首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initially, nuclear import of the ecdysteroid receptor (EcR) in vertebrate cells (CHO-K1 and COS-7) does not afford a heterodimerization partner. Later on, EcR is retained in the nucleus only in the presence of a heterodimerization partner. Ultraspiracle (Usp) is more efficient compared to its vertebrate orthologue RXR and leads to an exclusively nuclear localization of EcR even in the absence of ligand. The DNA binding domain of the heterodimerization partner is important for retainment of EcR in the nucleus as shown by Usp4 (Usp(R130C)), which has lost its DNA binding capability. The C-terminal end of Usp (Usp(Delta205-508)) encompassing the C-terminal part of the D-domain and the E- and F-domains are essential for retainment of EcR in the nucleus. Nuclear localization is further influenced by cell-specific factors, since hormone and heterodimerization stabilizes the EcR protein in a cell-specific way.  相似文献   

2.
The Ecdysone receptor (EcR) is distributed between cytoplasm and nucleus in CHO cells. Nuclear localization is increased by the ligand Muristerone A. The most important heterodimerization partner Ultraspiracle (Usp) is localized predominantly in the nucleus. We used the diethylentriamine nitric oxide adduct DETA/NO, which releases NO and destroys the zinc-finger structure of nuclear receptors, to investigate whether nuclear EcR and Usp interact with DNA. If expressed separately, Usp and EcR in the absence of hormone do not interact with DNA. The hormone-induced increase in nuclear EcR is due to enhanced DNA binding. In the presence of Usp, EcR is shifted nearly quantitatively into the nucleus. Only a fraction (approximately 30%) of the heterodimer is sensitive to DETA/NO. Interaction of the heterodimer with DNA is mediated mainly by the C-domain of EcR. Deletion of the DNA-binding domain of Usp only slightly reduces nuclear localization of EcR/Usp, although the nuclear localization signal of Usp is not present anymore. The results indicate that EcR and Usp can enter the nucleus independently, but cotransport of both receptors mediated by dimerization via the ligand binding domains is possible even in the absence of hormone.  相似文献   

3.
Nuclear localization of the ecdysteroid receptor (EcR) is increased in HeLa cells if exportin-1 (CRM1), a predominant carrier for export of proteins and RNA from the nucleus into the cytoplasm, is knocked down by siRNA against exportin. However, knockdown of the small G protein Ran, which is essential for nuclear transport, leads to an arrest of EcR in the cytoplasm, but does not prevent efficient nuclear import of the most important heterodimerization partner of EcR, ultraspiracle (Usp). Like in vertebrate cells, EcR is also distributed heterogeneously in Drosophila melanogaster S2 cells but shifted exclusively to the nucleus, if Usp is present.  相似文献   

4.
5.
The oncogenic deubiquitylating enzyme (DUB) Unp/Usp4, which binds to the retinoblastoma family of tumor suppressor proteins, was originally described as a nuclear protein. However, more recent studies have shown it to be cytoplasmic. In addition, analysis of its subcellular localization has been complicated by the existence of the paralog Usp15. In this study, we resolved this controversy by investigating the localization of exogenously expressed Usp4 (using red fluorescent protein-Usp4) and of endogenous Usp4 (using highly specific antibodies that can distinguish Usp4 from Usp15). We found that by inhibiting nuclear export with leptomycin B, both exogenous and endogenous Usp4 accumulate in the nucleus. Further, using a Rev-green fluorescent protein-based export assay, we confirmed the existence of a nuclear export signal ((133)VEVYLLELKL(142)) in Usp4. In addition, a functional nuclear import signal ((766)QPQKKKK(772)) was also identified, which was specifically recognized by importin alpha/beta. Finally, we show that the equilibrium of Usp4 subcellular localization varies between different cell types. Usp4 is thus the first DUB reported to have nucleocytoplasmic shuttling properties. The implications of this shuttling for its function as a DUB are discussed.  相似文献   

6.
In the absence of hormone the ecdysteroid receptor (EcR) is distributed between the cytoplasm and the nucleus. Addition of the hormone muristerone A increases nuclear localization of wild type EcR within 5–10 min. Mutation of M504 to alanine, an amino acid, which is essential for ligand binding and which is situated in helix 5 of the ligand binding domain, abolishes hormone binding but still allows nuclear localization at only slightly reduced levels in the absence of hormone, whereas nuclear localization of EcRM504R is nearly abolished. Cotransfection with ultraspiracle (USP), the invertebrate ortholog of RXR, leads to exclusively nuclear localization of wild type EcR and EcRM504A indicating that basal heterodimerization in the absence of hormone is still possible. In the presence of Usp, EcRM504R is only partially localized in the nucleus. EMSA experiments show that the ligand muristerone A enhances binding of wild type EcR, but only slighthly of mutated EcRs, to the canonical hsp 27 ecdysone response element. This is confirmed by transactivation studies. The results indicate that the architecture of the E-domain of EcR is important for nuclear localization even in the absence of a ligand.  相似文献   

7.
Ecdysteroids coordinate essential biological processes in Drosophila through a complex of two nuclear receptors, the ecdysteroid receptor (EcR) and the ultraspiracle protein (Usp). Biochemical experiments have shown that, in contrast to Usp, the EcR molecule is characterized by high intramolecular plasticity. To investigate whether this plasticity is sufficient to form EcR complexes with nuclear receptors other than Usp, we studied the interaction of EcR with the DHR38 nuclear receptor. Previous in vitro experiments suggested that DHR38 can form complexes with Usp and thus disrupt Usp-EcR interaction with the specific hsp27pal response element. This article provides the experimental evidence that EcR is able to form complexes with DHR38 as well. The recombinant DNA-binding domains (DBDs) of EcR and DHR38 interact specifically on hsp27pal. However, the interaction between the receptors is not restricted to their isolated DBDs. We pre\xadsent data that indicate that the full-length EcR and DHR38 can also form specific complexes within the nuclei of living cells. This interaction is mediated by the hinge region of EcR, which was recently classified as an intrinsically disordered region. Our results indicate that DHR38 might modulate the activity of the Usp-EcR heterodimer by forming complexes with both of its components.  相似文献   

8.
9.
The ultraspiracle protein (Usp), together with an ecdysone receptor (EcR) forms a heterodimeric ecdysteroid receptor complex, which controls metamorphosis in Drosophila melanogaster. Although the ecdysteroid receptor is considered to be a source of elements for ecdysteroid inducible gene switches in mammals, nothing is known about posttranslational modifications of the receptor constituents in mammalian cells. Up until now there has been no study about Usp sumoylation. Using Ubc9 fusion-directed sumoylation system, we identified Usp as a new target of SUMO1 and SUMO3 modification. Mutagenesis studies on the fragments of Usp indicated that sumoylation can occur alternatively on several defined Lys residues, i.e. three (Lys16, Lys20, Lys37) in A/B region, one (Lys424) in E region and one (Lys506) in F region. However, sumoylation of one Lys residue within A/B region prevents modification of other residues in this region. This was also observed for Lys residues in carboxyl-terminal fragment of Usp, i.e. comprising E and F regions. Mass spectrometry analysis of the full-length Usp indicated that the main SUMO attachment site is at Lys20. EcR, the heterodimerization partner of Usp, and muristerone A, the EcR ligand, do not influence sumoylation patterns of Usp. Another heterodimerization partner of Usp - HR38 fused with Ubc9 interacts with Usp in HEK293 cells and allows sumoylation of Usp independent of the direct fusion to Ubc9. Taken together, we propose that sumoylation of DmUsp can be an important factor in modulating its activity by changing molecular interactions.  相似文献   

10.
11.
Two members of the nuclear receptor superfamily, EcR (ecdysteroid receptor protein) and Usp (Ultraspiracle), heterodimerize to form a functional receptor for the steroid hormone 20-hydroxyecdysone and thus enable it to coordinate morphogenetic events during insect metamorphosis. N-terminally His-tagged Usp was overexpressed in E. coli cells as a non-truncated protein and purified to homogeneity in two chromatographic steps. It was demonstrated that the recombinant receptor specifically binds the ecdysone response element of the hsp27 gene promoter (hsp27EcRE). Moreover, a highly synergistically formed heterodimeric complex with the DNA-binding domain of EcR was observed on hsp27EcRE, but not on the native Usp response element from the chorion s15 gene promoter. Recombinant Usp forms homodimers and homotetramers in the absence of DNA, as judged from gel filtration and chemical crosslinking experiments. Truncation of its N-terminal A/B region changes molecular characteristics of Usp, considerably weakening its oligomerization potential under the same experimental conditions. This contrasts with the results obtained previously for the similarly truncated RXR--a vertebrate homolog of Usp.  相似文献   

12.
Pab1 is the major poly(A)-binding protein in yeast. It is a multifunctional protein that mediates many cellular functions associated with the 3'-poly(A)-tail of messenger RNAs. Here, we characterize Pab1 as an export cargo of the protein export factor Xpo1/Crm1. Pab1 is a major Xpo1/Crm1-interacting protein in yeast extracts and binds directly to Xpo1/Crm1 in a RanGTP-dependent manner. Pab1 shuttles rapidly between the nucleus and the cytoplasm and partially accumulates in the nucleus when the function of Xpo1/Crm1 is inhibited. However, Pab1 can also be exported by an alternative pathway, which is dependent on the MEX67-mRNA export pathway. Import of Pab1 is mediated by the import receptor Kap108/Sxm1 through a nuclear localization signal in its fourth RNA-binding domain. Interestingly, inhibition of Pab1's nuclear import causes a kinetic delay in the export of mRNA. Furthermore, the inviability of a pab1 deletion strain is suppressed by a mutation in the 5'-3' exoribonuclease RRP6, a component of the nuclear exosome. Therefore, nuclear Pab1 may be required for efficient mRNA export and may function in the quality control of mRNA in the nucleus.  相似文献   

13.
Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates nucleo-cytoplasmic transport and cell growth arrest activity of RASSF2. Taken together, the present study suggests that active transport between nucleus and cytoplasm may constitute an important regulatory mechanism for RASSF2 function.  相似文献   

14.
15.
The insect moulting hormones, viz. the ecdysteroids, regulate gene expression during development by binding to an intracellular protein, the ecdysteroid receptor (EcR). In the insect Rhodnius prolixus, circulating levels of ecdysteroids exhibit a robust circadian rhythm. This paper demonstrates associated circadian rhythms in the abundance and distribution of EcR in several major target tissues of ecdysteroids, but not in others. Quantitative analysis of immunofluorescence images obtained by confocal laser-scanning microscopy following the use of anti-EcR has revealed a marked daily rhythm in the nuclear abundance of EcR in cells of the abdominal epidermis, brain, fat body, oenocytes and rectal epithelium of Rhodnius. This EcR rhythm is synchronous with the rhythm of circulating hormone levels. It free-runs in continuous darkness for several cycles, showing that EcR nuclear abundance is under circadian control. Circadian control of a nuclear receptor has not been shown previously in any animal. We infer that the above cell types detect and respond to the temporal signals in the rhythmic ecdysteroid titre. In several cell types, the rhythm in cytoplasmic EcR peaks several hours prior to the EcR peak in the nucleus each day, thereby implying a daily migration of EcR from the cytoplasm to the nucleus. This finding shows that EcR is not a constitutive nuclear receptor, as has previously been assumed. In the brain, rhythmic nuclear EcR has been found in peptidergic neurosecretory cells, indicating a potential pathway for feedback regulation of the neuroendocrine system by ecdysteroids, and also in regions containing circadian clock neurons, suggesting that the circadian timing system in the brain is also sensitive to rhythmic ecdysteroid signals. This work was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.  相似文献   

16.
The heterodimer of the ecdysone receptor (EcR) and ultraspiracle (Usp), members of the nuclear receptors superfamily, is considered as the functional receptor for ecdysteroids initiating molting and metamorphosis in insects. Here we report the 1.95Å structure of the complex formed by the DNA-binding domains (DBDs) the EcR and the Usp, bound to the natural pseudopalindromic response element. Comparison of the structure with that obtained previously, using an idealized response element, shows how the EcRDBD, which has been previously reported to possess extraordinary flexibility, accommodates DNA-induced structural changes. Part of the C-terminal extension (CTE) of the EcRDBD folds into an α-helix whose location in the minor groove does not match any of the locations previously observed for nuclear receptors. Mutational analyses suggest that the α-helix is a component of EcR-box, a novel element indispensable for DNA-binding and located within the nuclear receptor CTE. This element seems to be a general feature of all known EcRs.  相似文献   

17.
18.
Plasticity of the ecdysone receptor DNA binding domain   总被引:3,自引:0,他引:3  
Ecdysteroids coordinate molting and metamorphosis in insects via a heterodimer of two nuclear receptors, the ecdysone receptor (EcR) and the ultraspiracle (Usp) protein. Here we show how the DNA-recognition alpha-helix and the T box region of the EcR DNA-binding domain (EcRDBD) contribute to the specific interaction with the natural response element and to the stabilization of the EcRDBD molecule. The data indicate a remarkable mutational tolerance with respect to the DNA-binding function of the EcRDBD. This is particularly manifested in the heterocomplexes formed between the EcRDBD mutants and the wild-type Usp DNA-binding domain (UspDBD). Circular dichroism (CD) spectra and protein unfolding experiments indicate that, in contrast to the UspDBD, the EcRDBD is characterized by a lower alpha-helix content and a lower stability. As such, the EcRDBD appears to be an intrinsically unstructured protein-like molecule with a high degree of intramolecular plasticity. Because recently published crystal structures indicate that the ligand binding domain of the EcR is also characterized by the extreme adaptability, we suggest that plasticity of the EcR domains may be a key factor that allows a single EcR molecule to mediate diverse biological effects.  相似文献   

19.
The functional 20-hydroxyecdysone (20E) receptor is a heterodimer of two members of the nuclear hormone receptors superfamily; the product of the EcR (EcR) and of the ultraspiracle (Usp) genes. As most of the natural 20E-response elements are highly degenerated palindromes, we were interested in determining whether or not such asymmetric elements could dictate the defined orientation of the Usp/EcR complex. We have investigated interaction of EcR and Usp DNA-binding domains (EcRDBD and UspDBD, respectively) with the palindromic response element from the hsp27 gene promoter (hsp27pal). The hsp27pal half-sites contribute differently to the binding of the heterodimer components; the 5' half-site exhibits higher affinity for both DBDs than the 3' half-site. This observation, along with data demonstrating that UspDBD exhibits approximate fourfold higher affinity to the 5' half-site than EcRDBD, suggest that UspDBD locates the EcRDBD/UspDBD heterocomplex in the defined orientation (5'-UspDBD-EcRDBD-3') on the hsp27pal sequence. The binding polarity onto hsp27pal is accompanied by different contribution of the UspDBD and EcRDBD C-terminal sequences to the DNA-binding and heterocomplex formation. This is supported by finding that deletion of the C-terminal of EcRDBD region corresponding to the putative A-helix severely decreased binding of the EcRDBD to the hsp27pal. In contrast, UspDBD in which corresponding residues were deleted exhibited the same hsp27pal binding pattern as the wild type UspDBD. Additional truncation comprising the putative T-box, resulted in a reduced binding of the mutated UspDBD. This truncation however, still allowed effective EcRDBD/UspDBD heterodimer formation. Finally we demonstrated that perfect palindromes, composed of two hsp27pal 5' half-sites (or of the related sequence) contain all of the structural information necessary for the anisotropic UspDBD/EcRDBD heterocomplex formation. However, the perfect palindromes bind isolated homomeric DBDs as well as their heterocomplex with higher affinity than imperfect hsp27pal. This is the first report indicating that natural 20E response elements, which with one exception are degenerated palindromes, may act as functionally asymmetric elements in a manner similar to the action of direct repeats in vertebrates.  相似文献   

20.
It has been shown by stereological analysis that the earlier discovered changes in the structure of mitochondria in cyanide treated L-cells (decrease in numerical density of mitochondria, increase in volume density of mitochondria, and surface density of mitochondrial membranes) are prevented by oligomycin, and they do not occur in the presence of oligomycin and protonophorous uncoupler carbonylcyanide m-chlorphenyl hydrazone applied separately. Proceeding from three-dimension reconstructed mitochondrial models it has been shown that cyanide treatment of L-cells for 23 hours causes a transformation of mitochondria as discrete column-like structures into a network of mitochondrial reticulum oriented from the nucleus to the periphery of the cell. After the treatment of L-cells with cyanide together with oligomycin, or with oligomycin and protonophore applied separately, the mitochondria retain the structure of discrete column-like for mations characteristic of the control cells. It is assumed that the functioning ATP-system is a physiological prerequisite of the formation of mitochondrial reticulum under conditions of the inhibited respiratory energy metabolism in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号