首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The prophages of the related temperate bacteriophages P1 and P7, which normally exist as plasmids, suppress Escherichia coli dnaA (ts) mutants by integrating into the host chromosome. The locations of the sites on the prophage used for integrative recombination were identified by restriction nuclease analysis and DNA-DNA hybridization techniques. The integration of P1 and P7 often involves a specific site on the host DNA and a specific site on the phage DNA; the latter is probably the end of the phage genetic map. When this site is utilized, the host Rec+ function is not required. In Rec+ strains, P1 and P7 may also recombine with homologous regions on the host chromosome; at least one of these regions is an IS1 element. In some integration events, prophage deletions are observed which are often associated with inverted repeat structures on the phage DNA. Thus, P1 and P7 may employ one of several different mechanisms for integration.  相似文献   

2.
The plasmid pIP231 exhibits stronger incompatibility with both plasmid prophages P1 and P7 than P1 and P7 exhibit with each other. DNA-DNA hybridization experiments showed that pIP231 is strongly homologous with both P1 and P7 in the central region of the prophage genomes which contains genes determining replication, incompatibility, and maintenance functions. In addition, a region on the left of P7 which contains Tn902 showed some homology with pIP231, as did the region of P1 carrying IS1.  相似文献   

3.
The genomes of three plaque-forming recombinant phages between phage P1 and plasmid p15B were characterized by restriction cleavage analysis and electron microscopic heteroduplex studies. The structure of all three P1-15 hybrid genomes differs from that of P1 DNA in the res mod region coding for restriction and modification systems EcoP15 and EcoP1, respectively. P1-15 hybrid 2 shows an additional major difference to P1 around the site of the residential IS1 element of P1 and it does not carry an IS1 in its genome.  相似文献   

4.
We have purified the type III restriction enzymes EcoP1 and EcoP15 to homogeneity from bacteria that contain the structural genes for the enzymes cloned on small, multicopy plasmids and which overproduce the enzymes. Both of the enzymes contain two different subunits. The molecular weights of the subunits are the same for both enzymes and antibodies prepared against one enzyme cross-react with both subunits of the other. Bacteria containing a plasmid derivative in which a large part of one of the structural genes has been deleted have a restriction- modification+ phenotype and contain only the smaller of the two subunits. This subunit therefore must be the one that both recognizes the specific DNA sequence and methylates it in the modification reaction (the restriction enzyme itself also acts as a modification methylase). We have purified the P1 and P15 modification subunits from these deletion derivatives and have shown that in vitro they have the expected properties: they are sequence-specific modification methylases. In addition, we have demonstrated that strains carrying the full restriction/modification system also contain a pool of free modification subunits that might be responsible for in vivo modification.  相似文献   

5.
P1-like plasmid in Escherichia coli 15   总被引:14,自引:0,他引:14  
  相似文献   

6.
The objective of this study was to determine whether the temperate Yersinia enterocolitica phage PY54 may interact with the related Escherichia coli phage N15 during both the lysogenic and the lytic cycle in the same cell. The PY54 and N15 prophages are linear plasmids which have been shown to be compatible and stably replicating in E. coli and Yersinia. In E. coli, the PY54 prophage does not restrict N15 propagation. In contrast, N15 reduces by use of its cor gene the susceptibility of Yersinia strains to PY54. Doubly lysogenic E. coli strains release PY54 virions, some of which apparently contain the N15 genome. Further experiments with replicative miniplasmid derivatives of PY54, N15, and the related Klebsiella oxytoca phage KO2 demonstrated that the KO2 and N15 plasmid prophages belong to the same incompatibility group.  相似文献   

7.
H Sandmeier  S Iida    W Arber 《Journal of bacteriology》1992,174(12):3936-3944
Plasmid p15B and the genome of bacteriophage P1 are closely related, but their site-specific DNA inversion systems, Min and Cin, respectively, do not have strict structural homology. Rather, the complex Min system represents a substitution of a Cin-like system into an ancestral p15B genome. The substituting sequences of both the min recombinase gene and the multiple invertible DNA segments of p15B are, respectively, homologous to the pin recombinase gene and to part of the invertible DNA of the Pin system on the defective viral element e14 of Escherichia coli K-12. To map the sites of this substitution, the DNA sequence of a segment adjacent to the invertible segment in the P1 genome was determined. This, together with already available sequence data, indicated that both P1 and p15B had suffered various sequence acquisitions or deletions and sequence amplifications giving rise to mosaics of partially related repeated elements. Data base searches revealed segments of homology in the DNA inversion regions of p15B, e14, and P1 and in tail fiber genes of phages Mu, T4, P2, and lambda. This result suggest that the evolution of phage tail fiber genes involves horizontal gene transfer and that the Min and Pin regions encode tail fiber genes. A functional test proved that the p15B Min region carries a tail fiber operon and suggests that the alternative expression of six different gene variants by Min inversion offers extensive host range variation.  相似文献   

8.
9.
Russian Journal of Bioorganic Chemistry - T-cell response along with humoral response compose the basis of acquired immunity. Effective activation of T lymphocytes requires at least two signals....  相似文献   

10.
Corynebacterium tuberculostearicum B146, a strain derived from healthy human skin, contains a medium copy plasmid, p1B146. This plasmid was cloned and its complete nucleotide sequence determined. As a result, p1B146 was found to be 4.2 kb in size with a 53% G+C content, plus six open reading frames (ORFs) were distinguished. According to a computer-assisted alignment, two of the ORFs exhibited significant similarities to already-known common plasmid proteins, the first being the RepA gene, responsible for plasmid replication via a rolling-circle mechanism, and the second being an FtsK-like protein, the function of which remains unclear. The presence and quantity of RNA fragments in the putative ORFs were also evaluated.  相似文献   

11.
The complete sequence of the virulence plasmid pMT1 of Yersinia pestis KIM5 revealed a region homologous to the plasmid partition (par) region of the P7 plasmid prophage of Escherichia coli. The essential genes parA and parB and the downstream partition site gene, parS, are highly conserved in sequence and organization. The pMT1parS site and the parA-parB operon were separately inserted into vectors that could be maintained in E. coli. A mini-P1 vector containing pMT1parS was stably maintained when the pMT1 ParA and ParB proteins were supplied in trans, showing that the pMT1par system is fully functional for plasmid partition in E. coli. The pMT1par system exerted a plasmid silencing activity similar to, but weaker than those of P7par and P1par. In spite of the high degree of similarity, especially to P7par, it showed unique specificities with respect to the interactions of key components. Neither the P7 nor P1 Par proteins could support partition via the pMT1parS site, and the pMT1 Par proteins failed to support partition with P1parS or P7parS. Typical of other partition sites, supernumerary copies of pMT1parS exerted incompatibility toward plasmids supported by pMT1par. However, no interspecies incompatibility effect was observed between pMT1par, P7par, and P1par.  相似文献   

12.
A costimulatory signal in addition to an Ag-specific stimulus is required for optimal activation of T lymphocytes. CD28, the primary positive costimulatory receptor on T cells, has two identified ligands, B7-1 and B7-2. Whether B7-1 and B7-2 have identical, overlapping, or distinct functions remains unresolved. In this study, we show that mice lacking B7-2 were unable to generate CTL responses following immunization with a plasmid DNA vaccine. The ability of these B7-2-deficient mice to generate CTL responses following plasmid gp120 DNA vaccination was fully reconstituted by coadministering either a plasmid expressing B7-2 or B7-1. Moreover, the ability to generate CTL responses following plasmid DNA vaccination in mice lacking both B7-1 and B7-2 could be reconstituted by administering either plasmid B7-1 or plasmid B7-2 with the vaccine construct. These data demonstrate that either B7-1 or B7-2 administered concurrently with a plasmid DNA vaccine can fully costimulate vaccine-elicited CTL responses. Functional differences between B7-1 and B7-2 observed in vivo therefore may not reflect inherent differences in the interactions of CD28 with these ligands.  相似文献   

13.
The plasmid-partition regions of the P1 and P7 plasmid prophages in Escherichia coli are homologues which each encode two partition proteins, ParA and ParB. The equivalent PI and P7 proteins are closely related. In each case, the proteins are encoded by an operon that is autoregulated by the ParA and ParB proteins in concert. This regulation is species-specific, as the P1 proteins are unable to repress the P7 par operon and vice versa. The homologous ParA proteins are primarily responsible for repression and bind to regions that overlap the operon promoter in both cases. The DNA-binding domain of the P7 auto-repressor lies in the amino-terminal end of the P7 ParA protein. This region includes a helix-turn-helix motif that has a clear counterpart in the P1 ParA sequence. However, despite the common regulatory mechanism and the similarity of the proteins involved in repression, the promoter-operator sequences of these two operons are very different in sequence and organization. The operator is located downstream of the promoter in P1 and upstream of it in P7, and the two regions show little, if any, homology. How these differences may have arisen from a common ancestral form is discussed.  相似文献   

14.
Fine-structure analysis of the P7 plasmid partition site.   总被引:3,自引:1,他引:3       下载免费PDF全文
F Hayes  M A Davis    S J Austin 《Journal of bacteriology》1993,175(11):3443-3451
The par region of bacteriophage P7 is responsible for active partition of the P7 plasmid prophage into daughter cells. The cis-acting partition site was defined precisely as a 75-bp sequence that was necessary and sufficient to promote correct segregation of an unstable vector plasmid when the two P7 partition proteins, ParA and ParB, were supplied in trans. Roughly the same region was necessary to exert partition-mediated incompatibility. The minimal site contains an integration host factor (IHF) protein binding site bracketed by regions containing heptamer repeat sequences that individually bind ParB. An additional sequence forms the left boundary of the site. Site-directed mutations in the latter sequence, as well as the IHF motif and the rightmost ParB box, blocked site function. Although the P7 site shares 55% sequence identity with its counterpart in bacteriophage P1, functional interactions between the partition sites and the Par proteins of the two plasmids were entirely species specific in vivo. The P1 sequence has similar IHF and ParB binding motifs, but the left boundary sequence differs radically and may define a point of species-specific contact with the Par proteins. No evidence was found for the existence of a functional P7 analog of the P1 parS core, a small subregion of the P1 site that, in isolation, acts as an enfeebled partition site with modified incompatibility properties.  相似文献   

15.
B J Froehlich  J R Scott 《Plasmid》1988,19(2):121-133
P1 and P7 are closely related plasmid prophages which are members of the same incompatibility group. We report the complete DNA sequence of the replication region of P7 and compare it to that of P1. The sequence predicts a single amino acid difference between the RepA proteins of these two plasmids, no differences in methylation sites or regions where dnaA protein is expected to bind, and no difference in the spacing of the major features of the two replicons. A P1 replicon with a mutation in repA, the gene that encodes an essential replication protein, is complemented for replication by providing either the P1 RepA protein (RepA1) or the P7 RepA protein (RepA7) in trans. Furthermore, when either of these proteins is supplied in trans, the plasmid copy number of P1 cop mutants drops to that of P1 cop+. However, when RepA7 is supplied, the copy number of P1 cop and P1 cop+ is higher than that when RepA1 is supplied. This indicates that the single amino acid difference between the two versions of the RepA protein plays an important role in determining the plasmid copy number.  相似文献   

16.
While conventional calpains, m- and mu-calpains named according to their calcium-dependence, are expressed in almost every tissues, mRNA of newly identified p94, which has a significant sequence similarity to the conventional calpain large subunits, is abundantly expressed only in skeletal muscle. In addition to this specific expression, p94 is distinct from conventional calpains in that it contains three unique regions showing no similarity to conventional calpain subunits. When rat and human p94 are compared, overall sequence similarity is 94.0%, which is close to those for m- and mu-calpain large subunits; 93.1% and 95.4% between human and rabbit, respectively, suggesting the evolutionary importance of p94. These calpain large subunit proteins, p94, m- and mu-types, can be considered to constitute a super family, whose p94, m- and mu-types represent the three major types. Sequences of the calpain large-subunit family members, including the recently reported Schistosoma calpain, are compared. Their evolutionary correlation and function are discussed on the basis of the results thus far obtained.  相似文献   

17.
18.
A cluster of homeobox-containing genes (HOXA) and a heterogeneous nuclear ribonucleoprotein (hnRPA2B1) have both previously been assigned to chromosome 7p15 by in situ hybridization. In this report, we constructed a YAC contig from chromosome 7p14-p15, between markers D7S2496 and D7S1838, and determined the position of the HOXA1 gene and the hnRPA2B1 gene in this YAC contig. Received: 19 November 1996 / Revised: 2 January 1997  相似文献   

19.
L Radnedge  B Youngren  M Davis    S Austin 《The EMBO journal》1998,17(20):6076-6085
The P1 plasmid partition locus, P1 par, actively distributes plasmid copies to Escherichia coli daughter cells. It encodes two DNA sites and two proteins, ParA and ParB. Plasmid P7 uses a similar system, but the key macromolecular interactions are species specific. Homolog specificity scanning (HSS) exploits such specificities to map critical contact points between component macromolecules. The ParA protein contacts the par operon operator for operon autoregulation, and the ParB contacts the parS partition site during partition. Here, we refine the mapping of these contacts and extend the use of HSS to map protein-protein contacts. We found that ParB participates in autoregulation at the operator site by making a specific contact with ParA. Similarly, ParA acts in partition by making a specific contact with ParB bound at parS. Both these interactions involve contacts between a C-terminal region of ParA and the extreme N-terminus of ParB. As a single type of ParA-ParB complex appears to be involved in recognizing both DNA sites, the operator and the parS sites may both be occupied by a single protein complex during partition. The general HSS strategy may aid in solving the three-dimensional structures of large complexes of macromolecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号