20.3 Mb). Candidate genes ACTB, BZW, OCM, MACC1, NXPH1, PRPS1L1, RAC1 and RPA3, which lie within the DFNB90 region, were sequenced and no potentially causal variants were identified.  相似文献   

4.
ABSTRACT: BACKGROUND: Runs of homozygosity (ROH) are contiguous lengths of homozygous genotypes that are present in an individual due to parents transmitting identical haplotypes to their offspring. The extent and frequency of ROHs may inform on the ancestry of an individual and its population. Here we use high density (n = 777,962) bi-allelic SNPs in a range of cattle breed samples to correlate ROH with the pedigree-based inbreeding coefficients and to validate subsequent analyses using 54,001 SNP genotypes. This study provides a first testing of the inference drawn from ROH through comparison with estimates of inbreeding from calculations based on the detailed pedigree data available for several breeds. RESULTS: All animals genotyped on the HD panel displayed at least one ROH that was between 1--5 Mb in length with certain regions of the genome more likely to be involved in a ROH than others. Strong correlations (r = 0.75, p < 0.0001) existed between the pedigree-based inbreeding coefficient and a statistic based on sum of ROH of length > 0.5 KB and suggests that in the absence of an animal's pedigree data, the extent of a genome under ROH may be used to infer aspects of recent population history even from relatively few samples. CONCLUSIONS: Our findings suggest that ROH are frequent across all breeds but differing patterns of ROH length and burden illustrate variations in breed origins and recent management.  相似文献   

5.
《Genomics》2021,113(3):1407-1415
Genome-wide pattern of runs of homozygosity (ROH) across ovine genome can provide a useful resource for studying diversity and demography history in sheep. We analyzed 50 k SNPs chip data of 2536 animals to identify pattern, distribution and level of ROHs in 68 global sheep populations. A total of 60,301 ROHs were detected in all breeds. The majority of the detected ROHs were <16 Mb and the average total number of ROHs per individual was 23.8 ± 13.8. The ROHs greater than 1 Mb covered on average 8.2% of the sheep autosomes, 1% of which was related to the ROHs with 1–4 Mb of length. The mean sum of ROH length in two-thirds of the populations was less than 250 Mb ranging from 21.7 to near 570 Mb. The level of genomic inbreeding was relatively low. The average of the inbreeding coefficients based on ROH (FROH) was 0.09 ± 0.05. It was rising in a stepwise manner with distance from Southwest Asia and maximum values were detected in North European breeds. A total of 465 ROH hotspots were detected in 25 different autosomes which partially surrounding 257 Refseq genes across the genome. Most of the detected genes were related to growth, body weight, meat production and quality, wool production and pigmentation. In conclusion, our analysis showed that the sheep genome, compared with other livestock species such as cattle and pig, displays low levels of homozygosity and appropriate genetic diversity for selection response and genetic merit gain.  相似文献   

6.
畜禽育种中传统上利用系谱信息评估群体近交程度?近年来随着高通量单核苷酸多态(single nucleotide polymorphism, SNP)检测成本降低,使利用基因组信息分析真实的基因组近交程度成为可能?本研究利用牛54 K SNP 芯片数据统计了北京地区2107头荷斯坦牛基因组上的长纯合片段(runs of homozygosity, ROH)的频率和分布,计算了2种基因组近交系数,即染色体上ROH的长度占基因组总长度的比例(Froh)及个体所有标记基因型中纯合子所占比例,即基因组纯合度(Fhom),进而分析了两种基因组近交系数之间的相关性以及基因组近交与系谱近交系数之间的相关性?结果表明,共检测到44 676个ROH片段,其长度主要分布在1~10 Mb之间?不同长度的ROH散布于个体基因组内,短ROH较长ROH更为常见?ROH在染色体上并非均匀分布,ROH频率最高的区域为10号染色体中部?两种基因组近交系数之间相关性很高(91%以上),但基因组近交与系谱近交之间的相关性较低(低于50%)?系谱完整性是影响基因组近交与系谱近交结果一致的重要因素,基因组近交系数能够反映个体真实的近交,本研究为评估群体近交水平提供了有力工具?  相似文献   

7.
Genome-wide patterns of homozygosity runs and their variation across individuals provide a valuable and often untapped resource for studying human genetic diversity and evolutionary history. Using genotype data at 577,489 autosomal SNPs, we employed a likelihood-based approach to identify runs of homozygosity (ROH) in 1,839 individuals representing 64 worldwide populations, classifying them by length into three classes—short, intermediate, and long—with a model-based clustering algorithm. For each class, the number and total length of ROH per individual show considerable variation across individuals and populations. The total lengths of short and intermediate ROH per individual increase with the distance of a population from East Africa, in agreement with similar patterns previously observed for locus-wise homozygosity and linkage disequilibrium. By contrast, total lengths of long ROH show large interindividual variations that probably reflect recent inbreeding patterns, with higher values occurring more often in populations with known high frequencies of consanguineous unions. Across the genome, distributions of ROH are not uniform, and they have distinctive continental patterns. ROH frequencies across the genome are correlated with local genomic variables such as recombination rate, as well as with signals of recent positive selection. In addition, long ROH are more frequent in genomic regions harboring genes associated with autosomal-dominant diseases than in regions not implicated in Mendelian diseases. These results provide insight into the way in which homozygosity patterns are produced, and they generate baseline homozygosity patterns that can be used to aid homozygosity mapping of genes associated with recessive diseases.  相似文献   

8.
9.
The Mangalitza pig breed has suffered strong population reductions due to competition with more productive cosmopolitan breeds. In the current work, we aimed to investigate the effects of this sustained demographic recession on the genomic diversity of Mangalitza pigs. By using the Porcine Single Nucleotid Polymorphism BeadChip, we have characterized the genome-wide diversity of 350 individuals including 45 Red Mangalitza (number of samples; n=20 from Hungary and n=25 from Romania), 37 Blond Mangalitza, 26 Swallow-belly Mangalitza, 48 Blond Mangalitza × Duroc crossbreds, 5 Bazna swine, 143 pigs from the Hampshire, Duroc, Landrace, Large White and Pietrain breeds and 46 wild boars from Romania (n=18) and Hungary (n=28). Performance of a multidimensional scaling plot showed that Landrace, Large White and Pietrain pigs clustered independently from Mangalitza pigs and Romanian and Hungarian wild boars. The number and total length of ROH (runs of homozygosity), as well as FROH coefficients (proportion of the autosomal genome covered ROH) did not show major differences between Mangalitza pigs and other wild and domestic pig populations. However, Romanian and Hungarian Red Mangalitza pigs displayed an increased frequency of very long ROH (>30 Mb) when compared with other porcine breeds. These results indicate that Red Mangalitza pigs underwent recent and strong inbreeding probably as a consequence of severe reductions in census size.  相似文献   

10.
Runs of homozygosity (ROH) are widely used as predictors of whole-genome inbreeding levels in cattle. They identify regions that have an unfavorable effect on a phenotype when homozygous, but also identify the genes associated with traits of economic interest present in these regions. Here, the distribution of ROH islands and enriched genes within these regions in four dairy cattle breeds were investigated. Cinisara (71), Modicana (72), Reggiana (168) and Italian Holstein (96) individuals were genotyped using the 50K v2 Illumina BeadChip. The genomic regions most commonly associated with ROHs were identified by selecting the top 1% of the single nucleotide polymorphisms (SNPs) most commonly observed in the ROH of each breed. In total, 11 genomic regions were identified in Cinisara and Italian Holstein, and eight in Modicana and Reggiana, indicating an increased ROH frequency level. Generally, ROH islands differed between breeds. The most homozygous region (>45% of individuals with ROH) was found in Modicana on chromosome 6 within a quantitative trail locus affecting milk fat and protein concentrations. We identified between 126 and 347 genes within ROH islands, which are involved in multiple signaling and signal transduction pathways in a wide variety of biological processes. The gene ontology enrichment provided information on possible molecular functions, biological processes and cellular components under selection related to milk production, reproduction, immune response and resistance/susceptibility to infection and diseases. Thus, scanning the genome for ROH could be an alternative strategy to detect genomic regions and genes related to important economic traits.  相似文献   

11.
A genome scan was conducted to map the autosomal recessive lethal disorder brachygnathia, cardiomegaly and renal hypoplasia syndrome (BCRHS) in Poll Merino sheep. The scan involved 10 affected and 27 unaffected animals from a single Poll Merino/Merino sheep flock, which were genotyped with the Illumina Ovine SNP50 BeadChip. Association and homozygosity mapping analyses located the disorder in a region comprising 20 consecutive SNPs spanning 1.1 Mb towards the distal end of chromosome OAR2. All affected animals and none of the unaffected animals were homozygous for the associated haplotype in this region. These results provide the basis for identifying the causative mutation(s) and should enable the development of a DNA test to identify carriers in the Poll Merino sheep population. Understanding the molecular control of BCRHS may provide insight into the fundamental genetic control and regulation of the affected organ systems.  相似文献   

12.
Single nucleotide polymorphism (SNP) genotyping tools, which can analyse thousands of SNPs covering the whole genome, have opened new opportunities to estimate the inbreeding level of animals directly using genome information. One of the most commonly used genomic inbreeding measures considers the proportion of the autosomal genome covered by runs of homozygosity (ROH), which are defined as continuous and uninterrupted chromosome portions showing homozygosity at all loci. In this study, we analysed the distribution of ROH in three commercial pig breeds (Italian Large White, n = 1968; Italian Duroc, n = 573; and Italian Landrace, n = 46) and four autochthonous breeds (Apulo-Calabrese, n = 90; Casertana, n = 90; Cinta Senese, n = 38; and Nero Siciliano, n = 48) raised in Italy, using SNP data generated from Illumina PorcineSNP60 BeadChip. We calculated ROH-based inbreeding coefficients (FROH) using ROH of different minimum length (1, 2, 4, 8, 16 Mbp) and compared them with several other genomic inbreeding coefficients (including the difference between observed and expected number of homozygous genotypes (FHOM)) and correlated all these genomic-based measures with the pedigree inbreeding coefficient (FPED) calculated for the pigs of some of these breeds. Autochthonous breeds had larger mean size of ROH than all three commercial breeds. FHOM was highly correlated (0.671 to 0.985) with FROH measures in all breeds. Apulo-Calabrese and Casertana had the highest FROH values considering all ROH minimum lengths (ranging from 0.273 to 0.189 and from 0.226 to 0.152, moving from ROH of minimum size of 1 Mbp (FROH1) to 16 Mbp (FROH16)), whereas the lowest FROH values were for Nero Siciliano (from 0.072 to 0.051) and Italian Large White (from 0.117 to 0.042). FROH decreased as the minimum length of ROH increased for all breeds. Italian Duroc had the highest correlations between all FROH measures and FPED (from 0.514 to 0.523) and between FHOM and FPED (0.485). Among all analysed breeds, Cinta Senese had the lowest correlation between FROH and FPED. This might be due to the imperfect measure of FPED, which, mainly in local breeds raised in extensive production systems, cannot consider a higher level of pedigree errors and a potential higher relatedness of the founder population. It appeared that ROH better captured inbreeding information in the analysed breeds and could complement pedigree-based inbreeding coefficients for the management of these genetic resources.  相似文献   

13.
Overlapping runs of homozygosity (ROH islands) shared by the majority of a population are hypothesized to be the result of selection around a target locus. In this study we investigated the impact of selection for coat color within the Noriker horse on autozygosity and ROH patterns. We analyzed overlapping homozygous regions (ROH islands) for gene content in fragments shared by more than 50% of horses. Long‐term assortative mating of chestnut horses and the small effective population size of leopard spotted and tobiano horses resulted in higher mean genome‐wide ROH coverage (SROH) within the range of 237.4–284.2 Mb, whereas for bay, black and roan horses, where rotation mating is commonly applied, lower autozygosity (SROH from 176.4–180.0 Mb) was determined. We identified seven common ROH islands considering all Noriker horses from our dataset. Specific islands were documented for chestnut, leopard spotted, roan and bay horses. The ROH islands contained, among others, genes associated with body size (ZFAT, LASP1 and LCORL/NCAPG), coat color (MC1R in chestnut and the factor PATN1 in leopard spotted horses) and morphogenesis (HOXB cluster in all color strains except leopard spotted horses). This study demonstrates that within a closed population sharing the same founders and ancestors, selection on a single phenotypic trait, in this case coat color, can result in genetic fragmentation affecting levels of autozygosity and distribution of ROH islands and enclosed gene content.  相似文献   

14.
Inbreeding has long been recognized as a primary cause of fitness reduction in both wild and domesticated populations. Consanguineous matings cause inheritance of haplotypes that are identical by descent (IBD) and result in homozygous stretches along the genome of the offspring. Size and position of regions of homozygosity (ROHs) are expected to correlate with genomic features such as GC content and recombination rate, but also direction of selection. Thus, ROHs should be non-randomly distributed across the genome. Therefore, demographic history may not fully predict the effects of inbreeding. The porcine genome has a relatively heterogeneous distribution of recombination rate, making Sus scrofa an excellent model to study the influence of both recombination landscape and demography on genomic variation. This study utilizes next-generation sequencing data for the analysis of genomic ROH patterns, using a comparative sliding window approach. We present an in-depth study of genomic variation based on three different parameters: nucleotide diversity outside ROHs, the number of ROHs in the genome, and the average ROH size. We identified an abundance of ROHs in all genomes of multiple pigs from commercial breeds and wild populations from Eurasia. Size and number of ROHs are in agreement with known demography of the populations, with population bottlenecks highly increasing ROH occurrence. Nucleotide diversity outside ROHs is high in populations derived from a large ancient population, regardless of current population size. In addition, we show an unequal genomic ROH distribution, with strong correlations of ROH size and abundance with recombination rate and GC content. Global gene content does not correlate with ROH frequency, but some ROH hotspots do contain positive selected genes in commercial lines and wild populations. This study highlights the importance of the influence of demography and recombination on homozygosity in the genome to understand the effects of inbreeding.  相似文献   

15.
The population of Spanish sheep has decreased from 24 to 15 million heads in the last 75 years due to multiple social and economic factors. Such a demographic reduction might have caused an increase in homozygosity and inbreeding, thus limiting the viability of local breeds with excellent adaptations to harsh ecosystems. The main goal of our study was to investigate the homozygosity patterns of 11 Spanish ovine breeds and to elucidate the relationship of these Spanish breeds with reference populations from Europe, Africa and the Near East. By using Ovine SNP50 BeadChip data retrieved from previous publications, we have found that the majority of studied Spanish ovine breeds have close genetic relatedness with other European populations; the one exception is the Canaria de Pelo breed, which is similar to North African breeds. Our analysis has also demonstrated that, with few exceptions, the genomes of Spanish sheep harbor fewer than 50 runs of homozygosity (ROH) with a total length of less than 350 Mb. Moreover, the frequencies of very long ROH (>30 Mb) are very low, and the inbreeding coefficients (FROH) are generally small (FROH < 0.10), ranging from 0.008 (Rasa Aragonesa) to 0.086 (Canaria de Pelo). The low levels of homozygosity observed in the 11 Spanish sheep under analysis might be due to their extensive management and the high number of small to medium farms.  相似文献   

16.
An autosomal recessive form of cerebellar abiotrophy occurs in Australian Kelpie dogs. Clinical signs range from mild ataxia with intention tremor to severe ataxia with seizures. A whole‐genome mapping analysis was performed using Affymetrix Canine SNP array v2 on 11 affected and 19 control dogs, but there was no significant association with disease. A homozygosity analysis identified a three megabase region likely to contain the disease mutation. The region spans 29.8–33 Mb on chromosome 3, for which all affected dogs were homozygous for a common haplotype. Microsatellite markers were developed in the candidate region for linkage analysis that resulted in a logarithm of odds score suggestive of linkage. The candidate region contains 29 genes, none of which are known to cause ataxia.  相似文献   

17.

Background

Inbreeding reduces the fitness of individuals by increasing the frequency of homozygous deleterious recessive alleles. Some insight into the genetic architecture of fitness, and other complex traits, can be gained by using single nucleotide polymorphism (SNP) data to identify regions of the genome which lead to reduction in performance when identical by descent (IBD). Here, we compared the effect of genome-wide and location-specific homozygosity on fertility and milk production traits in dairy cattle.

Methods

Genotype data from more than 43 000 SNPs were available for 8853 Holstein and 4138 Jersey dairy cows that were part of a much larger dataset that had pedigree records (338 696 Holstein and 64 049 Jersey animals). Measures of inbreeding were based on: (1) pedigree data; (2) genotypes to determine the realised proportion of the genome that is IBD; (3) the proportion of the total genome that is homozygous and (4) runs of homozygosity (ROH) which are stretches of the genome that are homozygous.

Results

A 1% increase in inbreeding based either on pedigree or genomic data was associated with a decrease in milk, fat and protein yields of around 0.4 to 0.6% of the phenotypic mean, and an increase in calving interval (i.e. a deterioration in fertility) of 0.02 to 0.05% of the phenotypic mean. A genome-wide association study using ROH of more than 50 SNPs revealed genomic regions that resulted in depression of up to 12.5 d and 260 L for calving interval and milk yield, respectively, when completely homozygous.

Conclusions

Genomic measures can be used instead of pedigree-based inbreeding to estimate inbreeding depression. Both the diagonal elements of the genomic relationship matrix and the proportion of homozygous SNPs can be used to measure inbreeding. Longer ROH (>3 Mb) were found to be associated with a reduction in milk yield and captured recent inbreeding independently and in addition to overall homozygosity. Inbreeding depression can be reduced by minimizing overall inbreeding but maybe also by avoiding the production of offspring that are homozygous for deleterious alleles at specific genomic regions that are associated with inbreeding depression.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0071-7) contains supplementary material, which is available to authorized users.  相似文献   

18.
The fungus Ascochyta rabiei is the causal agent of Ascochyta blight of chickpea and the most serious threat to chickpea production. Little is currently known about the genome size or organization of A. rabiei. Given recent genome sequencing efforts, characterization of the genome at a population scale will provide a framework for genome interpretation and direction of future resequencing efforts. Electrophoretic karyotype profiles of 112 isolates from 21 countries revealed 12–16 chromosomes between 0.9 Mb and 4.6 Mb with an estimated genome size of 23 Mb–34 Mb. Three general karyotype profiles A, B, and C were defined by the arrangement of the largest chromosomes. Approximately one-third of isolates (group A) possessed a chromosome larger than 4.0 Mb that was absent from group B and C isolates. The ribosomal RNA gene (rDNA) cluster was assigned to the largest chromosome in all except four isolates (group C) whose rDNA cluster was located on the second largest chromosome (3.2 Mb). Analysis of progeny from an in vitro sexual cross between two group B isolates revealed one of 16 progeny with an rDNA-encoding chromosome larger than 4.0 Mb similar to group A isolates, even though a chromosome of this size was not present in either parent. No expansion of the rDNA cluster was detected in the progeny, indicating the increase in chromosome size was not due to an expansion in number of rDNA repeats. The karyotype of A. rabiei is relatively conserved when compared with published examples of asexual ascomycetes, but labile with the potential for large scale chromosomal rearrangements during meiosis. The results of this study will allow for the targeted sequencing of specific isolates to determine the molecular mechanisms of karyotype variation within this species.  相似文献   

19.
Yang HC  Chang LC  Liang YJ  Lin CH  Wang PL 《PloS one》2012,7(4):e34840
Rheumatoid arthritis (RA) is a chronic inflammatory disorder with a polygenic mode of inheritance. This study examined the hypothesis that runs of homozygosity (ROHs) play a recessive-acting role in the underlying RA genetic mechanism and identified RA-associated ROHs. Ours is the first genome-wide homozygosity association study for RA and characterized the ROH patterns associated with RA in the genomes of 2,000 RA patients and 3,000 normal controls of the Wellcome Trust Case Control Consortium. Genome scans consistently pinpointed two regions within the human major histocompatibility complex region containing RA-associated ROHs. The first region is from 32,451,664 bp to 32,846,093 bp (-log10(p)>22.6591). RA-susceptibility genes, such as HLA-DRB1, are contained in this region. The second region ranges from 32,933,485 bp to 33,585,118 bp (-log10(p)>8.3644) and contains other HLA-DPA1 and HLA-DPB1 genes. These two regions are physically close but are located in different blocks of linkage disequilibrium, and ~40% of the RA patients' genomes carry these ROHs in the two regions. By analyzing homozygote intensities, an ROH that is anchored by the single nucleotide polymorphism rs2027852 and flanked by HLA-DRB6 and HLA-DRB1 was found associated with increased risk for RA. The presence of this risky ROH provides a 62% accuracy to predict RA disease status. An independent genomic dataset from 868 RA patients and 1,194 control subjects of the North American Rheumatoid Arthritis Consortium successfully validated the results obtained using the Wellcome Trust Case Control Consortium data. In conclusion, this genome-wide homozygosity association study provides an alternative to allelic association mapping for the identification of recessive variants responsible for RA. The identified RA-associated ROHs uncover recessive components and missing heritability associated with RA and other autoimmune diseases.  相似文献   

20.
Distal deletion of chromosome Ip in ductal carcinoma of the breast.   总被引:9,自引:0,他引:9       下载免费PDF全文
By use of recombinant DNA probes that correspond to genetic loci residing on human chromosome 1, DNA samples from 37 ductal breast carcinomas and constitutional DNA from the same individuals were tested for loss of heterozygosity. A high frequency (41%) of reduction to homozygosity was detected with the probe p1-79, which recognizes the highly polymorphic locus D1Z2, localized on 1p36. Loss of heterozygosity at other chromosome 1 loci was much less common, not exceeding a frequency of 10%, and was never observed in the absence of the D1Z2 loss. Somatic loss of heterozygosity at D1Z2 was more frequent in patients with a strong family history of breast cancer (60%), in patients with early diagnosis (before 45 years of age) (70%), and in those with multiple tumors or tumor foci (50%) than in patients with none of the characteristics of hereditary tumors (21%). No associations were observed between loss of heterozygosity and prognostic factors. These results suggest that inactivation of a tumor suppressor gene located on the distal portion of chromosome 1p, alone or combined with other genetic changes, may represent a fundamental step in the pathogenesis of ductal carcinoma of the breast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号