首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cat's claw (Doxantha unguis-cati L.) vine accumulates nearly 80% palmitoleic acid (16:1Δ9) plus cis-vaccenic acid (18:1Δ11) in its seed oil. To characterize the biosynthetic origin of these unusual fatty acids, cDNAs for acyl-acyl carrier protein (acyl-ACP) desaturases were isolated from developing cat's claw seeds. The predominant acyl-ACP desaturase cDNA identified encoded a polypeptide that is closely related to the stearoyl (Δ9–18:0)-ACP desaturase from castor (Ricinis communis L.) and other species. Upon expression in Escherichia coli, the cat's claw polypeptide functioned as a Δ9 acyl-ACP desaturase but displayed a distinct substrate specificity for palmitate (16:0)-ACP rather than stearate (18:0)-ACP. Comparison of the predicted amino acid sequence of the cat's claw enzyme with that of the castor Δ9–18:0-ACP desaturase suggested that a single amino acid substitution (L118W) might account in large part for the differences in substrate specificity between the two desaturases. Consistent with this prediction, conversion of leucine-118 to tryptophan in the mature castor Δ9–18:0-ACP desaturase resulted in an 80-fold increase in the relative specificity of this enzyme for 16:0-ACP. The alteration in substrate specificity observed in the L118W mutant is in agreement with a crystallographic model of the proposed substrate-binding pocket of the castor Δ9–18:0-ACP desaturase.  相似文献   

2.
Acyl-acyl carrier protein (ACP) desaturases function to position a single double bond into an acyl-ACP substrate and are best represented by the ubiquitous Delta9 18:0-ACP desaturase. Several variant acyl-ACP desaturases have also been identified from species that produce unusual monoenoic fatty acids. All known acyl-ACP desaturase enzymes use ferredoxin as the electron-donating cofactor, and in almost all previous studies the photosynthetic form of ferredoxin rather than the non-photosynthetic form has been used to assess activity. We have examined the influence of different forms of ferredoxin on acyl-ACP desaturases. Using combinations of in vitro acyl-ACP desaturase assays and [(14)C]malonyl-coenzyme A labeling studies, we have determined that heterotrophic ferredoxin isoforms support up to 20-fold higher unusual acyl-ACP desaturase activity in coriander (Coriandrum sativum), Thunbergia alata, and garden geranium (Pelargonium x hortorum) when compared with photosynthetic ferredoxin isoforms. Heterotrophic ferredoxin also increases activity of the ubiquitous Delta9 18:0-ACP desaturase 1.5- to 3.0-fold in both seed and leaf extracts. These results suggest that ferredoxin isoforms may specifically interact with acyl-ACP desaturases to achieve optimal enzyme activity and that heterotrophic isoforms of ferredoxin may be the in vivo electron donor for this reaction.  相似文献   

3.
Suh MC  Schultz DJ  Ohlrogge JB 《Planta》2002,215(4):584-595
Unusual monounsaturated fatty acids are major constituents (greater than 80%) in seeds of Coriandrum sativum L. (coriander) and Thunbergia alata Bojer, as well as in glandular trichomes (greater than 80% derived products) of Pelargonium x hortorum (geranium). These diverged fatty acid structures are produced via distinct plastidial acyl-acyl carrier protein (ACP) desaturases. When expressed in Arabidopsis thaliana (L.) Heynh. under strong seed-specific promoters the unusual acyl-ACP desaturases resulted in accumulation of unusual monoene fatty acids at 1-15% of seed fatty acid mass. In this study, we have examined several factors that potentially limit higher production of unusual monoenes in transgenic oilseeds. (i) Immunoblots indicated that the introduced desaturases were expressed at levels equivalent to or higher than the endogenous delta9 18:0-ACP desaturase. However, the level of unusual fatty acid produced in transgenic plants was not correlated with the level of desaturase expression. (ii) The unusual desaturases were expressed in several backgrounds, including antisense 18:0-ACP desaturase plants, in fab1 mutants, and co-expressed with specialized ACP or ferredoxin isoforms. None of these experiments led to high production of expected products. (iii) No evidence was found for degradation of the unusual fatty acids during seed development. (iv) Petroselinic acid added to developing seeds was incorporated into triacylglycerol as readily as oleic acid, suggesting no major barriers to its metabolism by enzymes of glycerolipid assembly. (v) In vitro and in situ assay of acyl-ACP desaturases revealed a large discrepancy of activity when comparing unusual acyl-ACP desaturases with the endogenous delta9 18:0-ACP desaturase. The combined results, coupled with the sensitivity of acyl-ACP desaturase activity to centrifugation and low salt or detergent suggests low production of unusual monoenes in transgenic plants may be due to the lack of, or incorrect assemble of, a necessary multi-component enzyme association.  相似文献   

4.
Very-long-chain polyunsaturated fatty acids such as arachidonic, eicosapentaenoic, and docosahexaenoic acids, are important to the physiology of many microorganisms and metazoans and are vital to human development and health. The production of these and related fatty acids depends on Δ6 desaturases, the final components of an electron transfer chain that introduces double bonds into 18-carbon fatty acid chains. When a Δ6 desaturase identified from the ciliated protist Tetrahymena thermophila was expressed in Saccharomyces cerevisiae cultures supplemented with the 18:2Δ9,12 substrate, only 4% of the incorporated substrate was desaturated. Cytochrome b5 protein sequences identified from the genome of T. thermophila included one sequence with two conserved cytochrome b5 domains. Desaturation by the Δ6 enzyme increased as much as 10-fold when T. thermophila cytochrome b5s were coexpressed with the desaturase. Coexpression of a cytochrome b5 from Arabidopsis thaliana with the Δ6 enzyme also increased desaturation. A split ubiquitin growth assay indicated that the strength of interaction between cytochrome b5 proteins and the desaturase plays a vital role in fatty acid desaturase activity, illustrating the importance of protein-protein interactions in this enzyme activity.  相似文献   

5.
At low temperatures, Bacillus cereus synthesizes large amounts of unsaturated fatty acids (UFAs) with double bonds in positions Δ5 and Δ10, as well as Δ5,10 diunsaturated fatty acids. Through sequence homology searches, we identified two open reading frames (ORFs) encoding a putative Δ5 desaturase and a fatty acid acyl-lipid desaturase in the B. cereus ATCC 14579 genome, and these were named BC2983 and BC0400, respectively. Functional characterization of ORFs BC2983 and BC0400 by means of heterologous expression in Bacillus subtilis confirmed that they both encode acyl-lipid desaturases that use phospholipids as the substrates and have Δ5 and Δ10 desaturase activities. Thus, these ORFs were correspondingly named desA (Δ5 desaturase) and desB (Δ10 desaturase). We established that DesA utilizes ferredoxin and flavodoxins (Flds) as electron donors for the desaturation reaction, while DesB preferably employs Flds. In addition, increased amounts of UFAs were found when B. subtilis expressing B. cereus desaturases was subjected to a cold shock treatment, indicating that the activity or the expression of these enzymes is upregulated in response to a decrease in growth temperature. This represents the first work reporting the functional characterization of fatty acid desaturases from B. cereus.  相似文献   

6.
The long-standing paradigm establishing that global production of Omega-3 (n–3) long-chain polyunsaturated fatty acids (LC-PUFA) derived almost exclusively from marine single-cell organisms, was recently challenged by the discovery that multiple invertebrates possess methyl-end (or ωx) desaturases, critical enzymes enabling the biosynthesis of n–3 LC-PUFA. However, the question of whether animals with ωx desaturases have complete n–3 LC-PUFA biosynthetic pathways and hence can contribute to the production of these compounds in marine ecosystems remained unanswered. In the present study, we investigated the complete enzymatic complement involved in the n–3 LC-PUFA biosynthesis in Tigriopus californicus, an intertidal harpacticoid copepod. A total of two ωx desaturases, five front-end desaturases and six fatty acyl elongases were successfully isolated and functionally characterized. The T. californicus ωx desaturases enable the de novo biosynthesis of C18 PUFA such as linoleic and α-linolenic acids, as well as several n–3 LC-PUFA from n–6 substrates. Functions demonstrated in front-end desaturases and fatty acyl elongases unveiled various routes through which T. californicus can biosynthesize the physiologically important arachidonic and eicosapentaenoic acids. Moreover, T. californicus possess a Δ4 desaturase, enabling the biosynthesis of docosahexaenoic acid via the ‘Δ4 pathway’. In conclusion, harpacticoid copepods such as T. californicus have complete n–3 LC-PUFA biosynthetic pathways and such capacity illustrates major roles of these invertebrates in the provision of essential fatty acids to upper trophic levels.  相似文献   

7.
The seed oil of Thunbergia alata has an unusual fatty acid composition which consists of more than 80 % 16:1Δ6. This fatty acid is produced in the plastid by the action of a Δ6 palmitoyl (16:0)-ACP desaturase. To examine the biosynthesis of triacylglycerol (TAG) containing high concentrations of this unusual monoenoic fatty acid, endosperm dissected from developing T. alata seeds was labeled with [1-14C]-acetate. At early time points (5–15 min), the predominant labeled lipid was PC whereas at later time points (greater than 30 min) TAG became the major labeled lipid. Analysis of the acyl group composition of each lipid revealed that radiolabeled 16:1Δ6 was highest at early time points in PC while at later time points, it was found to be highest in TAG. Further analysis of the distribution of labeled acyl groups within PC indicated that 16:1Δ6 at the sn-2 position comprised the majority (55–78 %) of total labeled acyl groups whereas 16:1Δ6 at the sn-1 position constituted only a small fraction (12–15 %) of the total labeled acyl groups. In contrast, unlabeled PC contained lower amounts of 16:1Δ6 (16 %) at the sn-2 position. These results are consistent with previous studies suggesting a flux of novel monoenoic acids through PC during TAG biosynthesis, and furthermore imply a stereospecific flux through the sn-2 position of PC.  相似文献   

8.
A cDNA for a structurally variant acyl-acyl carrier protein (ACP) desaturase was isolated from milkweed (Asclepias syriaca) seed, a tissue enriched in palmitoleic (16:19)* and cis-vaccenic (18:111) acids. Extracts of Escherichia coli that express the milkweed cDNA catalyzed 9 desaturation of acyl-ACP substrates, and the recombinant enzyme exhibited seven- to ten-fold greater specificity for palmitoyl (16:0)-ACP and 30-fold greater specificity for myristoyl (14:0)-ACP than did known 9-stearoyl (18:0)-ACP desaturases. Like other variant acyl-ACP desaturases reported to date, the milkweed enzyme contains fewer amino acids near its N-terminus compared to previously characterized 9-18:0-ACP desaturases. Based on the activity of an N-terminal deletion mutant of a9 -18:0-ACP desaturase, this structural feature likely does not account for differences in substrate specificities.  相似文献   

9.
Fatty acid desaturases play an important role in maintaining the appropriate structure and function of biological membranes. The biochemical characterization of integral membrane desaturases, particularly ω3 and ω6 desaturases, has been limited by technical difficulties relating to the acquisition of large quantities of purified proteins, and by the fact that functional activities of these proteins were only tested in an NADH-initiated reaction system. The main aim of this study was to reconstitute an NADPH-dependent reaction system in vitro and investigate the kinetic properties of Mortierella alpina ω3 and ω6 desaturases in this system. After expression and purification of the soluble catalytic domain of NADPH–cytochrome P450 reductase, the NADPH-dependent fatty acid desaturation was reconstituted for the first time in a system containing NADPH, NADPH–cytochrome P450 reductase, cytochrome b5, M. alpina ω3 and ω6 desaturase and detergent. In this system, the maximum activity of ω3 and ω6 desaturase was 213.4 ± 9.0 nmol min−1 mg−1 and 10.0 ± 0.5 nmol min−1 mg−1, respectively. The highest kcat/Km value of ω3 and ω6 desaturase was 0.41 µM−1 min−1 and 0.09 µM−1 min−1 when using linoleoyl CoA (18:2 ω6) and oleoyl CoA (18:1 ω9) as substrates, respectively. M. alpina ω3 and ω6 desaturases were capable of using NADPH as reductant when mediated by NADPH–cytochrome P450 reductase; although, their efficiency is distinguishable from NADH-dependent desaturation. These results provide insights into the mechanisms underlying ω3 and ω6 fatty acid desaturation and may facilitate the production of important fatty acids in M. alpina.  相似文献   

10.
ω3-fatty acid desaturase and Δ12-fatty acid desaturase of Pichia pastoris with distinguishable regioselectivity and high degree of sequence similarity were chosen for regioselectivity research. Chimeras were constructed in which Histidine-rich boxes 1, 2 and the carboxyl terminal region of ω3-fatty acid desaturase were replaced with corresponding region of Δ12-fatty acid desaturase. The replacement was found to result in a change of regioselectivity from ωy to + 3 by functionally characterizing these chimeric enzymes in Saccharomyces cerevisae strain INVScI. Using site-directed mutagenesis, we further demonstrated that seven conserved amino acids of ω3-fatty acid desaturase within the first two Histidine-rich regions are responsible for the regioselectivity switch. Therefore, the regioselectivity of fatty acid desaturases may be better understood by investigating the evolutionary relationships of different fatty acid desaturases. Dongsheng Wei is the partake of first-author’s profits.  相似文献   

11.
In this investigation, we examined the effects of different unsaturated fatty acid compositions of Saccharomyces cerevisiae on the growth-inhibiting effects of ethanol. The unsaturated fatty acid (UFA) composition of S. cerevisiae is relatively simple, consisting almost exclusively of the mono-UFAs palmitoleic acid (Δ9Z-C16:1) and oleic acid (Δ9Z-C18:1), with the former predominating. Both UFAs are formed in S. cerevisiae by the oxygen- and NADH-dependent desaturation of palmitic acid (C16:0) and stearic acid (C18:0), respectively, catalyzed by a single integral membrane desaturase encoded by the OLE1 gene. We systematically altered the UFA composition of yeast cells in a uniform genetic background (i) by genetic complementation of a desaturase-deficient ole1 knockout strain with cDNA expression constructs encoding insect desaturases with distinct regioselectivities (i.e., Δ9 and Δ11) and substrate chain-length preferences (i.e., C16:0 and C18:0); and, (ii) by supplementation of the same strain with synthetic mono-UFAs. Both experimental approaches demonstrated that oleic acid is the most efficacious UFA in overcoming the toxic effects of ethanol in growing yeast cells. Furthermore, the only other UFA tested that conferred a nominal degree of ethanol tolerance is cis-vaccenic acid (Δ11Z-C18:1), whereas neither Δ11Z-C16:1 nor palmitoleic acid (Δ9Z-C16:1) conferred any ethanol tolerance. We also showed that the most ethanol-tolerant transformant, which expresses the insect desaturase TniNPVE, produces twice as much oleic acid as palmitoleic acid in the absence of ethanol and undergoes a fourfold increase in the ratio of oleic acid to palmitoleic acid in response to exposure to 5% ethanol. These findings are consistent with the hypothesis that ethanol tolerance in yeast results from incorporation of oleic acid into lipid membranes, effecting a compensatory decrease in membrane fluidity that counteracts the fluidizing effects of ethanol.  相似文献   

12.
Acetylenic specialized metabolites containing one or more carbon-carbon triple bonds are widespread, being found in fungi, vascular and lower plants, marine sponges and algae, and insects. Plants, moss, and most recently, insects, have been shown to employ an energetically difficult, sequential dehydrogenation mechanism for acetylenic bond formation. Here, we describe the cloning and heterologous expression in yeast of a linoleoyl 12-desaturase (acetylenase) and a bifunctional desaturase with Δ12-/Δ14-regiospecificity from the Pacific golden chanterelle. The acetylenase gene, which is the first identified from a fungus, is phylogenetically distinct from known plant and fungal desaturases. Together, the bifunctional desaturase and the acetylenase provide the enzymatic activities required to drive oleate through linoleate to crepenynate and the conjugated enyne (14Z)-dehydrocrepenynate, the branchpoint precursors to a major class of acetylenic natural products.  相似文献   

13.
Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3–17), helix II (residues 39–53), helix III (residues 60–64), and helix IV (residues 68–78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe45 in helix II and Phe18 in the α1α2 loop and a hydrogen bonding between Ser15 in helix I and Ile20 in the α1α2 loop, resulting in its high thermal stability. Phe45-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser58 in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains.  相似文献   

14.
A desaturase with 83% sequence identity to the coriander delta(4)-16:0-ACP desaturase was isolated from developing seeds of Hedera helix (English ivy). Expression of the ivy desaturase in Arabidopsis resulted in the accumulation of 16:1delta(4) and its expected elongation product 18:1delta(6) (petroselinic acid). Expression in Escherichia coli resulted in the accumulation of soluble, active protein that was purified to apparent homogeneity. In vitro assays confirmed delta(4) desaturation with 16:0-ACP; however, with 18:0-acyl acyl carrier protein (ACP) desaturation occurred at the delta(9) position. The ivy desaturase also converted 16:1delta(9)-ACP and 18:1delta(9)-ACP to the corresponding delta(4,9) dienes. These data suggest at least two distinct substrate binding modes, one placing C4 at the diiron active site and the other placing C9 at the active site. In the latter case, 18:0 would likely bind in an extended conformation as described for the castor desaturase with 9-carbons accommodated in the cavity beyond the dirron site. However, delta(4) desaturation would require the accommodation of 12 carbons for C16 substrates or 14 carbons for C18 substrates. The amino acids lining the substrate binding cavity of ivy and castor desaturases are conserved except for T117R and P179I (castor/ivy). Paradoxically, both substitutions, when introduced into the castor desaturase, favored the binding of shorter acyl chains. Thus, it seems likely that delta(4) desaturation would require a non-extended, perhaps U-shaped, substrate conformation. A cis double bond may facilitate the initiation of such a non-extended conformation in the monounsaturated substrates. The multifunctional properties of the ivy desaturase make it well suited for further dissection of the determinants of regiospecificity.  相似文献   

15.
Currently existing data show that the capability for long-chain PUFA (LC-PUFA) biosynthesis in teleost fish is more diverse than in other vertebrates. Such diversity has been primarily linked to the subfunctionalization that teleostei fatty acyl desaturase (Fads)2 desaturases have undergone during evolution. We previously showed that Chirostoma estor, one of the few representatives of freshwater atherinopsids, had the ability for LC-PUFA biosynthesis from C18 PUFA precursors, in agreement with this species having unusually high contents of DHA. The particular ancestry and pattern of LC-PUFA biosynthesis activity of C. estor make this species an excellent model for study to gain further insight into LC-PUFA biosynthetic abilities among teleosts. The present study aimed to characterize cDNA sequences encoding fatty acyl elongases and desaturases, key genes involved in the LC-PUFA biosynthesis. Results show that C. estor expresses an elongase of very long-chain FA (Elovl)5 elongase and two Fads2 desaturases displaying Δ4 and Δ6/Δ5 specificities, thus allowing us to conclude that these three genes cover all the enzymatic abilities required for LC-PUFA biosynthesis from C18 PUFA. In addition, the specificities of the C. estor Fads2 enabled us to propose potential evolutionary patterns and mechanisms for subfunctionalization of Fads2 among fish lineages.  相似文献   

16.
The Chinese tussah silkworm, Antheraea pernyi (Lepidoptera: Saturniidae) produces a rare dienoic sex pheromone composed of (E,Z)-6,11-hexadecadienal, (E,Z)-6,11-hexadecadienyl acetate and (E,Z)-4,9-tetradecadienyl acetate, and for which the biosynthetic routes are yet unresolved. By means of gland composition analyses and in vivo labeling we evidenced that pheromone biosynthesis towards the immediate dienoic gland precursor, the (E,Z)-6,11-hexadecadienoic acid, involves desaturation steps with Δ6 and Δ11 regioselectivity. cDNA cloning of pheromone gland desaturases and heterologous expression in yeast demonstrated that the 6,11-dienoic pheromone is generated from two biosynthetic routes implicating a Δ6 and Δ11 desaturase duo albeit with an inverted reaction order. The two desaturases first catalyze the formation of the (E)-6-hexadecenoic acid or (Z)-11-hexadecenoic acid, key mono-unsaturated biosynthetic intermediates. Subsequently, each enzyme is able to produce the (E,Z)-6,11-hexadecadienoic acid by accommodating its non-respective mono-unsaturated product. Besides elucidating an unusually flexible pheromone biosynthetic pathway, our data provide the first identification of a biosynthetic Δ6 desaturase involved in insect mate communication. The occurrence of this novel Δ6 desaturase function is consistent with an evolutionary scenario involving neo-functionalization of an ancestral desaturase belonging to a gene lineage different from the Δ11 desaturases commonly involved in moth pheromone biosynthesis.  相似文献   

17.
Plant desaturases comprise two independently evolved classes, a structurally well characterized soluble class responsible for the production of monoenes in the plastids of higher plants and the poorly structurally characterized integral membrane class that has members in the plastid and endoplasmic reticulum that are responsible for producing mono- and polyunsaturated fatty acids. Both require iron and oxygen for activity and are inhibited by azide and cyanide underscoring their common chemical imperatives. We previously showed that the Δ9 acyl-CoA integral membrane desaturase Ole1p from Saccharomyces cerevisiae exhibits dimeric organization, like the soluble plastidial acyl-ACP desaturases. Here we use two independent bimolecular complementation assays, i.e. yeast two-hybrid analysis and Arabidopsis leaf protoplast split luciferase assay, to demonstrate that members of the plant integral membrane fatty acid desaturase (FAD) family, FAD2, FAD3, FAD6, FAD7, and FAD8, self-associate. Further, the endoplasmic reticulum-localized desaturase FAD2 can associate with FAD3, as can the plastid-localized FAD6 desaturase with either FAD7 or FAD8. These pairings appear to be specific because pairs such as FAD3 and FAD7 (or FAD8) and FAD2 and FAD6 do not interact despite their high amino acid similarity. These results are consistent also with their known endoplasmic reticulum and plastid subcellular localizations. Chemical cross-linking experiments confirm that FAD2 and FAD3 can form dimers like the yeast Ole1p and, when coexpressed, can form FAD2-FAD3 heterodimers. Metabolic flux analysis of yeast coexpressing FAD2 and FAD3 indicates that heterodimers can form a metabolic channel in which 18:1-PC is converted to 18:3-PC without releasing a free 18:2-PC intermediate.  相似文献   

18.
The model white-rot basidiomycete Phanerochaete chrysosporium contains a single integral membrane Δ12-desaturase FAD2 related to the endoplasmic reticular plant FAD2 enzymes. The fungal fad2-like gene was cloned and distinguished itself from plant homologs by the presence of four introns and a significantly larger coding region. The coding sequence exhibits ca. 35% sequence identity to plant homologs, with the highest sequence conservation found in the putative catalytic and major structural domains. In vivo activity of the heterologously expressed enzyme favors C18 substrates with ν+3 regioselectivity, where the site of desaturation is three carbons carboxy-distal to the reference position of a preexisting double bond (ν). Linoleate accumulated to levels in excess of 12% of the total fatty acids upon heterologous expression of P. chrysosporium FAD2 in Saccharomyces cerevisiae. In contrast to the behavior of the plant FAD2 enzymes, this oleate desaturase does not 12-hydroxylate lipids and is the first example whose activity increases at higher temperatures (30°C versus 15°C). Thus, while maintaining the hallmark activity of the fatty acyl Δ12-desaturase family, the basidiomycete fad2 genes appear to have evolved substantially from an ancestral desaturase.  相似文献   

19.
Unsaturated fatty acids play an essential role in the biophysical characteristics of cell membranes and determine the proper function of membrane-attached proteins. Thus, the ability of cells to alter the degree of unsaturation in their membranes is an important factor in cellular acclimatization to environmental conditions. Many eukaryotic organisms can synthesize dienoic fatty acids, but Saccharomyces cerevisiae can introduce only a single double bond at the Δ9 position. We expressed two sunflower (Helianthus annuus) oleate Δ12 desaturases encoded by FAD2-1 and FAD2-3 in yeast cells of the wild-type W303-1A strain (trp1) and analyzed their effects on growth and stress tolerance. Production of the heterologous desaturases increased the content of dienoic fatty acids, especially 18:2Δ9,12, the unsaturation index, and the fluidity of the yeast membrane. The total fatty acid content remained constant, and the level of monounsaturated fatty acids decreased. Growth at 15°C was reduced in the FAD2 strains, probably due to tryptophan auxotrophy, since the trp1 (TRP1) transformants that produced the sunflower desaturases grew as well as the control strain did. Our results suggest that changes in the fluidity of the lipid bilayer affect tryptophan uptake and/or the correct targeting of tryptophan transporters. The expression of the sunflower desaturases, in either Trp+ or Trp strains, increased NaCl tolerance. Production of dienoic fatty acids increased the tolerance to freezing of wild-type cells preincubated at 30°C or 15°C. Thus, membrane fluidity is an essential determinant of stress resistance in S. cerevisiae, and engineering of membrane lipids has the potential to be a useful tool of increasing the tolerance to freezing in industrial strains.  相似文献   

20.
White RD  Fox BG 《Biochemistry》2003,42(25):7828-7835
The fatty acid analogues 9- and 10-thiastearate were converted to acyl-ACP derivatives by in vitro enzymatic synthesis and reacted with the reconstituted soluble stearoyl-ACP Delta9 desaturase complex. Electrospray ionization mass spectral analysis of the acyl chains purified from the reaction mixtures showed that 10-thiastearoyl-ACP was converted to the 10-sulfoxide as the sole product. In the presence of (18)O(2), the sulfoxide oxygen was found to be derived exclusively from O(2). This result confirms the ability of the soluble stearoyl-ACP desaturase to catalyze O atom transfer in the presence of the appropriate substrate analogue. Inhibition studies showed that 10-thiastearoyl-ACP was a mixed-type inhibitor of 18:0-ACP, with an apparent K(I) of approximately 10 microM. Comparable reactions of the stearoyl-ACP desaturase complex with 9-thiastearoyl-ACP gave the 9-sulfoxide as approximately 5% of the total products, with the O atom again exclusively derived from O(2). The remaining 95% of the total products arose from an acyl chain cleavage reaction between S-9 and C-10. Matrix-assisted laser desorption ionization time-of-flight mass spectral analysis showed that 9-thiastearoyl-ACP had a mass of 9443 amu while the acyl chain cleavage product had a mass of 9322 amu, corresponding to the calculated mass of 8-mercaptooctanoyl-ACP. Recovery of the acyl chain from the ACP product gave the disulfide of 8-mercaptooctanoate (mass of 349.1 amu), arising from the dimerization of 8-mercaptooctanoate during product workup. Gas chromatography-mass spectral analysis also showed the accumulation of nonanal in sealed reaction vials, accounting for the other product of the acyl chain cleavage reaction. The reactivity at both the 9 and 10 positions of the thia-substituted acyl-ACPs is consistent with the proximity of both positions to the diiron center oxidant in the enzyme-substrate complex. Moreover, the differential reactivity of the 9- and 10-thiastearoyl-ACPs also suggests position-dependent consequences of the reaction within the Delta9D active site. Mechanisms accounting for both sulfoxidation and acyl cleavage reactions by the stearoyl-ACP Delta9 desaturase are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号