首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
2.
In Rhizobium meliloti, Tn5 conferred resistance not only to kanamycin but to streptomycin, as well, in Escherichia coli, however only to kanamycin. Using in vitro recombinant DNA techniques, it was shown that the streptomycin resistance determinant was located downstream from the kanamycin resistance gene in the unique central region of Tn5. Expression of various cloned fragments of Tn5 suggested that both kanamycin and streptomycin resistance genes were transcribed from the same promoter. E. coli mutants allowing the expression of streptomycin resistance from Tn5 were isolated. The differential expression of the streptomycin resistance gene provides a simple selection/counterselection criterion, using only streptomycin in transfer experiments of Tn5 between E. coli and R. meliloti.  相似文献   

3.
The transposon Tn5 carries a bleomycin-resistance determinant   总被引:13,自引:0,他引:13  
O Genilloud  M C Garrido  F Moreno 《Gene》1984,32(1-2):225-233
Transposon Tn5 carries a determinant for resistance to bleomycin (Bm). Deletion mapping and cloning experiments have shown that this determinant, gene ble, is located between the determinant for kanamycin (Km) and neomycin resistance (gene neo) and the determinant for streptomycin resistance (gene str). Genes neo, ble, and str belong to an operon controlled by the common promoter. The Mr of the ble product, as determined by polyacrylamide gel electrophoresis, is 12000 to 13000.  相似文献   

4.
5.
The central region of transposon Tn5 carries three antibiotic resistance markers: neo, ble, and str. The str gene codes for a phosphotransferase that inactivates streptomycin. This activity is phenotypically expressed in several gram-negative bacteria but not in Escherichia coli. We identified a Tn5 variant in E. coli clinical isolates that express streptomycin resistance. This transposon carries a 6-base-pair deletion within the str gene, near the 3' end. The same kind of mutation had been previously obtained experimentally from Tn5.  相似文献   

6.
7.
A vector system was developed employing the recA genes of Rhizobium meliloti and Rhizobium leguminosarum biovar. viciae as target sequences for the stable genomic integration of foreign DNA. The plasmid vectors can be used either as integration vectors (single cross–over), or as gene replacement vectors (double cross–over). Gene replacement results in the antibiotic–marker–free integration of cloned DNA into the recA genes of R. meliloti and R. leguminosarum bv. viciae. Consequently, the recombinant strains become recombination deficient (RecA-). The expression of integrated genes is under the control of the neomycin phosphotransferase II (nptll) promoter of transposon Tn5. The system was used to construct recA mutant strains of R. meliloti and R. leguminosarum by. viciae, carrying the Escherichia coli gusA gene encoding β–glucuronidase as well as the firefly (Photinus pyralis) luc gene encoding luciferase as marker genes. The GUS activity in the constructed strains was found to be absolutely stable over more than 100 generations of non–selective growth in liquid culture. The stability was also confirmed in root–nodule passages. In addition, the potential use of the luc gene as a stable genetic marker in the unequivocal identification of tagged strains among indigenous microbes in non–sterile soil was demonstrated. It is proposed to use bioluminescent recA mutants as model organisms in risk assessment studies with genetically engineered Rhizobium strains.  相似文献   

8.
A set of plasmid cloning vehicles was developed to facilitate the construction of gene or operon fusions in Rhizobium meliloti. The vehicles also contain a broad-host-range replicon and could be introduced into bacteria either by transformation or by transduction, using bacteriophage P2. Insertion of foreign DNA into a unique restriction endonuclease cleavage site promotes the synthesis of either the Escherichia coli lactose operon or the kanamycin phosphotransferase gene from transposon Tn5. Expression of the lactose operon could be detected by observing the color of Rhizobium colonies on medium that contained a chromogenic indicator. We also determined the growth conditions that make it possible to select either for or against the expression of the E. coli lactose operon in R. meliloti. Recombinant plasmids were constructed by inserting MboI restriction fragments of R. meliloti DNA into one of the vehicles, pMK353 . Expression of beta-galactosidase by a number of these recombinants was measured in both R. meliloti and E. coli.  相似文献   

9.
An Escherichia coli lac operon constitutive for lacY was subcloned into the EcoRI site of a wide-host-range plasmid of the Q incompatibility group, and the resulting recombinant plasmid was introduced into Tn5-generated Lac- mutants of Rhizobium meliloti. The R. meliloti transconjugants accumulated lactose about 1,000-fold, equivalent to a proton motive force of -170 to -180 mV, not significantly different from the values calculated from the distributions of weak acids and lipophilic cations.  相似文献   

10.
Organization of the adenyl cyclase (cya) locus of Rhizobium meliloti   总被引:2,自引:0,他引:2  
  相似文献   

11.
A set of conserved, or common, bacterial nodulation (nod) loci is required for host plant infection by Rhizobium meliloti and other Rhizobium species. Four such genes, nodDABC, have been indicated in R. meliloti 1021 by genetic analysis and DNA sequencing. An essential step toward understanding the function of these genes is to characterize their protein products. We used in vitro and maxicell Escherichia coli expression systems, together with gel electrophoresis and autoradiography, to detect proteins encoded by nodDABC. We facilitated expression of genes on these DNA fragments by inserting them downstream of the Salmonella typhimurium trp promoter, both in colE1 and incP plasmid-based vectors. Use of the incP trp promoter plasmid allowed overexpression of a nodABC gene fragment in R. meliloti. We found that nodA encodes a protein of 21 kilodaltons (kDa), and nodB encodes one of 28 kDa; the nodC product appears as two polypeptide bands at 44 and 45 kDa. Expression of the divergently read nodD yields a single polypeptide of 33 kDa. Whether these represent true Rhizobium gene products must be demonstrated by correlating these proteins with genetically defined Rhizobium loci. We purified the 21-kDa putative nodA protein product by gel electrophoresis, selective precipitation, and ion-exchange chromatography and generated antiserum to the purified gene product. This permitted the immunological demonstration that the 21-kDa protein is present in wild-type cells and in nodB- or nodC-defective strains, but is absent from nodA::Tn5 mutants, which confirms that the product expressed in E. coli is identical to that produced by R. meliloti nodA. Using antisera detection, we found that the level of nodA protein is increased by exposure of R. meliloti cells to plant exudate, indicating regulation of the bacterial nod genes by the plant host.  相似文献   

12.
C M Collis  R M Hall 《Plasmid》1985,14(2):143-151
Tn5 conferred resistance to the related antibiotics, phleomycins, bleomycins, and tallysomycins in Escherichia coli and Salmonella typhimurium. For pure phleomycins the level of resistance was influenced by the structure of the terminal basic group. Deletion derivatives of a pBR322::Tn5 plasmid were used to show that the phleomycin resistance determinant is located between the previously identified neomycin and streptomycin resistance determinants. The pattern of expression of phleomycin and neomycin resistance in the deletion derivatives suggests that the phleomycin resistance gene is transcribed from the same promoter, PL, which is essential for expression of neomycin and streptomycin resistance. The location of the phleomycin resistance determinant correlates with the location of an open reading frame in the Tn5 sequence, which codes for a polypeptide of 126 amino acids.  相似文献   

13.
A plasmid carrying a weakly expressed neomycin phosphotransferase (neo) gene from the transposable element Tn5 was found to confer elevated levels of antibiotic resistance on its host cell when it existed in a non-monomeric state. This activation of the neo gene appeared to be a generalized effect which can be exerted on any plasmid-encoded gene, since specific sequences were not required for enhanced neo expression, and the activity of a plasmid-borne chloramphenicol acetyltransferase gene could be similarly induced by oligomerization. The potential role that multiple origins of replication present in such oligomeric plasmids play in these observed increases in gene expression is discussed.  相似文献   

14.
Abstract All transposon-induced symbiotic mutants of Rhizobium described so far have been obtained using Tn 5 , which codes for kanamycin resistance (KmR). To enable genetic complementation studies, we tried to find an effective transposon carrying another resistance marker. We report here a method for the apparent random transposition in Rhizobium of Tn 1831 , which codes for resistance against spectinomycin (Sp), streptomycin (Sm) and mercury chloride. When the suicide plasmid pMP12 (RP4::Tn 1831 , Km::Mu) was transferred to Rhizobium , in almost all cases the exconjugants harbour a deleted transfer-deficient R plasmid. From this deleted R plasmid transposition occurred to self-transmissible Sym-plasmids of R. leguminosarum and R. trifolii . Using this method a number of Tn 1831 -induced symbiotic mutants of pRL1JI were isolated.  相似文献   

15.
16.
The potential of the thymidylate synthase thyA gene cloned from Lactococcus lactis subsp. lactis as a possible alternative selectable marker gene to antibiotic resistance markers has been examined. The thyA mutation is a recessive lethal one; thyA mutants cannot survive in environments containing low amounts of thymidine or thymine (such as Luria-Bertani medium) unless complemented by the thyA gene. The cloned thyA gene was strongly expressed in L. lactis subsp. lactis, Escherichia coli, Rhizobium meliloti, and a fluorescent Pseudomonas strain. In addition, when fused to a promoterless enteric lac operon, the thyA gene drove expression of the lac genes in a number of gram-negative bacteria. In transformation experiments with thyA mutants of E. coli and conjugation experiments with thyA mutants of R. meliloti, the lactococcal thyA gene permitted selection of transformants and transconjugants with the same efficiency as did genes for resistance to ampicillin, chloramphenicol, or tetracycline. Starting from the broad-host-range plasmid pGD500, a plasmid, designated pPR602, was constructed which is completely free of antibiotic resistance genes and has the lactococcal thyA gene fused to a promoterless lac operon. This plasmid will permit growth of thyA mutant strains in the absence of thymidine or thymine and has a number of unique restriction sites which can be used for cloning.  相似文献   

17.
P Ross  F O'Gara    S Condon 《Applied microbiology》1990,56(7):2164-2169
The potential of the thymidylate synthase thyA gene cloned from Lactococcus lactis subsp. lactis as a possible alternative selectable marker gene to antibiotic resistance markers has been examined. The thyA mutation is a recessive lethal one; thyA mutants cannot survive in environments containing low amounts of thymidine or thymine (such as Luria-Bertani medium) unless complemented by the thyA gene. The cloned thyA gene was strongly expressed in L. lactis subsp. lactis, Escherichia coli, Rhizobium meliloti, and a fluorescent Pseudomonas strain. In addition, when fused to a promoterless enteric lac operon, the thyA gene drove expression of the lac genes in a number of gram-negative bacteria. In transformation experiments with thyA mutants of E. coli and conjugation experiments with thyA mutants of R. meliloti, the lactococcal thyA gene permitted selection of transformants and transconjugants with the same efficiency as did genes for resistance to ampicillin, chloramphenicol, or tetracycline. Starting from the broad-host-range plasmid pGD500, a plasmid, designated pPR602, was constructed which is completely free of antibiotic resistance genes and has the lactococcal thyA gene fused to a promoterless lac operon. This plasmid will permit growth of thyA mutant strains in the absence of thymidine or thymine and has a number of unique restriction sites which can be used for cloning.  相似文献   

18.
P R Hirsch  C L Wang  M J Woodward 《Gene》1986,48(2-3):203-209
A physical and genetic map of the IncP plasmid R1033 was constructed: restriction fragments were subcloned and antibiotic resistance genes were located. The map is consistent with previous reports that R1033 is a derivative of RP4 carrying a 16-kb transposon Tn1696 which contains the antibiotic-resistance determinants present on R1033 but not on RP4. A BamHI fragment from R1033, determining resistance to gentamicin, spectinomycin and streptomycin, was cloned into Tn5, replacing the central Bg/II fragment that determined kanamycin resistance, producing a recombinant transposon Tn5-GmSpSm. This was shown to transpose in Rhizobium leguminosarum at a frequency similar to that of the parental Tn5.  相似文献   

19.
Strains of Caulobacter crescentus, Pseudomonas putida, Acinetobacter calcoaceticus, Rhizobium meliloti, and Rhodopseudomonas sphaeroides carrying the kanamycin resistance-encoding transposon Tn5 were 15 to 500 times more resistant to streptomycin than transposon-free strains. The streptomycin resistance determinant, which is separable from the kanamycin resistance determinant of Tn5, was not expressed in Escherichia coli or Klebsiella aerogenes.  相似文献   

20.
A new strategy was developed for rapid cloning of genes with a transposon mutation library. We constructed a transposon designated TnV that was derived from Tn5 and consists of the gene coding for neomycin phosphotransferase II as well as the replication origin of an Escherichia coli plasmid, pSC101, flanked by Tn5 inverted repeats (IS50L and IS50R). TnV can transpose to many different sites of DNA in E. coli and Myxococcus xanthus and confers kanamycin resistance (Kmr) to the cells. From the Kmr cells, one-step cloning of a gene which is mutated as a result of TnV insertion can be achieved as follows. Chromosomal DNA isolated from TnV-mutagenized cells is digested with an appropriate restriction enzyme, ligated, and transformed into E. coli cells with selection for Kmr. The plasmids isolated contain TnV in the target gene. The plasmid DNA can then be used as a probe for characterization of the gene and screening of clones from a genomic library. We used this vector to clone DNA fragments containing genes involved in the development of M. xanthus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号