首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herpes simplex virus type 1 (HSV-1) immediate-early (IE) regulatory protein ICP0 is required for efficient progression of infected cells into productive lytic infection, especially in low-multiplicity infections of limited-passage human fibroblasts. We have used single-cell-based assays that allow detailed analysis of the ICP0-null phenotype in low-multiplicity infections of restrictive cell types. The major conclusions are as follows: (i) there is a threshold input multiplicity above which the mutant virus replicates normally; (ii) individual cells infected below the threshold multiplicity have a high probability of establishing a nonproductive infection; (iii) such nonproductively infected cells have a high probability of expressing IE products at 6 h postinfection; (iv) even at 24 h postinfection, IE protein-positive nonproductively infected human fibroblast cells exceed the number of cells that lead to plaque formation by up to 2 orders of magnitude; (v) expression of individual IE proteins in a proportion of the nonproductively infected cells is incompletely coordinated; (vi) the nonproductive cells can also express early gene products at low frequencies and in a stochastic manner; and (vii) significant numbers of human fibroblast cells infected at low multiplicity by an ICP0-deficient virus are lost through cell death. We propose that in the absence of ICP0 expression, HSV-1 infected human fibroblasts can undergo a great variety of fates, including quiescence, stalled infection at a variety of different stages, cell death, and, for a minor population, initiation of formation of a plaque.  相似文献   

2.
Using Vero cells transformed with the wild-type gene for ICP4 as the permissive host cell, we isolated herpes simplex virus type 1 (HSV-1) mutants containing deletions in both copies of the ICP4 gene. The mutants, d120 and d202, contained deletions of 4.1 and 0.5 kilobases, respectively, in each copy of ICP4. ICP4 mRNA synthesized in d202-infected Vero cells was 0.5 kilobases smaller than that synthesized in cells infected with the wild-type virus. No ICP4 mRNA was detected in d120-infected Vero cells. d120 and d202 specified polypeptides that reacted with ICP4 antiserum and were smaller than the wild-type ICP4 polypeptide by 130 and 30 kilodaltons, respectively. The only other HSV-1 gene products detectable on infection of Vero cells with d120 and d202 were ICP6 (of the early kinetic class of HSV-1 polypeptides), ICP0 (immediate early), ICP22 (immediate early), and ICP27 (immediate early). Immediate-early polypeptides ICP0 and ICP27 were expressed to a higher level in Vero cells infected with an ICP4 temperature-sensitive (ts) mutant (tsB32) at 39 degrees C, indicating immediate-early stimulatory activity associated with the ts ICP4 polypeptide. In addition, the patterns of complementation of d120, d202, and tsB32 in ICP4-transformed cells also demonstrated inhibitory activity associated with the ts form of the ICP4 polypeptide.  相似文献   

3.
4.
5.
Z Zhu  N A DeLuca    P A Schaffer 《Journal of virology》1996,70(8):5346-5356
ICP0 and ICP4 are immediate-early regulatory proteins of herpes simplex virus type 1. Previous studies by Knipe and Smith demonstrated that these two proteins are characteristically observed in the nuclei of wild-type virus-infected cells but predominantly in the cytoplasms of cells infected with several ICP4 temperature-sensitive (ts) mutant viruses at the nonpermissive temperature (NPT) (D. M. Knipe and J. L. Smith, Mol. Cell. Biol. 6:2371-2381, 1986). Consistent with this observation, it has been shown previously that ICP0 is present predominantly in the cytoplasms of cells infected with an ICP4 null mutant virus (n12) at high multiplicities of infection and that the level of ICP27, a third viral regulatory protein, plays an important role in determining the intracellular localization of ICP0 (Z. Zhu, W. Cai, and P. A. Schaffer, J. Virol. 68:3027-3040, 1994). To address whether the cytoplasmic localization of ICP0 is a common feature of cells infected with all ICP4 mutant viruses or whether mutant ICP4 polypeptides, together with ICP27, determine the intracellular localization of ICP0, we used double-staining immunofluorescence tests to examine the intracellular staining patterns of ICP0 and ICP4 in cells infected with an extensive series of ICP4 mutant viruses. In these tests, compared with the localization pattern of ICP0 in wild-type virus-infected cells, more ICP0 was detected in the cytoplasms of cells infected with all ICP4 mutants tested at high multiplicities of infection. Each of the mutant forms of ICP4 exhibiting predominantly cytoplasmic staining contains both the nuclear localization signal and the previously mapped ICP27-responsive region (Z. Zhu and P. A. Schaffer, J. Virol. 69:49-59, 1995). No correlation between the intracellular staining patterns of ICP0 and mutant forms of ICP4 was demonstrated, suggesting that mutant ICP4 polypeptides per se are not responsible for retention of ICP0 in the cytoplasm. This observation was confirmed in studies of cells cotransfected with plasmids expressing ICP0 and mutant forms of ICP4, in which the staining pattern of ICP0 was not changed in the presence of mutant ICP4 proteins. Studies of cells infected at low multiplicities with a variety of ICP4 ts mutant viruses at the NPT showed that both ICP0 and ts forms of ICP4 were localized predominantly within the nucleus. These observations are a further indication that the aberrant localization of the ts forms of ICP4 at the NPT is not a direct result of specific mutations in the ICP4 gene. In the final series of tests, the localization of ICP0 in cells infected with a double-mutant virus unable to express either ICP4 or ICP27 was examined. In these tests, ICP0 was detected exclusively in the nuclei of Vero cells but in both the nuclei and the cytoplasms of ICP27-expressing cells infected with the double mutant. These results demonstrate that ICP27, rather than the absence of functional ICP4, is responsible for the cytoplasmic localization of ICP0 in ICP4 mutant virus-infected cells. Taken together, these findings demonstrate that the aberrant localization of ICP0 and certain mutant forms of ICP4 in cells infected with ICP4 mutant viruses is mediated by high levels of ICP27 resulting from the inability of mutant forms of ICP4 to repress the expression of ICP27.  相似文献   

6.
F Yao  P A Schaffer 《Journal of virology》1994,68(12):8158-8168
The herpes simplex virus type 1 immediate-early protein ICP0 enhances expression of a spectrum of viral genes alone and synergistically with ICP4. To test whether ICP0 and ICP4 interact physically, we performed far-Western blotting analysis of proteins from mock-, wild-type-, and ICP4 mutant virus-infected cells with in vitro-synthesized [35S]Met-labeled ICP0 and ICP4 as probes. The ICP4 and ICP0 polypeptides synthesized in vitro exhibited molecular weights similar to those of their counterparts in herpes simplex virus type 1-infected cells, and the in vitro-synthesized ICP4 was able to bind to a probe containing the ICP4 consensus binding site. Far-Western blotting experiments demonstrated that ICP0 interacts directly and specifically with ICP4 and with itself. To further define the interaction between ICP0 and ICP4, we generated a set of glutathione S-transferase (GST)-ICP0 fusion proteins that contain GST and either ICP0 N-terminal amino acids 1 to 244 or 1 to 394 or C-terminal amino acids 395 to 616 or 395 to 775. Using GST-ICP0 fusion protein affinity chromatography and in vitro-synthesized [35S]Met-labeled ICP0 and ICP4, ICP4 was shown to interact preferentially with the fusion protein containing ICP0 C-terminal amino acids 395 to 775, whereas ICP0 interacted efficiently with both the N-terminal GST-ICP0 fusion proteins and the C-terminal GST-ICP0 fusion proteins containing amino acids 395 to 775. Fusion protein affinity chromatography also demonstrated that the C-terminal 235 amino acid residues of ICP4 are important for efficient interaction with ICP0. Collectively, these results reveal a direct and specific physical interaction between ICP0 and ICP4.  相似文献   

7.
In pseudorabies virus (PrV), an open reading frame that partially overlaps the gene for the essential glycoprotein gII has been shown to encode a protein homologous to the ICP18.5 polypeptide of herpes simplex virus type 1 (N. Pederson and L. Enquist, Nucleic Acids Res. 17:3597, 1989). To study the function of this protein during the viral replicative cycle, a PrV mutant which carries a beta-galactosidase expression cassette interrupting the ICP18.5(PrV) gene was constructed. This mutant could be propagated only on cell lines that were able to provide ICP18.5(PrV) in trans after transformation with a corresponding genomic PrV DNA fragment. Detailed analysis showed that inactivation of the ICP18.5(PrV) gene did not impair infection of noncomplementing cells, nor did it impair early or late gene expression, as shown by immunoprecipitation of glycoproteins gII, gIII, and gp50. Surface localization of glycoproteins as demonstrated by fluorescence-activated cell sorting analyses was also not affected. Southern blot hybridizations, however, showed that cleavage of replicative concatemeric viral DNA did not occur in noncomplementing cells infected by the ICP18.5 mutant PrV. In addition, electron microscopic analysis revealed an accumulation of empty capsids in the nucleus of mutant-infected noncomplementing cells. We conclude that the ICP18.5(PrV) protein is necessary for viral replication and plays an essential role in the process of mature capsid formation.  相似文献   

8.
9.
Herpes simplex virus type 1 (HSV-1) immediate-early (IE) proteins are required for the expression of viral early and late proteins. It has been hypothesized that host neuronal proteins regulate expression of HSV-1 IE genes that in turn control viral latency and reactivation. We investigated the ability of neuronal proteins in vivo to activate HSV-1 IE gene promoters (ICP0 and ICP27) and a late gene promoter (gC). Transgenic mice containing IE (ICP0 and ICP27) and late (gC) gene promoters of HSV-1 fused to the Escherichia coli beta-galactosidase coding sequence were generated. Expression of the ICP0 and ICP27 reporter transgenes was present in anatomically distinct subsets of neurons in the absence of viral proteins. The anatomic locations of beta-galactosidase-positive neurons in the brains of ICP0 and ICP27 reporter transgenic mice were similar and included cerebral cortex, lateral septal nucleus, cingulum, hippocampus, thalamus, amygdala, and vestibular nucleus. Trigeminal ganglion neurons were positive for beta-galactosidase in adult ICP0 and ICP27 reporter transgenic mice. The ICP0 reporter transgene was differentially regulated in trigeminal ganglion neurons depending upon age. beta-galactosidase-labeled cells in trigeminal ganglia and cerebral cortex of ICP0 and ICP27 reporter transgenic mice were confirmed as neurons by double labeling with antineurofilament antibody. Nearly all nonneuronal cells in ICP0 and ICP27 reporter transgenic mice and all neuronal and nonneuronal cells in gC reporter transgenic mice were negative for beta-galactosidase labeling in the absence of HSV-1. We conclude that factors in neurons are able to differentially regulate the HSV-1 IE gene promoters (ICP0 and ICP27) in transgenic mice in the absence of viral proteins. These findings are important for understanding the regulation of the latent and reactivated stages of HSV-1 infection in neurons.  相似文献   

10.
11.
The herpes simplex virus type 1 (HSV-1) ICP34.5 gene is a neurovirulence gene in mice. In addition, some ICP34.5 mutants have been reported to have a reduced efficiency of induced reactivation as measured by in vitro explantation of latently infected mouse ganglia. However, since spontaneous reactivation is almost nonexistent in mice, nothing has been reported on the effect of ICP34.5 mutants on spontaneous reactivation in vivo. To examine this, we have deleted both copies of the ICP34.5 neurovirulence gene from a strain of HSV-1 (McKrae) that has a high spontaneous reactivation rate in rabbits and used this mutant to infect rabbit eyes. All rabbits infected with the ICP34.5 mutant virus (d34.5) survived, even at challenge doses greater than 4 x 10(7) PFU per eye. In contrast, a 200-fold-lower challenge dose of 2 x 10(5) PFU per eye was lethal for approximately 50% of rabbits infected with either the wild-type McKrae parental virus or a rescued ICP34.5 mutant in which both copies of the ICP34.5 gene were restored. In mice, the 50% lethal dose of the ICP34.5 mutant was over 10(6) PFU, compared with a value of less than 10 PFU for the rescued virus. The ICP34.5 mutant was restricted for replication in rabbit and mouse eyes and mouse trigeminal ganglia in vivo. The spontaneous reactivation rate in rabbits for the mutant was 1.4% as determined by culturing tear films for the presence of reactivated virus. This was more than 10-fold lower than the spontaneous reactivation rate determined for the rescued virus (19.6%) and was highly significant (P < 0.0001, Fisher exact test). Southern analysis confirmed that the reactivated virus retained both copies of the ICP34.5 deletion. Thus, this report demonstrates that (i) the ICP34.5 gene, known to be a neurovirulence gene in mice, is also important for virulence in rabbits and (ii) in vivo spontaneous reactivation of HSV-1 in the rabbit ocular model, although reduced, can occur in the absence of the ICP34.5 gene.  相似文献   

12.
13.
Z Zhu  W Cai    P A Schaffer 《Journal of virology》1994,68(5):3027-3040
The results of transient expression assays and studies of viral mutants have shown that three of the five immediate-early proteins of herpes simplex virus type 1 (HSV-1) perform regulatory functions, individually and cooperatively. As part of efforts designed to explore the molecular basis for the functional cooperativity among ICP0, ICP4, and ICP27 in the regulation of HSV gene expression, we have examined the intracellular localization of ICP0 in cells infected with ICP4 and ICP27 null mutant viruses by indirect immunofluorescence. Although ICP0 was localized predominantly to the nuclei of wild-type virus-infected cells, it was found exclusively in the nuclei of ICP27 mutant-infected cells and in both the cytoplasm and nuclei of ICP4 mutant-infected cells, the cytoplasmic component being especially strong. These observations indicate that both ICP4 and ICP27 can affect the intracellular localization of ICP0. Transient expression assays with plasmids that express wild-type and mutant forms of ICP0, ICP4, and ICP27 confirmed that ICP4 promotes and that ICP27 inhibits the nuclear localization of ICP0. These results confirm the observations made for mutant virus-infected cells and indicate that the localization pattern seen in infected cells can be established by these three immediate-early proteins exclusive of other viral proteins. The C-terminal half of ICP27 was shown to be required to achieve its inhibitory effect on the nuclear localization of ICP0. The region of ICP0 responsive to ICP27 was mapped to the C terminus of the molecule between amino acid residues 720 and 769. In addition, the concentration of ICP27 was shown to have a significant effect on the intracellular localization of ICP0. Because the major regulatory activities of ICP0, ICP4, and ICP27 are expressed in the nucleus, the ability of these three proteins collectively to determine their own localization patterns within cells adds a new dimension to the complex process of viral gene regulation in HSV.  相似文献   

14.
15.
J Resnick  B A Boyd    M L Haffey 《Journal of virology》1989,63(6):2497-2503
The herpes simplex virus type 1 ICP4 and ICP0 polypeptides are immediate-early proteins that positively and negatively regulate expression of other viral genes in trans. ICP4 has recently been shown to bind DNA bearing the consensus sequence 5'-ATCGTCNNNN(T/C)CG(A/G)C-3', present upstream of a number of viral genes. To test the hypothesis that this DNA-binding activity is involved in ICP4-mediated gene regulation, site-specific mutagenesis was employed to mutate the version of this sequence in the promoter of the ICP0 gene. The mutation eliminated detectable binding of ICP4 to the promoter as measured in vitro by a gel electrophoresis band shift assay. The ability of the mutated ICP0 promoter to direct synthesis of a reporter gene was also investigated in a transient transfection assay. Whereas ICP4 was found to transactivate the wild-type ICP0 promoter two- to threefold, the mutated promoter was transactivated seven- to ninefold. In assays containing the ICP0 transactivator gene, ICP4 down regulated the wild-type promoter far more efficiently than the mutated promoter. Finally, both the wild-type and mutated ICP0 promoters exhibited a similar response to ICP4 in transfections that included a vector expressing the viral transactivator protein VP16. These experiments suggest that the sequence-specific DNA-binding activity of ICP4 is an essential element of its role as a negative regulator of gene expression.  相似文献   

16.
The herpes simplex virus type 1 ICP35 assembly protein is involved in the formation of viral capsids. ICP35 is encoded by the UL26.5 gene and is specifically processed by the herpes simplex virus type 1 protease encoded by the UL26 gene. To better understand the functions of ICP35 in infected cells, we have isolated and characterized an ICP35 mutant virus, delta ICP35. The mutant virus was propagated in complementing 35J cells, which express wild-type ICP35. Phenotypic analysis of delta ICP35 shows that (i) mutant virus growth in Vero cells was severely restricted, although small amounts of progeny virus was produced; (ii) full-length ICP35 protein was not produced, although autoproteolysis of the protease still occurred in mutant-infected nonpermissive cells; (iii) viral DNA replication of the mutant proceeded at wild-type levels, but only a very small portion of the replicated DNA was processed to unit length and encapsidated; (iv) capsid structures were observed in delta ICP35-infected Vero cells by electron microscopy and by sucrose sedimentation analysis; (v) assembly of VP5 into hexons of the capsids was conformationally altered; and (vi) ICP35 has a novel function which is involved in the nuclear transport of VP5.  相似文献   

17.
ICP0 is a 110,000-molecular-weight immediate-early protein of herpes simplex virus type 1 (HSV-1) which is encoded by three exons. It has been shown to function as a promiscuous transactivator of a variety of different HSV-1 and non-HSV-1 promoters in transient expression assays. Analysis of mutations which truncated the carboxy-terminal end of this 775-amino-acid (aa) protein demonstrated that a polypeptide which contained only aa 1 to 553 still possessed significant transactivation potential. Additional carboxy-terminal truncations which sequentially removed aa 245 to 553 and thus the remainder of the third exon resulted in the eventual loss of transactivation capability in these mutants. However, further analysis of these truncated derivatives demonstrated that they behaved as dominant-negative mutants to the wild-type polypeptide. Moreover, one of the mutants was found to act as a promiscuous repressor, in that it could dramatically inhibit a variety of HSV-1 promoters, non-HSV-1 promoters, and heterologous transactivator proteins in transient expression assays, despite having lost almost the entire third exon. These results indicate that a domain encoded by the first two exons probably interacts with, and can effectively titrate, the unknown cellular factor(s) through which ICP0 mediates transactivation.  相似文献   

18.
The herpes simplex virus type 1 (HSV-1) ICP27 protein is an immediate-early or alpha protein which is essential for the optimal expression of late genes as well as the synthesis of viral DNA in cultures of Vero cells. Our specific goal was to characterize the replication of a virus incapable of synthesizing ICP27 in cultured human cells. We found that infection with an HSV-1 ICP27 deletion virus of at least three separate strains of human cells did not produce immediate-early or late proteins at the levels observed following wild-type virus infections. Cell morphology, chromatin condensation, and genomic DNA fragmentation measurements demonstrated that the human cells died by apoptosis after infection with the ICP27 deletion virus. These features of the apoptosis were identical to those which occur during wild-type infections of human cells when total protein synthesis has been inhibited. Vero cells infected with the ICP27 deletion virus did not exhibit any of the features of apoptosis. Based on these results, we conclude that while HSV-1 infection likely induced apoptosis in all cells, viral evasion of the response differed among the cells tested in this study.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号