首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Telomerase is a ribonucleoprotein complex of which the function is to add telomeric repeats to chromosomal ends. Telomerase consists of two essential components, the telomerase RNA template (hTR) and the catalytic subunit (hTERT). hTERT is expressed only in cells and tissues positive for telomerase activity, i.e., tumor or stem cells. The aim of this study was to use increased telomerase promoter activity in small-cell lung cancer (SCLC) gene therapy. The hTERT promoter and Myc-Max response elements (MMRE) in pGL3-Control vector containing SV40 enhancer resulted in strong expression of the luciferase gene only in telomerase positive and myc overexpressing SCLC cell line but not in normal human cell line. To investigate the possibility of the utilization of the MMRE, hTERT promoter, and SV40 enhancer in targeted SCLC gene therapy, adenovirus vector expressing HSV-TK controlled by the MMRE, hTERT promoter, and SV40 enhancer for the induction of telomerase positive and myc-overexpressing cancer specific cell death was constructed. SCLC cells infected with Ad-MMRE-hT-TK-enh were significantly suppressed and induced apoptosis more than those of Ad-hT-TK or Ad-hT-TK-enh infected cells. Telomerase and c-myc are activated in 60 approximately 80% of SCLC, so the increased activity of telomerase promoter can be used for targeted SCLC gene therapy. These results show that the MMRE, hTERT promoter, and SV40 enhancer can be used in SCLC targeted cancer gene therapy.  相似文献   

2.
为获得端粒酶阳性肿瘤细胞特异表达载体用于癌症的基因治疗 ,克隆并构建了人端粒酶催化亚基 (hTERT)基因启动子调控的萤光素酶报告载体 .用脂质体转染法将其分别转染肿瘤细胞和正常细胞 ,检测其在肿瘤细胞和正常细胞中的转录活性 .hTERT启动子在所检测的 4种端粒酶阳性的肿瘤细胞中具有明显的转录活性 ,平均为阳性对照的 4 4 3% ;而在端粒酶阴性的正常人胚肺成纤维细胞中则无明显的转录活性 .提示hTRET启动子的转录活性在端粒酶阳性的肿瘤细胞中明显上调 ,由hTERT启动子构建的载体可能是一种新颖和有前景的肿瘤细胞特异性表达的基因治疗载体  相似文献   

3.
4.
Telomerase is a ribonucleoprotein complex of which the function is to add telomeric repeats to chromosomal ends. Telomerase consists of two essential components, the telomerase RNA template (hTR) and the catalytic subunit (hTERT). hTERT is expressed only in cells and tissues positive for telomerase activity, i.e., tumor and fetal cells. The aim of this study is to test the increased telomerase promoter activity for cancer gene therapy in adenovirus vector. We cloned the hTERT promoter in place of the SV40 promoter in the pGL3-contol vector to be increased by the SV40 enhancer sequences, resulting in strong expression of luc+ only in telomerase positive cancer cells. Then we transfected the constructed plasmid into a normal human cell line and several cancer cell lines. Through these experiments, we identified the selective and increased expression of the luciferase gene controlled by the hTERT promoter and the SV40 enhancer in the telomerase positive cancer cell lines. To investigate the possibility of utilizing the hTERT promoter and the SV40 enhancer in targeted cancer gene therapy, we constructed an adenovirus vector expressing HSV-TK controlled by the hTERT promoter and the SV40 enhancer for the induction of specific telomerase positive cancer cell death. NSCLC cells infected by Ad-hT-TK-enh were more significantly suppressed and induced apoptosis than those infected by Ad-hT-TK. Telomerase is activated in 80 approximately 90% of cancers, so adenovirus with increasing telomerase promoter activity might be used for targeted cancer gene therapy using suicide genes. These results show that the hTERT promoter and the SV40 enhancer might be used for targeted cancer gene therapy.  相似文献   

5.
Telomerase is a ribonucleoprotein complex of which the function is to add telomeric repeats to chromosomal ends. Telomerase consists of two essential components, the telomerase RNA template (hTR) and the catalytic subunit (hTERT). hTERT is expressed only in cells and tissues positive for telomerase activity, i.e., tumor and fetal cells. The aim of this study is to test the increased telomerase promoter activity for cancer gene therapy in adenovirus vector. We cloned the hTERT promoter in place of the SV40 promoter in the pGL3-contol vector to be increased by the SV40 enhancer sequences, resulting in strong expression of luc+ only in telomerase positive cancer cells. Then we transfected the constructed plasmid into a normal human cell line and several cancer cell lines. Through these experiments, we identified the selective and increased expression of the luciferase gene controlled by the hTERT promoter and the SV40 enhancer in the telomerase positive cancer cell lines. To investigate the possibility of utilizing the hTERT promoter and the SV40 enhancer in targeted cancer gene therapy, we constructed an adenovirus vector expressing HSV-TK controlled by the hTERT promoter and the SV40 enhancer for the induction of specific telomerase positive cancer cell death. NSCLC cells infected by Ad-hT-TK-enh were more significantly suppressed and induced apoptosis than those infected by Ad-hT-TK. Telomerase is activated in 80~90% of cancers, so adenovirus with increasing telomerase promoter activity might be used for targeted cancer gene therapy using suicide genes. These results show that the hTERT promoter and the SV40 enhancer might be used for targeted cancer gene therapy.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
Sheng WY  Chen YR  Wang TC 《FEBS letters》2006,580(30):6819-6824
Expression of the telomerase catalytic subunit (TERT) is the rate-limiting determinant of telomerase activity in most human cells. In this work, we examined the participation of protein kinase C (PKC) in the regulation of hTERT expression in human T lymphocytes. Transient expression assays using luciferase reporter plasmids containing hTERT promoter showed that overexpression of PKC θ, but not the other PKC isoforms, could activate the promoter activity of hTERT in resting T lymphocytes. Among the PKC θ-activated signalings, we presented evidence that the expression of hTERT is mediated through NFκB but not through MEK or c-Jun N-terminal kinase pathways. Analysis of the hTERT promoter occupancy in vivo using chromatin immunoprecipitation assays, however, did not detect an increased binding of NFκB to the hTERT promoter in the activated T cells, although an increased binding of cMyc and Sp1 was detected. Together with the observation that inhibition of NFκB eliminated the induction of cMyc in activated T cells, these results suggest that PKC θ-activated NFκB signaling regulates the expression of hTERT via cMyc in human T lymphocytes.  相似文献   

15.
16.
17.
人类端粒酶启动子(hTERT启动子)在肿瘤基因治疗中的有效性已经得到了证实. 然而,hTERT启动子有限的肿瘤靶向转录活性困扰着它的临床应用.早期研究已经揭示,核心hTERT启动子上的-34位E-box元件与该启动子的肿瘤靶向转录活性有关.为进一步探索核心hTERT启动子序列3′端富余E-box元件是否能提高启动子的肿瘤靶向转录能力,用化学合成方法在野生型hTERT(WT-hTERT)核心启动子片段(编码蛋白起始子ATG上游-268 bp~-10 bp)的3′端接入3个E-box序列, 构建成修饰型hTERT(Mod-hTERT)启动子. 然后,分别用WT-hTERT和Mod-hTERT启动子去调控增强型绿色荧光蛋白(EGFP)及荧光素酶报告基因在293FT、HepGⅡ、SGC7901、U2OS、以及原代培养人成纤维细胞(PHF)中表达. 结果表明, 在Mod-hTERT启动子的各实验组细胞中,能够在端粒酶阳性的293FT、HepGⅡ及 SGC7901细胞组中观测到EGFP的表达,而在端粒酶阴性的U2OS及PHF细胞组中没有观测到EGFP的表达;在端粒酶阳性的293FT、HepGⅡ和SGC7901细胞株中,Mod-hTERT启动子调控下的荧光素酶活性要高于WT-hTERT启动子组(P<0.01); 而在端粒酶阴性的U2OS细胞组中,Mod-hTERT启动子调控下的荧光素酶活性则低于WT-hTERT启动子组(P<0.01); 在PHF细胞组中,Mod-hTERT启动子组与WT-hTERT启动子组的荧光素酶活性差异不显著(P>0.05).研究提示,在3′端增加E-box元件可以提高核心hTERT启动子序列的肿瘤靶向转录活性.  相似文献   

18.
19.
20.
It has been shown previously that some immortalized human cells maintain their telomeres in the absence of significant levels of telomerase activity by a mechanism referred to as alternative lengthening of telomeres (ALT). Cells utilizing ALT have telomeres of very heterogeneous length, ranging from very short to very long. Here we report the effect of telomerase expression in the ALT cell line GM847. Expression of exogenous hTERT in GM847 (GM847/hTERT) cells resulted in lengthening of the shortest telomeres; this is the first evidence that expression of hTERT in ALT cells can induce telomerase that is active at the telomere. However, rapid fluctuation in telomere length still occurred in the GM847/hTERT cells after more than 100 population doublings. Very long telomeres and ALT-associated promyelocytic leukemia (PML) bodies continued to be generated, indicating that telomerase activity induced by exogenous hTERT did not abolish the ALT mechanism. In contrast, when the GM847 cell line was fused with two different telomerase-positive tumor cell lines, the ALT phenotype was repressed in each case. These hybrid cells were telomerase positive, and the telomeres decreased in length, very rapidly at first and then at the rate seen in telomerase-negative normal cells. Additionally, ALT-associated PML bodies disappeared. After the telomeres had shortened sufficiently, they were maintained at a stable length by telomerase. Together these data indicate that the telomerase-positive cells contain a factor that represses the ALT mechanism but that this factor is unlikely to be telomerase. Further, the transfection data indicate that ALT and telomerase can coexist in the same cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号