首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Plant diversity fosters productivity in natural ecosystems. Biodiversity effects might increase agricultural yields at no cost in additional inputs. However, the effects of diversity on crop assemblages are inconsistent, probably because crops and wild plants differ in a range of traits relevant to plant–plant interactions. We tested whether domestication has changed the potential of crop mixtures to over‐yield by comparing the performance and traits of major crop species and those of their wild progenitors under varying levels of diversity. We found stronger biodiversity effects in mixtures of wild progenitors, due to larger selection effects. Variation in selection effects was partly explained by within‐mixture differences in leaf size. Our results indicate that domestication might disrupt the ability of crops to benefit from diverse neighbourhoods via reduced trait variance. These results highlight potential limitations of current crop mixtures to over‐yield and the potential of breeding to re‐establish variance and increase mixture performance.  相似文献   

4.
Biodiversity loss decreases ecosystem functioning at the local scales at which species interact, but it remains unclear how biodiversity loss affects ecosystem functioning at the larger scales of space and time that are most relevant to biodiversity conservation and policy. Theory predicts that additional insurance effects of biodiversity on ecosystem functioning could emerge across time and space if species respond asynchronously to environmental variation and if species become increasingly dominant when and where they are most productive. Even if only a few dominant species maintain ecosystem functioning within a particular time and place, ecosystem functioning may be enhanced by many different species across many times and places (β‐diversity). Here, we develop and apply a new approach to estimate these previously unquantified insurance effects of biodiversity on ecosystem functioning that arise due to species turnover across times and places. In a long‐term (18‐year) grassland plant diversity experiment, we find that total insurance effects are positive in sign and substantial in magnitude, amounting to 19% of the net biodiversity effect, mostly due to temporal insurance effects. Species loss can therefore reduce ecosystem functioning both locally and by eliminating species that would otherwise enhance ecosystem functioning across temporally fluctuating and spatially heterogeneous environments.  相似文献   

5.
This experimental study tests new theory for multiple predator effects on communities by using warming to alter predator habitat use and hence direct and indirect interactions in a grassland food web containing two dominant spider predator species, a dominant grasshopper herbivore and grass and herb plants. Experimental warming further offers insight into how climate change might alter direct and indirect effects. Under ambient environmental conditions, spiders used habitat in spatially complementary locations. Consistent with predictions, the multiple predator effect on grasshoppers and on plants was the average of the individual predator effects. Warming strengthened the single predator effects. It also caused the spider species to overlap lower in the vegetation canopy. Consistent with predictions, the system was transformed into an intraguild predation system with the consequent extinction of one spider species. The results portend climate caused loss of predator diversity with important consequences for food web structure and function.  相似文献   

6.
Plant density and size — two factors that represent plant survival and growth — are key determinants of yield but have rarely been analysed explicitly in the context of biodiversity–productivity relationships. Here, we derive equations to partition the net, complementarity and selection effects of biodiversity into additive components that reflect diversity-induced changes in plant density and size. Applications of the new method to empirical datasets reveal contrasting ways in which plant density and size regulate yield in species mixtures. In an annual plant diversity experiment, overyielding is largely explained by selection effects associated with increased size of highly productive plant species. In a tree diversity experiment, the cause of overyielding shifts from enhanced growth in tree size to reduced mortality by complementary use of canopy space during stand development. These results highlight the capability of the new method to resolve crucial, yet understudied, demographic links between biodiversity and productivity.  相似文献   

7.
Conserving different spatial and temporal dimensions of biological diversity is considered necessary for maintaining ecosystem functions under predicted global change scenarios. Recent work has shifted the focus from spatially local (α‐diversity) to macroecological scales (β‐ and γ‐diversity), emphasizing links between macroecological biodiversity and ecosystem functions (MB–EF relationships). However, before the outcomes of MB–EF analyses can be useful to real‐world decisions, empirical modeling needs to be developed for natural ecosystems, incorporating a broader range of data inputs, environmental change scenarios, underlying mechanisms, and predictions. We outline the key conceptual and technical challenges currently faced in developing such models and in testing and calibrating the relationships assumed in these models using data from real ecosystems. These challenges are explored in relation to two potential MB–EF mechanisms: “macroecological complementarity” and “spatiotemporal compensation.” Several regions have been sufficiently well studied over space and time to robustly test these mechanisms by combining cutting‐edge spatiotemporal methods with remotely sensed data, including plant community data sets in Australia, Europe, and North America. Assessing empirical MB–EF relationships at broad spatiotemporal scales will be crucial in ensuring these macroecological processes can be adequately considered in the management of biodiversity and ecosystem functions under global change.  相似文献   

8.
生物多样性不同层次尺度效应及其耦合关系研究进展   总被引:4,自引:0,他引:4  
彭羽  卿凤婷  米凯  薛达元 《生态学报》2015,35(2):577-583
生物多样性包含遗传、物种、生态系统和景观多样性4个层次,虽然各个层次的研究较多,但是各层次间相互关系的研究较少。物种多样性多采用野外样方调查法,景观多样性采用遥感、地理信息系统和野外调查,研究方法较为成熟;生态系统多样性研究因生物地理地域和尺度的不同,常采用不同的分类体系,尚无统一评估标准。物种多样性的尺度效应在α、β、γ指数上均有不同体现,景观多样性的尺度效应非常明显。生境异质性与物种α和β多样性指数密切相关,在一定尺度上,丰富的景观多样性提高了物种多样性。未来研究需要揭示不同生物多样性层次之间的耦合关系,并将研究结果应用到生态系统红色名录制定、区域生物多样性综合监测与评估等实践之中。  相似文献   

9.
Interacting changes in predator and prey diversity likely influence ecosystem properties but have rarely been experimentally tested. We manipulated the species richness of herbivores and predators in an experimental benthic marine community and measured their effects on predator, herbivore and primary producer performance. Predator composition and richness strongly affected several community and population responses, mostly via sampling effects. However, some predators survived better in polycultures than in monocultures, suggesting complementarity due to stronger intra- than interspecific interactions. Predator effects also differed between additive and substitutive designs, emphasizing that the relationship between diversity and abundance in an assemblage can strongly influence whether and how diversity effects are realized. Changing herbivore richness and predator richness interacted to influence both total herbivore abundance and predatory crab growth, but these interactive diversity effects were weak. Overall, the presence and richness of predators dominated biotic effects on community and ecosystem properties.  相似文献   

10.
Recent declines in biodiversity have increased interest in the link between biodiversity and the provision and sustainability of ecosystem services across space and time. We mapped the complex network of interactions between herbivores and parasitoids to examine the relationship between parasitoid species richness, functional group diversity and the provision of natural pest control services. Quantitative food webs were constructed for 10 organic and 10 conventional farms. Parasitoid species richness varied from 26 to 58 species and we found a significant positive relationship between parasitoid species richness and temporal stability in parasitism rates. Higher species richness was associated with lower variation in parasitism rate. A functional group analysis showed significantly greater parasitoid species complementarity on organic farms, with on average more species in each functional group. We simulated parasitoid removal to predict whether organic farms experienced greater robustness of parasitism in the face of local extinctions. This analysis showed no consistent differences between the organic and conventional farm pairs in terms of loss of pest control service. Finally, it was found that the different habitats that make up each farm do not contribute equally to parasitoid species diversity, and that hedgerows produced more parasitoid species, significantly more so on organic farms.  相似文献   

11.
Understanding how biodiversity affects functioning of ecosystems requires integrating diversity within trophic levels (horizontal diversity) and across trophic levels (vertical diversity, including food chain length and omnivory). We review theoretical and experimental progress toward this goal. Generally, experiments show that biomass and resource use increase similarly with horizontal diversity of either producers or consumers. Among prey, higher diversity often increases resistance to predation, due to increased probability of including inedible species and reduced efficiency of specialist predators confronted with diverse prey. Among predators, changing diversity can cascade to affect plant biomass, but the strength and sign of this effect depend on the degree of omnivory and prey behaviour. Horizontal and vertical diversity also interact: adding a trophic level can qualitatively change diversity effects at adjacent levels. Multitrophic interactions produce a richer variety of diversity-functioning relationships than the monotonic changes predicted for single trophic levels. This complexity depends on the degree of consumer dietary generalism, trade-offs between competitive ability and resistance to predation, intraguild predation and openness to migration. Although complementarity and selection effects occur in both animals and plants, few studies have conclusively documented the mechanisms mediating diversity effects. Understanding how biodiversity affects functioning of complex ecosystems will benefit from integrating theory and experiments with simulations and network-based approaches.  相似文献   

12.
We derive and test some assumptions and predictions of the Sampling Effect Hypothesis (SEH) by examining the relationship between the traits of species in monoculture and their relative abundance in mixture, and by comparing polyculture performance with single-species plots. Although we found a positive relationship between production in monoculture and dominance in mixtures as predicted by the SEH, the relationship had low explanatory power. Counter to predictions, the species with the highest monoculture biomass were not able to strongly dominate all mixtures; instead the dominance of these species decreased with increasing species richness. On average, polycultures did not achieve greater biomass than (transgressively overyield) the species in each mixture, or at each site, that was most productive in monoculture. However, mixture yields did transgressively overyield both the monoculture biomass of the dominant species in the mixtures, and the weighted average of all monocultures (non-transgressive overyielding), both of which were positively related to increasing species richness. The varying responses of different overyielding tests resulted because resource partitioning and positive interactions were often counter-balanced by selection for species with lower biomass than the highest-yielding monocultures. Judging whether or not mixtures overyield therefore depends in part upon which species is the basis for comparison. We present a new general framework for overyielding analysis where every monoculture provides a potential comparison and from which the most relevant tests can be selected.  相似文献   

13.
Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical–chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta‐analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non‐significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE‐related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity–ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans.  相似文献   

14.
Animal population dynamics in open systems are affected not only by agents of mortality and the influence of species interactions on behavior and life histories, but also by dispersal and recruitment. We used an extensive data set to compare natural loss rates of two mayfly species that co-occur in high-elevation streams varying in predation risk, and experience different abiotic conditions during larval development. Our goals were to generate hypotheses relating predation to variation in prey population dynamics and to evaluate alternative mechanisms to explain such variation. While neither loss rates nor abundance of the species that develops during snowmelt (Baetis bicaudatus) varied systematically with fish, loss rates of the species that develops during baseflow (Baetis B) were higher in streams containing brook trout than streams without fish; and surprisingly, larvae of this species were most abundant in trout streams. This counter-intuitive pattern could not be explained by a trophic cascade, because densities of intermediate predators (stoneflies) did not differ between fish and fishless streams and predation by trout on stoneflies was negligible. A statistical model estimated that higher recruitment and accelerated development enables Baetis B to maintain larger populations in trout streams despite higher mortality from predation. Experimental estimates suggested that predation by trout potentially accounts for natural losses of Baetis B, but not Baetis bicaudatus. Predation by stoneflies on Baetis is negligible in fish streams, but could make an important contribution to observed losses of both species in fishless streams. Non-predatory sources of loss were higher for B. bicaudatus in trout streams, and for Baetis B in fishless streams. We conclude that predation alone cannot explain variation in population dynamics of either species; and the relative importance of predation is species- and environment-specific compared to non-predatory losses, such as other agents of mortality and non-consumptive effects of predators. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The mass ratio (MRH) and niche complementarity (NCH) hypotheses can explain how leaf trait composition drives decomposition, an ecosystem process linked to nutrient cycling and carbon sequestration. However, few studies have used an experiment designed to disentangle the role of the mechanisms proposed by these hypotheses. This is especially true regarding the role of leaf functional traits for decomposition rates in tropical ecosystems. Here, we quantified the biomass loss of 120 leaf mixtures assembled according to four quasi-orthogonal combinations of different mean trait values (community-weighted mean; CWM) and trait variability (functional diversity; FD) of three leaf functional traits (leaf nitrogen and leaf magnesium concentrations and specific leaf area). We found that CWM values of leaf nutritional traits were positively related to greater biomass loss. This supports the hypothesis that the mean trait values of leaf mixtures can drive biomass loss (MRH). However, contrary to NCH expectations, in some circumstances, increasing trait variability of leaf nutritional traits decreased biomass loss. Our results reinforce some previous evidence that, together, CWM and FD can explain leaf decomposition and highlight that the mean resource quality of leaf mixtures is a driver of biomass loss. Also, as previously reported for temperate ecosystems, trait variability does not always increase leaf decomposition in tropical ecosystems. Therefore, there is a need to consider simultaneously both MRH and NCH in future studies, using an appropriate design, keeping in mind that both mechanisms will always be present in any species mixture or combination.  相似文献   

16.
1. Harmonia axyridis (Coleoptera: Coccinellidae) is an invasive non‐native ladybird in Europe, where it was introduced as a biological control agent of aphids and coccids. 2. This study assesses changes to ladybird species assemblages, in arboreal habitats, over a 3‐year period encompassing the invasion phase of H. axyridis in eastern England. The effects of H. axyridis and other factors (weather and prey availability) on native ladybirds are assessed. 3. Harmonia axyridis increased from 0.1% to 40% of total ladybirds sampled, whilst native aphidophagous species declined from 84% to 41% of total ladybirds. The actual number of native aphidophagous ladybirds per survey decreased from a mean of 19.7 in year 1, to 10.2 in year 3. 4. Three ladybird species in particular experienced declines: Adalia bipunctata, Coccinella septempunctata, and Propylea quattuordecimpunctata. Harmonia axyridis was the most abundant species by the end of the study. 5. The decline in native aphidophagous ladybirds could be attributed to competition for prey and intraguild predation of eggs, larvae, and pupae by H. axyridis. Physiological and behavioural traits of H. axyridis are likely to confer an advantage over native ladybird species.  相似文献   

17.
Phylogenetic distances of coexisting species differ greatly within plant communities, but their consequences for decomposers and decomposition remain unknown. We hypothesized that large phylogenetic distance of leaf litter mixtures increases differences of their litter traits, which may, in turn, result in increased resource complementarity or decreased resource concentration for decomposers and hence increased or decreased chemical transformation and reduction of litter. We conducted a litter mixture experiment including 12 common temperate tree species (evolutionarily separated by up to 106 Myr), and sampled after seven months, at which average mass loss was more than 50%. We found no effect of increased phylogenetic distance on litter mass loss or on abundance and diversity of invertebrate decomposers. However, phylogenetic distance decreased microbial biomass and increased carbon/nitrogen (C/N) ratios of litter mixtures. Consistently, four litter traits showed (marginally) significant phylogenetic signal and in three of these traits increasing trait difference decreased microbial biomass and increased C/N. We suggest that phylogenetic proximity of litter favours microbial decomposers and chemical transformation of litter owing to a resource concentration effect. This leads to a new hypothesis: closely related plant species occurring in the same niche should promote and profit from increased nutrient availability.  相似文献   

18.
In food webs, interactions between competition and defence control the partitioning of limiting resources. As a result, simple models of these interactions contain links between biogeochemistry, diversity, food web structure and ecosystem function. Working at hierarchical levels, these mechanisms also produce self‐similarity and therefore suggest how complexity can be generated from repeated application of simple underlying principles. Reviewing theoretical and experimental literature relevant to the marine photic zone, we argue that there is a wide spectrum of phenomena, including single cell activity of prokaryotes, microbial biodiversity at different levels of resolution, ecosystem functioning, regional biogeochemical features and evolution at different timescales; that all can be understood as variations over a common principle, summarised in what has been termed the ‘Killing‐the‐Winner’ (KtW) motif. Considering food webs as assemblages of such motifs may thus allow for a more integrated approach to aquatic microbial ecology.  相似文献   

19.
  1. The influence of predator cues on the behaviour of prey is well supported in the literature; however, a clear understanding of how predator cues affect prey in variable environmental conditions and over longer time scales is needed to better understand the underlying mechanisms. Here, we measure how predator odors affect herbivore colonization, abundance, oviposition, and plant damage across two growing seasons.
  2. The study system consisted of Leptinotarsa decemlineata (Colorado potato beetle) as prey, and the aggregation pheromone of live Podisus maculiventris (spined soldier bug) as the predator cue in a potato field.
  3. In 2016, the amount of feeding damage by early beetle colonists was lower in predator odor-treated plots, reducing plant damage by 22%. Larval abundance was also reduced in treated plots in 2016. Beetle abundance and damage in 2017 was similar in the treatment and control plots. Two mechanisms were investigated to better understand why prey response to the predator odor treatment weakened over the first season, including changes in predator odor cue strength and prey habituation. Predator odor cue strength emerged as a likely explanation, as dispensers, which released a synthetic predator pheromone over the entire season, reduced the probability of finding damage more consistently than the live predator treatment.
  4. These results suggest that temporal patterns of predator cue release and strength may drive prey response across the season, underscoring the importance of cue release-rate and consistency in both species interactions and for the future application of modifying insect behaviour using non-consumptive effects in agricultural systems.
  相似文献   

20.
Understanding the negative and positive effects of agricultural land use for the conservation of biodiversity, and its relation to ecosystem services, needs a landscape perspective. Agriculture can contribute to the conservation of high‐diversity systems, which may provide important ecosystem services such as pollination and biological control via complementarity and sampling effects. Land‐use management is often focused on few species and local processes, but in dynamic, agricultural landscapes, only a diversity of insurance species may guarantee resilience (the capacity to reorganize after disturbance). Interacting species experience their surrounding landscape at different spatial scales, which influences trophic interactions. Structurally complex landscapes enhance local diversity in agroecosystems, which may compensate for local high‐intensity management. Organisms with high‐dispersal abilities appear to drive these biodiversity patterns and ecosystem services, because of their recolonization ability and larger resources experienced. Agri‐environment schemes (incentives for farmers to benefit the environment) need to broaden their perspective and to take the different responses to schemes in simple (high impact) and complex (low impact) agricultural landscapes into account. In simple landscapes, local allocation of habitat is more important than in complex landscapes, which are in total at risk. However, little knowledge of the relative importance of local and landscape management for biodiversity and its relation to ecosystem services make reliable recommendations difficult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号