共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the effect of nitric oxide (NO) on the cytosolic free Ca(2+) concentration ([Ca(2+)](c)) of alpha-cells isolated from rat pancreatic islets. When extracellular glucose was reduced from 7 to 0 mM, about half of the alpha-cells displayed [Ca(2+)](c) oscillations. Nicardipine, a Ca(2+) channel blocker, terminated the oscillations, while thapsigargine, an inhibitor of Ca(2+)-ATPase on the endoplasmic reticulum, did not affect them, suggesting that the [Ca(2+)](c) oscillations were produced by periodic Ca(2+) influx via L-type voltage-operated Ca(2+) channels. NOC 7, an NO donor, did not cause any changes in [Ca(2+)](c) at 7 mM glucose, but reduced [Ca(2+)](c) or terminated [Ca(2+)](c) oscillations at 0 or 2.8 mM glucose. A similar inhibitory effect on [Ca(2+)](c) of alpha-cells was caused by 8-bromo-cGMP. When the [Ca(2+)](c) of alpha-cells was elevated by L-arginine in the presence of N(omega)-nitro-L-arginine, an NO synthase inhibitor, the subsequent application of NOC 7 and 8-bromo-cGMP reduced [Ca(2+)](c). As there is a direct relationship between [Ca(2+)](c) and glucagon release, these results suggest that the NO-cGMP system in rat pancreatic islets reduces glucagon release by suppressing [Ca(2+)](c) responses in alpha-cells. 相似文献
2.
Montero M Alonso MT Albillos A García-Sancho J Alvarez J 《Molecular biology of the cell》2001,12(1):63-71
We have reported that a population of chromaffin cell mitochondria takes up large amounts of Ca(2+) during cell stimulation. The present study focuses on the pathways for mitochondrial Ca(2+) efflux. Treatment with protonophores before cell stimulation abolished mitochondrial Ca(2+) uptake and increased the cytosolic [Ca(2+)] ([Ca(2+)](c)) peak induced by the stimulus. Instead, when protonophores were added after cell stimulation, they did not modify [Ca(2+)](c) kinetics and inhibited Ca(2+) release from Ca(2+)-loaded mitochondria. This effect was due to inhibition of mitochondrial Na(+)/Ca(2+) exchange, because blocking this system with CGP37157 produced no further effect. Increasing extramitochondrial [Ca(2+)](c) triggered fast Ca(2+) release from these depolarized Ca(2+)-loaded mitochondria, both in intact or permeabilized cells. These effects of protonophores were mimicked by valinomycin, but not by nigericin. The observed mitochondrial Ca(2+)-induced Ca(2+) release response was insensitive to cyclosporin A and CGP37157 but fully blocked by ruthenium red, suggesting that it may be mediated by reversal of the Ca(2+) uniporter. This novel kind of mitochondrial Ca(2+)-induced Ca(2+) release might contribute to Ca(2+) clearance from mitochondria that become depolarized during Ca(2+) overload. 相似文献
3.
Mauban JR Lamont C Balke CW Wier WG 《American journal of physiology. Heart and circulatory physiology》2001,280(5):H2399-H2405
Confocal laser scanning microscopy and fluo 4 were used to visualize local and whole cell Ca(2+) transients within individual smooth muscle cells (SMC) of intact, pressurized rat mesenteric small arteries during activation of alpha1-adrenoceptors. A method was developed to record the Ca(2+) transients within individual SMC during the changes in arterial diameter. Three distinct types of "Ca(2+) signals" were influenced by adrenergic activation (agonist: phenylephrine). First, asynchronous Ca(2+) transients were elicited by low levels of adrenergic stimulation. These propagated from a point of origin and then filled the cell. Second, synchronous, spatially uniform Ca(2+) transients, not reported previously, occurred at higher levels of adrenergic stimulation and continued for long periods during oscillatory vasomotion. Finally, Ca(2+) sparks slowly decreased in frequency of occurrence during exposure to adrenergic agonists. Thus adrenergic activation causes a decrease in the frequency of Ca(2+) sparks and an increase in the frequency of asynchronous wavelike Ca(2+) transients, both of which should tend to decrease arterial diameter. Oscillatory vasomotion is associated with spatially uniform synchronous oscillations of cellular [Ca(2+)] and may have a different mechanism than the asynchronous, propagating Ca(2+) transients. 相似文献
4.
5.
H Sugiya Y Mitsui H Michikawa J Fujita-Yoshigaki M Hara-Yokoyama S Hashimoto S Furuyama 《Cell calcium》2001,30(2):107-116
In rabbit parotid acinar cells, the muscarinic cholinergic agonist methacholine induced an increase in the intracellular Ca(2+) concentration and provoked nitric oxide (NO) generation. Ca(2+)-mobilizing reagents such as thapsigargin and the Ca(2+) ionophore A23187 mimicked the effect of methacholine on NO generation. Methacholine-induced NO generation was inhibited by the removal of extracellular Ca(2+). Immunoblot analysis indicated that the antibody against the neuronal type of nitric oxide synthase (NOS) cross-reacted with NOS in the cytosol of rabbit parotid gland cells. Immunofluorescence testing showed that neuronal NOS is present in the cytosol of acinar cells but less in the ductal cells. NOS was purified approximately 8100-fold from the cytosolic fraction of rabbit parotid glands by chromatography on Sephacryl S-200, DEAE-Sephacel, and 29,59-ADP-Sepharose. The purified NOS was a NADPH- and tetrahydroxybiopterin-dependent enzyme and was activated by Ca(2+) within the physiological range in the presence of calmodulin. These results suggest that NO is generated by the activation of the neuronal type of NOS, which is regulated in rabbit parotid acinar cells by the increase in intracellular Ca(2+) levels induced by the activation of muscarinic receptors. 相似文献
6.
Different methods to measure the unstable radical nitric oxide (NO) have been established. We are going to present a new method to measure intracellular calcium and NO simultaneously in endothelial cells. A new fluorescent dye (DAF-2) has been developed recently which binds NO resulting in an enhanced fluorescence. We loaded porcine aortic endothelial cells with Fura-2, a fluorescent dye commonly used to measure intracellular calcium, and DAF-2 simultaneously (cell permeable dyes). Using excitation wavelengths of lambda 340 nm (Fura-2) and lambda 485 nm (DAF-2) we could show that thrombin induces an intracellular calcium increase and simultaneously a NO formation in endothelial cells which could be blocked by a NO synthase inhibitor. This new method of a simultaneous measurement of intracellular calcium and NO provides the possibility to follow intracellular calcium and NO distributions online, and is sensitive enough to monitor changes of NO formed by the constitutive endothelial NO-synthase. 相似文献
7.
Ca(2+)-dependent gene expression mediated by MEF2 transcription factors 总被引:16,自引:0,他引:16
8.
Shibata H Katsuki H Nishiwaki M Kume T Kaneko S Akaike A 《Journal of neurochemistry》2003,86(5):1201-1212
Glial cell activation associated with inflammatory reaction may contribute to pathogenic processes of neurodegenerative disorders, through production of several cytotoxic molecules. We investigated the consequences of glial activation by interferon-gamma (IFN-gamma)/lipopolysaccharide (LPS) in rat midbrain slice cultures. Application of IFN-gamma followed by LPS caused dopaminergic cell death and accompanying increases in nitrite production and lactate dehydrogenase release. Aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), or SB203580, an inhibitor of p38 mitogen-activated protein kinase, prevented dopaminergic cell loss as well as nitrite production. SB203580 also suppressed expression of iNOS and cyclooxygenase-2 (COX-2) induced by IFN-gamma/LPS. A COX inhibitor indomethacin protected dopaminergic neurons from IFN-gamma/LPS-induced injury, whereas selective COX-2 inhibitors such as NS-398 and nimesulide did not. Notably, indomethacin was able to attenuate neurotoxicity of a nitric oxide (NO) donor. Neutralizing antibodies against tumour necrosis factor-alpha and interleukin-1beta did not inhibit dopaminergic cell death caused by IFN-gamma/LPS, although combined application of these antibodies blocked lactate dehydrogenase release and decrease in the number of non-dopaminergic neurons. These results indicate that iNOS-derived NO plays a crucial role in IFN-gamma/LPS-induced dopaminergic cell death, and that indomethacin exerts protective effect by mechanisms probably related to NO neurotoxicity rather than through COX inhibition. 相似文献
9.
Endoplasmic reticulum Mg(2+)/Ca(2+) ATPase Ca(2+) sequestration is crucial for maintenance of neuronal Ca(2+) homeostasis. The use of cell culture in conjunction with modern Ca(2+) imaging techniques has been invaluable in elucidating these mechanisms. While imaging protocols evaluate endoplasmic reticulum Ca(2+) loads, measurement of Mg(2+)/Ca(2+) ATPase activity is indirect, comparing cytosolic Ca(2+) levels in the presence or absence of the Mg(2+)/Ca(2+) ATPase inhibitor thapsigargin. Direct measurement of Mg(2+)/Ca(2+) ATPase by isolation of microsomes is impossible due to the minuscule amounts of protein yielded from cultures used for imaging. In the current study, endoplasmic reticulum Mg(2+)/Ca(2+) ATPase Ca(2+) sequestration was measured in mixed homogenates of neurons and glia from primary hippocampal cultures. It was demonstrated that Ca(2+) uptake was mediated by the endoplasmic reticulum Mg(2+)/Ca(2+) ATPase due to its dependence on ATP and Mg(2+), enhancement by oxalate, and inhibition by thapsigargin. It was also shown that neuronal Ca(2+) uptake, mediated by the type 2 sarco(endo)plasmic reticulum Ca(2+) ATPase isoform, could be distinguished from glial Ca(2+) uptake in homogenates composed of neurons and glia. Finally, it was revealed that Ca(2+) uptake was sensitive to incubation on ice, extremely labile in the absence of protease inhibitors, and significantly more stable under storage conditions at -80 degrees C. 相似文献
10.
The component of the venom of the Taiwanese banded krait Bungarus multicinctus, beta-bungarotoxin (beta-BuTx), acts as an extremely potent inducer of neuronal apoptosis when applied to rat hippocampal cultures. While induction of cell death is dependent on toxin binding to voltage-activated K+ channels and subsequent internalization, the pro-apoptotic signals triggered by picomolar concentrations of beta-BuTx are not understood. Following toxin binding, a dramatic increase in intracellular Ca2+ became detectable after 30 min, and in reactive oxygen species (ROS) after 3-4 h. Conversely, Ca2+ chelators, radical quenchers and antioxidants efficiently antagonized beta-BuTx induced apoptosis. As shown for the antioxidant 2,3-dihydroxybenzoic acid, analysis by matrix assisted laser desorbtion-time of flight (MALDI-TOF) mass spectrometry excluded the protective effects to be due to reductive cleavage of the toxic beta-BuTx dimer. Inhibitors of the intracellular antioxidant defence system enhanced neuronal susceptibility to beta-BuTx, supporting the essential role of ROS in beta-BuTx-initiated apoptosis. Cell damage was accompanied by an accumulation of markers of oxidative cell stress, phospholipid hydroxyperoxides and the lipid peroxidation product, malonyl dialdehyde. These observations indicate that beta-BuTx-induced cell death resulted from an intracellular signalling cascade involving subsequent stages of a dramatic rise in free Ca2+, the accumulation of ROS, membrane lipid peroxidation and, finally, apoptosis. 相似文献
11.
Articular cartilage is a tissue designed to withstand compression during joint movement and, in vivo, is subjected to a wide range of mechanical loading forces. Mechanosensitivity has been demonstrated to influence chondrocyte metabolism and cartilage homeostasis, but the mechanisms underlying mechanotransduction in these cells are poorly understood. In many cell types mechanical stimulation induces increases of the cytosolic Ca2+ concentration that propagates from cell to cell as an intercellular Ca2+ wave. Cell-to-cell communication through gap junctions underlies tissue co-ordination of metabolism and sensitivity to extracellular stimuli: gap junctional permeability to intracellular second messengers allows signal transduction pathways to be shared among several cells, ultimately resulting in co-ordinated tissue responses. Mechanically-induced Ca2+ signalling was investigated with digital fluorescence video imaging in primary cultures of rabbit articular chondrocytes. Mechanical stimulation of a single cell, obtained by briefly distorting the plasmamembrane with a micropipette, induced a wave of increased Ca2+ that was communicated to surrounding cells. Intercellular Ca2+ spreading was inhibited by 18 alpha-glycyrrhetinic acid, suggesting the involvement of gap junctions in signal propagation. The functional expression of gap junctions was assessed, in confluent chondrocyte cultures, by the intercellular transfer of Lucifer yellow dye in microinjection experiments while the expression of connexin 43 could be detected in Western blots. A series of pharmacological tools known to interfere with the cell calcium handling capacity were employed to investigate the mechanism of mechanically-induced Ca2+ signalling. In the absence of extracellular Ca2+ mechanical stimulation induced communicated Ca2+ waves similar to controls. Mechanical stress induced Ca2+ influx both in the stimulated chondrocyte but not in the adjacent cells, as assessed by the Mn2+ quenching technique. Cells treatment with thapsigargin and with the phospholipase C inhibitor U73122 blocked mechanically-induced signal propagation. These results provide evidence that in chondrocytes mechanical stimulation activates phospholipase C, thus leading to an increase of intracellular inositol 1,4,5-trisphosphate. The second messenger, by permeating gap junctions, stimulates intracellular Ca2+ release in neighbouring cells. Intercellular Ca2+ waves may provide a mechanism to co-ordinate tissue responses in cartilage physiology. 相似文献
12.
Neutral sphingomyelinase (N-SMase) elevated nitric oxide (NO) production without affecting intracellular Ca(2+) concentration ([Ca(2+)](i)) in endothelial cells in situ on aortic valves, and induced prominent endothelium-dependent relaxation of coronary arteries, which was blocked by N(omega)-monomethyl-L-arginine, a NO synthase (NOS) inhibitor. N-SMase induced translocation of endothelial NOS (eNOS) from plasma membrane caveolae to intracellular region, eNOS phosphorylation on serine 1179, and an increase of ceramide level in endothelial cells. Membrane-permeable ceramide (C(8)-ceramide) mimicked the responses to N-SMase. We propose the involvement of N-SMase and ceramide in Ca(2+)-independent eNOS activation and NO production in endothelial cells in situ, linking to endothelium-dependent vasorelaxation. 相似文献
13.
Nitric oxide (NO) mediates pathogenic changes in the brain subsequent to energy deprivation; yet the NO mechanism involved in the early events remains unclear. We examined the acute effects of severe hypoxia and oxygen-glucose deprivation (OGD) on the endogenous NO production and the NO-mediated pathways involved in the intracellular calcium ([Ca(2+)](i)) response in the rat hippocampal neurons. The levels of NO and [Ca(2+)](i) in the CA1 region of the slices rapidly elevated in hypoxia and were more prominent in OGD, measured by the electrochemical method and spectrofluorometry, respectively. The NO and [Ca(2+)](i) responses were enhanced by L-arginine and were reduced by NO synthase inhibitors, suggesting that the endogenous NO increases the [Ca(2+)](i) response to energy deprivation. Nickel and nifedipine significantly decreased the NO and [Ca(2+)](i) responses to hypoxia and OGD, indicating an involvement of L-type Ca(2+) channels in the NO-mediated mechanisms. In addition, the [Ca(2+)](i) responses were attenuated by ODQ or KT5823, inhibitors of the cGMP-PKG pathway, and by acivicin, an inhibitor of gamma-glutamyl transpeptidase for S-nitrosylation, and by the thiol-alkylating agent N-ethylmaleimide (NEM). Moreover, L-type Ca(2+) currents in cultured hippocampal neurons with whole-cell recording were significantly increased by L-arginine and were decreased by L-NAME. Pretreatment with NO synthase inhibitors or NEM but not ODQ abolished the effect of L-arginine on the Ca(2+) currents. Also, vitamin C, which decomposes nitrosothiol but not disulfide by reduction, reversed the change in the Ca(2+) current with L-arginine. Taken together, the results suggest that an elevated endogenous NO production enhances the influx of Ca(2+) via the hippocampal L-type Ca(2+) channel by S-nitrosylation during an initial phase of energy deprivation. 相似文献
14.
Group I metabotropic glutamate receptors (group I mGluRs; mGluR1 and mGluR5) exert diverse effects on neuronal and synaptic functions, many of which are regulated by intracellular Ca2+. In this study, we characterized the cellular mechanisms underlying Ca2+ mobilization induced by (RS)-3,5-dihydroxyphenylglycine (DHPG; a specific group I mGluR agonist) in the somata of acutely dissociated rat hippocampal neurons using microfluorometry. We found that DHPG activates mGluR5 to mobilize intracellular Ca2+ from ryanodine-sensitive stores via cyclic adenosine diphosphate ribose (cADPR), while the PLC/IP3 signaling pathway was not involved in Ca2+ mobilization. The application of glutamate, which depolarized the membrane potential by 28.5±4.9 mV (n = 4), led to transient Ca2+ mobilization by mGluR5 and Ca2+ influx through L-type Ca2+ channels. We found no evidence that mGluR5-mediated Ca2+ release and Ca2+ influx through L-type Ca2+ channels interact to generate supralinear Ca2+ transients. Our study provides novel insights into the mechanisms of intracellular Ca2+ mobilization by mGluR5 in the somata of hippocampal neurons. 相似文献
15.
The (Ca2+ + Mg2+)-ATPase was purified from skeletal muscle sarcoplasmic reticulum and reconstituted into sealed phospholipid vesicles by solution in cholate and deoxycholate followed by detergent removal on a column of Sephadex G-50. The level of Ca2+ accumulated by these vesicles, either in the presence or absence of phosphate within the vesicles, increased with increasing content of phosphatidylethanolamine in the phospholipid mixture used for the reconstitution. The levels of Ca2+ accumulated in the absence of phosphate were very low for vesicles reconstituted with egg yolk phosphatidylcholine alone at pH 7.4, but increased markedly with decreasing pH to 6.0. Uptake was also relatively low for vesicles reconstituted with dimyristoleoyl- or dinervonylphosphatidylcholine, and addition of cholesterol had little effect. The level of Ca2+ accumulated increased with increasing external K+ concentration, and was also increased by the ionophores FCCP and valinomycin. Vesicle sizes changed little with changing phosphatidylethanolamine content, and the sidedness of insertion of the ATPase was close to random at all phosphatidylethanolamine contents. It is suggested that the effect of phosphatidylethanolamine on the level of Ca2+ accumulation follows from an effect on the rate of Ca2+ efflux mediated by the ATPase. 相似文献
16.
17.
ATP-elicited oscillations of the concentration of free intracellular Ca(2+) ([Ca(2+)](i)) in rat brain astrocytes were abolished by simultaneous arachidonic acid (AA) addition, whereas the tetraenoic analogue 5,8,11,14-eicosatetraynoic acid (ETYA) was ineffective. Inhibition of oscillations is due to suppression by AA of intracellular Ca(2+) store refilling. Short-term application of AA, but not ETYA, blocked Ca(2+) influx, which was evoked by depletion of stores with cyclopiazonic acid (CPA) or thapsigargin (Tg). Addition of AA after ATP blocked ongoing [Ca(2+)](i) oscillations. Prolonged AA application without or with agonist could evoke a delayed [Ca(2+)](i) increase. This AA-induced [Ca(2+)](i) rise developed slowly, reached a plateau after 5 min, could be reversed by addition of bovine serum albumin (BSA), that scavenges AA, and was blocked by 1 microM Gd(3+), indicative for the influx of extracellular Ca(2+). Specificity for AA as active agent was demonstrated by ineffectiveness of C16:0, C18:0, C20:0, C18:2, and ETYA. Moreover, the action of AA was not affected by inhibitors of oxidative metabolism of AA (ibuprofen, MK886, SKF525A). Thus, AA exerted a dual effect on astrocytic [Ca(2+)](i), firstly, a rapid reduction of capacitative Ca(2+) entry thereby suppressing [Ca(2+)](i) oscillations, and secondly inducing a delayed activation of Ca(2+) entry, also sensitive to low Gd(3+) concentration. 相似文献
18.
Komori Y Tanaka M Kuba M Ishii M Abe M Kitamura N Verkhratsky A Shibuya I Dayanithi G 《Cell calcium》2010,48(6):324-332
Multiple mechanisms that maintain Ca(2+) homeostasis and provide for Ca(2+) signalling operate in the somatas and neurohypophysial nerve terminals of supraoptic nucleus (SON) neurones. Here, we examined the Ca(2+) clearance mechanisms of SON neurones from adult rats by monitoring the effects of the selective inhibition of different Ca(2+) homeostatic molecules on cytosolic Ca(2+) ([Ca(2+)](i)) transients in isolated SON neurones. In addition, we measured somatodendritic vasopressin (AVP) release from intact SON tissue in an attempt to correlate it with [Ca(2+)](i) dynamics. When bathing the cells in a Na(+)-free extracellular solution, thapsigargin, cyclopiazonic acid (CPA), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and the inhibitor of plasma membrane Ca(2+)-ATPase (PMCA), La(3+), all significantly slowed down the recovery of depolarisation (50 mM KCl)-induced [Ca(2+)](i) transients. The release of AVP was stimulated by 50 mM KCl, and the decline in the peptide release was slowed by Ca(2+) transport inhibitors. In contrast to previous reports, our results show that in the fully mature adult rats: (i) all four Ca(2+) homeostatic pathways, the Na(+)/Ca(2+) exchanger, the endoplasmic reticulum Ca(2+) pump, the plasmalemmal Ca(2+) pump and mitochondria, are complementary in actively clearing Ca(2+) from SON neurones; (ii) somatodendritic AVP release closely correlates with intracellular [Ca(2+)](i) dynamics; (iii) there is (are) Ca(2+) clearance mechanism(s) distinct from the four outlined above; and (iv) Ca(2+) homeostatic systems in the somatas of SON neurones differ from those expressed in their terminals. 相似文献
19.
While genetically encoded Ca(2+) indicators (GECIs) allow Ca(2+) imaging in model organisms, the gene expression is often under the control of a single promoter that may drive expression beyond, the cell types of interest. To enable more cell-type specific targeting, GECIs can be brought under the, control of the intersecting expression from two promoters. Here, we present the splitting and, reassembly of two representative GECIs (TN-XL and GCaMP2) mediated by the split intein from Nostoc, punctiforme (NpuDnaE). While the split TN-XL biosensor offered ratiometric Ca(2+) imaging, it had a, diminished Ca(2+) response relative to the native TN-XL biosensor. In contrast, the split GCaMP2, biosensor retained similar Ca(2+) response to the native GCaMP2. The split GCaMP2 biosensor was, further targeted to the pharyngeal muscles of Caenorhabditis elegans where Ca(2+) signals from feeding C. elegans, were imaged. Thus, we envision that increased cell-type targetability of GECIs is feasible with two, complementary promoters. 相似文献
20.
Török TL Rácz D Sáska Z Dávid AZ Tábi T Zillikens S Nada SA Klebovich I Gyires K Magyar K 《Neurochemistry international》2008,53(6-8):338-345
[(3)H]noradrenaline ([(3)H]NA) released from sympathetic nerves in the isolated main pulmonary artery of the rabbit was measured in response to field stimulation (2Hz, 1ms, 60V for 3min) in the presence of uptake blockers (cocaine, 3 x10(-5)M and corticosterone, 5 x10(-5)M). The [(3)H]NA-release was fully blocked by the combined application of the selective and irreversible 'N-type' voltage-sensitive Ca(2+)-channel (VSCC)-blocker omega-conotoxin (omega-CgTx) GVIA (10(-8)M) and the 'non-selective' VSCC-blocker aminoglycoside antibiotic neomycin (3x10(-3)M). Na(+)-loading (Na(+)-pump inhibition by K(+)-free perfusion) was required to elicit further NA-release after blockade of VSCCs (omega-CgTx GVIA+neomycin). In K(+)-free solution, in the absence of functioning VSCCs (omega-CgTx GVIA+neomycin), the fast Na(+)-channel activator veratridine (10(-5)M) further potentiated the nerve-evoked release of [(3)H]NA. This NA-release was significantly inhibited by KB-R7943, and fully blocked by Ca(o)(2+)-removal. However, Li(+)-substitution was surprisingly ineffective. The non-selective K(+)-channel blocker 4-aminopyridine (4-AP, 10(-4)M) also further potentiated the nerve-evoked release of NA in K(+)-free solution. This potentiated release was concentration-dependently inhibited by KB-R7943, significantly inhibited by Li(+)-substitution and abolished by Ca(o)(2+)-removal. It is concluded that in Na(+)-loaded sympathetic nerves, in which the VSCCs are blocked, the reverse Na(+)/Ca(2+)-exchange-mediated Ca(2+)-entry is responsible for transmitter release on nerve-stimulation. Theoretically we suppose that the fast Na(+)-channel and the exchanger proteins are close to the vesicle docking sites. 相似文献