首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The genomes of grass family species have three paralogs of APETALA1/FRUITFULL (AP1/FUL)-like genes (FUL1, FUL2 and FUL3) that are derived from the FUL lineage. In this study, we focus on the different roles of the wheat AP1/FUL-like genes, WFUL1 (identical to VRN1), WFUL2 and WFUL3, during the transition from vegetative to reproductive growth. Sequence analysis indicated that there was a high level of variability in the amino acid sequence of the C-domain among three WFUL genes. Expression analyses using the spring wheat cultivar Chinese Spring indicated that WFUL1/VRN1 was expressed in leaves as well as spike primordia of non-vernalized plants at the vegetative stage just before phase transition, while WFUL2 and WFUL3 were not expressed in leaves. This result indicates that WFUL1/VRN1 performs a distinct role in leaves before phase transition. In young spikes, WFUL1/VRN1 and WFUL3 were expressed in all developing floral organs, whereas WFUL2 expression was restricted in the floral organs to the lemma and palea. Furthermore, yeast two-hybrid and three-hybrid analyses revealed that WFUL2, but not WFUL1/VRN1 or WFUL3, interacted with class B and class E proteins. These results suggest that WFUL2 of wheat has class A functions in specifying the identities of floral meristems and outer floral organs (lemma and palea) through collaboration with class B and class E genes.  相似文献   

3.
The impact of the season on flowering time and the organization and morphogenesis of the reproductive structures are described in three tomato mutants: compound inflorescence (s), single flower truss (sft), and jointless (j), respectively, compared with their wild-type cultivars Ailsa Craig (AC), Platense (Pl), and Heinz (Hz). In all environmental conditions, the sft mutant flowered significantly later than its corresponding Pl cultivar while flowering time in j was only marginally, but consistently, delayed compared with Hz. The SFT gene and, to a lesser extent, the J gene thus appear to be constitutive flowering promoters. Flowering in s was delayed in winter but not in summer compared with the AC cultivar, suggesting the existence of an environmentally regulated pathway for the control of floral transition. The reproductive structure of tomato is a raceme-like inflorescence and genes regulating its morphogenesis may thus be divided into inflorescence and floral meristem identity genes as in Arabidopsis. The s mutant developed highly branched inflorescences bearing up to 200 flowers due to the conversion of floral meristems into inflorescence meristems. The S gene appears to be a floral meristem identity gene. Both sft and j mutants formed reproductive structures containing flowers and leaves and reverting to a vegetative sympodial growth. The SFT gene appears to regulate the identity of the inflorescence meristem of tomato and is also involved, along with the J gene, in the maintenance of this identity, preventing reversion to a vegetative identity. These results are discussed in relation to knowledge accumulated in Arabidopsis and to domestication processes.  相似文献   

4.
Duplicated APETALA1/FRUITFULL (AP1/FUL) genes show distinct but overlapping patterns of expression within rice (Oryza sativa) and within ryegrass (Lolium temulentum), suggesting discrete functional roles in the transition to flowering, specification of spikelet meristem identity, and specification of floral organ identity. In this study, we analyzed the expression of the AP1/FUL paralogues FUL1 and FUL2 across phylogenetically disparate grasses to test hypotheses of gene function. In combination with other studies, our data support similar roles for both genes in spikelet meristem identity, a general role for FUL1 in floral organ identity, and a more specific role for FUL2 in outer floral whorl identity. In contrast to Arabidopsis AP1/FUL genes, expression of FUL1 and FUL2 is consistent with an early role in the transition to flowering. In general, FUL1 has a wider expression pattern in all spikelet organs than FUL2, but both genes are expressed in all spikelet organs in some cereals. FUL1 and FUL2 appear to have multiple redundant functions in early inflorescence development. We hypothesize that sub-functionalization of FUL2 and interaction of FUL2 with LHS1 could specify lemma and palea identity in the grass floret.  相似文献   

5.
6.
The duplicated grass APETALA1/FRUITFULL (AP1/FUL) genes have distinct but overlapping patterns of expression, suggesting their discrete roles in transition to flowering, specification of spikelet meristem identity and specification of floral organ identity. In this study, we analyzed the expression patterns and functions of four AP1/FUL paralogs (BdVRN1, BdFUL2, BdFUL3 and BdFUL4) in Brachypodium distachyon, a model plant for the temperate cereals and related grasses. Among the four genes tested, only BdVRN1 could remember the prolonged cold treatment. The recently duplicated BdVRN1 and BdFUL2 genes were expressed in a highly consistent manner and ectopic expressions of them caused similar phenotypes such as extremely early flowering and severe morphological alterations of floral organs, indicating their redundant roles in floral transition, inflorescence development and floral organ identity. In comparison, ectopic expressions of BdFUL3 and BdFUL4 only caused a moderate early flowering phenotype, suggesting their divergent function. In yeast two‐hybrid assay, both BdVRN1 and BdFUL2 physically interact with SEP proteins but only BdFUL2 is able to form a homodimer. BdVRN1 also interacts weakly with BdFUL2. Our results indicate that, since the separation of AP1/FUL genes in grasses, the process of sub‐ or neo‐functionalization has occurred and paralogs function redundantly and/or separately in flowering competence and inflorescence development.  相似文献   

7.
8.
9.
Determination of Arabidopsis floral meristem identity by AGAMOUS.   总被引:18,自引:1,他引:17       下载免费PDF全文
Y Mizukami  H Ma 《The Plant cell》1997,9(3):393-408
Determinate growth of floral meristems in Arabidopsis requires the function of the floral regulatory gene AGAMOUS (AG). Expression of AG mRNA in the central region of floral meristems relies on the partially overlapping functions of the LEAFY (LFY) and APETALA1 (AP1) genes, which promote initial floral meristem identity. Here, we provide evidence that AG function is required for the final definition of floral meristem identity and that constitutive AG function can promote, independent of LFY and AP1 functions, the determinate floral state in the center of reproductive meristems. Loss-of-function analysis showed that the indeterminate central region of the ag mutant floral meristem undergoes conversion to an inflorescence meristem when long-day-dependent flowering stimulus is removed. Furthermore, gain-of-function analysis demonstrated that ectopic AG function results in precocious flowering and the formation of terminal flowers at apices of both the primary inflorescence and axillary branches of transgenic Arabidopsis plants in which AG expression is under the control of the 35S promoter from cauliflower mosaic virus. Similar phenotypes were also observed in lfy ap1 double mutants carrying a 35S-AG transgene. Together, these results indicate that AG is a principal developmental switch that controls the transition of meristem activity from indeterminate to determinate.  相似文献   

10.
11.
Regulation of floral transition and inflorescence development is crucial for plant reproductive success. FLOWERING LOCUS T (FT) is one of the central players in the flowering genetic regulatory network, whereas FLOWERING LOCUS D (FD), an interactor of FT and TERMINAL FLOWER 1 (TFL1), plays significant roles in both floral transition and inflorescence development. Here we show the genetic regulatory networks of floral transition and inflorescence development in Medicago truncatula by characterizing MtFTa1 and MtFDa and their genetic interactions with key inflorescence meristem (IM) regulators. Both MtFTa1 and MtFDa promote flowering; the double mutant mtfda mtfta1 does not proceed to floral transition. RNAseq analysis reveals that a broad range of genes involved in flowering regulation and flower development are up- or downregulated by MtFTa1 and/or MtFDa mutations. Furthermore, mutation of MtFDa also affects the inflorescence architecture. Genetic analyses of MtFDa, MtFTa1, MtTFL1, and MtFULc show that MtFDa is epistatic to MtFULc and MtTFL1 in controlling IM identity. Our results demonstrate that MtFTa1 and MtFDa are major flowering regulators in M. truncatula, and MtFDa is essential both in floral transition and secondary inflorescence development. The study will advance our understanding of the genetic regulation of flowering time and inflorescence development in legumes.

Double mutation of two flowering genes in Medicago truncatula completely blocks the floral transition, resulting in significantly more biomass compared to wild-type.  相似文献   

12.
13.
14.
15.
The degree to which developmental genetic pathways are conserved across distantly related organisms is a major question in biology. In Arabidopsis thaliana (L.) Heynh., inflorescence development is initiated in response to a combination of external and internal floral inductive signals that are perceived across the whole plant, but are integrated within the shoot apical meristem. Recently, it was demonstrated that SQUAMOSA‐PROMOTER BINDING PROTEIN (SBP)‐box proteins regulate A. thaliana flowering time by mediating signals from the autonomous and photoperiod pathways, and by directly activating key genes involved in inflorescence and floral meristem identity, including FRUITFULL (FUL), APETALA1 (AP1) and LEAFY (LFY). In the distantly related core eudicot species Antirrhinum majus L., paralogous SBP‐box proteins SBP1 and SBP2 have likewise been implicated in regulating the AP1 ortholog SQUAMOSA (SQUA). To test the hypothesis that SBP‐box genes are also involved in the floral induction of A. majus, we used a reverse genetic approach to silence SBP1. SBP1‐silenced lines are late to nonflowering, and show reduced apical dominance. Furthermore, expression and sequence analyses suggest that the SBP1‐mediated transition to flowering occurs through the positive regulation of FUL/LFY homologs. Together, these data outline the utility of virus‐induced gene silencing in A. majus, and provide new insight into the conservation of flowering time genetic pathways across core eudicots.  相似文献   

16.
The formation of flowers starts when floral meristems develop on the flanks of the inflorescence meristem. In Arabidopsis the identity of floral meristems is promoted and maintained by APETALA1 (AP1) and CAULIFLOWER (CAL). In the ap1 cal double mutant the meristems that develop on the flanks of the inflorescence meristem are unable to establish floral meristem identity and develop as inflorescence meristems on which new inflorescence meristems subsequently proliferate. We demonstrate in contrast to previous models that AGAMOUS-LIKE 24 (AGL24) and SHORT VEGETATIVE PHASE (SVP) are also floral meristem identity genes since the ap1-10 agl24-2 svp-41 triple mutant continuously produces inflorescence meristems in place of flowers. Furthermore, our results explain how AP1 switches from a floral meristem identity factor to a component that controls floral organ identity.  相似文献   

17.
18.
19.
The expression of the Agrobacterium rhizogenes rolD oncogene induces precocious floral transition and strong flowering potential in tobacco and tomato. Here, we describe specific developmental effects induced by expression of rolD in Arabidopsis. We show that floral transition, as histologically monitored, occurred in rolD- plants earlier than in wild type, and this was coupled with a premature and enhanced formation of vegetative and reproductive axillary bud meristems. Furthermore, CYP79F1/SUPERSHOOT/BUSHY (SPS), a gene that negatively controls shoot branching in Arabidopsis and involved in glucosinolate metabolism and in cytokinin and auxin homeostasis, was down-regulated in rolD plants. The multiplication of post-embryonic meristems was also observed in the root system, with enhanced adventitious root formation. This result was confirmed by thin cell layer response in vitro, both under hormone-free and standard rooting conditions. However, the formation of lateral root meristems was not affected by rolD expression. Our results show that rolD accelerates and enhances specific post-embryonic meristems in Arabidopsis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号