首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
1. Fructose 1,6-diphosphatase has been purified tenfold from rat liver. The final preparation was not contaminated by either glucose 6-phosphatase or phosphofructokinase. The properties of the enzyme have been investigated in an attempt to define factors that could be of revelance to metabolic control of fructose 1,6-diphosphatase activity. 2. The metal ions Fe2+, Fe3+ and Zn2+ inhibited the activity of fructose 1,6-diphosphatase even in the presence of an excess of mercaptoethanol; other metal ions tested had no effect. The inhibition produced by Zn2+ was reversed by EDTA, but that produced by either Fe2+ or Fe3+ was not reversible. 4. The enzyme has a very low Km for fructose 1,6-diphosphate (2·0μm). Concentrations of fructose 1,6-diphosphate above 75μm inhibited the activity; however, even at very high fructose 1,6-diphosphate concentrations only 70% inhibition was obtained. 5. The activity was also inhibited by low concentrations of AMP, which lowered Vmax. and increased Km for fructose 1,6-diphosphate. Evidence is presented that suggests that AMP can be defined as an allosteric inhibitor of fructose 1,6-diphosphatase. 6. The inhibitions by both fructose 1,6-diphosphate and AMP were extremely specific. Also, the degree of inhibition was not affected by the presence of intermediates of glycolysis, of the tricarboxylic acid cycle, of amino acid metabolism or of fatty acid metabolism. 7. It is suggested that the intracellular concentrations of AMP and fructose 1,6-diphosphate could be of significance in controlling the activity of fructose 1,6-diphosphatase in the liver cell. The possible relationship between these intermediates and the control of gluconeogenesis is discussed.  相似文献   

2.
J E Scheffler  H J Fromm 《Biochemistry》1986,25(21):6659-6665
The fluorescent nucleotide analogue formycin 5'-monophosphate (FMP) inhibits rabbit liver fructose-1,6-bisphosphatase (I50 = 17 microM, Hill coefficient = 1.2), as does the natural regulator AMP (I50 = 13 microM, Hill coefficient = 2.3), but exhibits little or no cooperativity of inhibition. Binding of FMP to fructose-1,6-bisphosphatase can be monitored by the increased fluorescence emission intensity (a 2.7-fold enhancement) or the increased fluorescence polarization of the probe. A single dissociation constant for FMP binding of 6.6 microM (4 sites per tetramer) was determined by monitoring fluorescence intensity. AMP displaces FMP from the enzyme as evidenced by a decrease in FMP fluorescence and polarization. The substrates, fructose 6-phosphate and fructose 1,6-bisphosphate, and inhibitors, methyl alpha-D-fructofuranoside 1,6-bisphosphate and fructose 2,6-bisphosphate, all increase the maximal fluorescence of enzyme-bound FMP but have little or no effect on FMP binding. Weak metal binding sites on rabbit liver fructose-1,6-bisphosphatase have been detected by the effect of Zn2+, Mn2+, and Mg2+ in displacing FMP from the enzyme. This is observed as a decrease in FMP fluorescence intensity and polarization in the presence of enzyme as a function of divalent cation concentration. The order of binding by divalent cations is Zn2+ = Mn2+ greater than Mg2+, and the Kd for Mn2+ displacement of FMP is 91 microM. Methyl alpha-D-fructofuranoside 1,6-bisphosphate, as well as fructose 6-phosphate and inorganic phosphate, enhances metal-mediated FMP displacement from rabbit liver fructose-1,6-bisphosphatase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
1. The extent of the allosteric transition from the R into the T conformation of rabbit skeletal muscle phosphofructokinase induced by Mg2+-1,N6-etheno-ATP was determined by stopped-flow fluorimetry from the amplitude of the slow phase of the Mg2+-1,N6-etheno-ATP fluorescence enhancement [Roberts & Kellet (1979) Biochem. J. 183, 349--360]. 2. The amplitude of the slow phase was decreased by low concentrations of the activators cyclic AMP and fructose 1,6-bisphosphate, but increased in a complex manner by the inhibitor citrate. 3. Mg2+-1,N6-etheno-ATP and Mg2+-ATP are unable to induce the T conformation to a detectable extent in the presence of saturating cyclic AMP, but can do so readily in the presence of saturating fructose 1,6-bisphosphate. 4. The conformational transitions induced in enzyme alone by different ligands were observed by changes in intrinsic protein fluorescence. In general, an R-type conformation has diminished protein fluorescence compared with a T-type conformation. 5. Mg2+-ATP exerts a complex effect on protein fluorescence; both the enhancement at low concentrations and the quenching at high concentrations of Mg2+-ATP result from the binding of Mg2+-ATP to the inhibitory site and the ensuing allosteric transition. Enhancement reflects the extent of the allosteric transition and involves both tyrosine and tryptophan, probably in the region of the active site; quenching reflects occupation of the inhibitory site and involves tyrosine at the inhibitory site. 6. The mechanism of the allosteric transition from the R into the T conformation induced by Mg2+-1,N6-etheno-ATP at low concentrations occurs predominantly by a 'prior-isomerization' pathway; at higher concentrations a limited contribution from a 'substrate-guided' pathway occurs. 7. The allosteric behaviour of phosphofructokinase with respect to Mg2+-ATP and Mg2+-1,N6-ethenol-ATP binding may be accounted for in terms of the simple, concerted model.  相似文献   

4.
A fructose 1,6-bisphosphatase (EC 3.1.3.11) (FBPase) was purified over 100-fold from Anacystis nidulans. At variance with a previous report (R. H. Bishop, Arch. Biochem. Biophys. 196:295-300, 1979), the regulatory properties of the enzyme were found to be like those of chloroplast enzymes rather than intermediate between chloroplast (photosynthetic) and heterotrophic FBPases. The pH optimum of Anacystis FBPase was between 8.0 and 8.5 and shifted to lower values with increasing Mg2+ concentration. Under the experimental conditions used by Bishop, we found the saturation curve of the enzyme to be sigmoidal for Mg2+ ions and hyperbolic for fructose 1,6-bisphosphate. The half-maximal velocity of the Anacystis FBPase was reached at concentrations of 5 mM MgCl2 and 0.06 mM fructose 1,6-bisphosphate. AMP did not inhibit the enzyme. The activity of the FBPase was found to be under a delicate control of oxidizing and reducing conditions. Oxidants like O2, H2O2, oxidized glutathione, and dehydroascorbic acid decreased the enzyme activity, whereas reductants like dithiothreitol and reduced glutathione increased it. The oxido-reductive modulation of FBPase proved to be reversible. Reduced glutathione stimulated the enzyme activity at physiological concentrations (1 to 10 mM).l The reduced glutathione-induced activation was higher at pH 8.0 than at pH 7.0.  相似文献   

5.
Fructose 6-sulfate was synthesized by direct sulfurylation of fructose and was isolated by two selective steps: (a) conversion of the 6-sulfuryl ester to fructose 1-phosphate-6-sulfate with phosphofructokinase; (b) conversion of fructose 1-phosphate-6-sulfate to fructose 6-sulfate by fructose-1,6-diphosphatase. Utilizing crystalline sheep heart phosphofructokinase, kinetic studies with the alternative substrate were carried out at pH 8.2 which is optimal for nonallosteric kinetics. The data are consistent with an ordered addition of the two substrates with the first, MgATP, being at thermodynamic equilibrium. The Vmax and Km obtained with fructose 6-sulfate were 0.03- and 100-fold, respectively, that obtained with the natural substrate. The study suggests that the divalent phosphoryl moiety is intimately involved in the active site conformation. Identification of the product of the reaction, fructose 1-phosphate-6-sulfate, was confirmed through studies with aldolase, fructose-1,6-diphosphatase, and by 31P NMR. The utilization of fructose 6-sulfate as a substrate by yeast glucose-6-phosphate isomerase could not be demonstrated.  相似文献   

6.
Active nonphosphorylated fructose bisphosphatase (EC 3.1.3.11) was purified from bakers' yeast. After chromatography on phosphocellulose, the enzyme appeared as a homogeneous protein as deduced from polyacrylamide gel electrophoresis, gel filtration, and isoelectric focusing. A Stokes radius of 44.5 A and molecular weight of 116,000 was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate resulted in three protein bands of Mr = 57,000, 40,000, and 31,000. Only one band of Mr = 57,000 was observed, when the single band of the enzyme obtained after polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate was eluted and then resubmitted to electrophoresis in the presence of sodium dodecyl sulfate. Amino acid analysis indicated 1030 residues/mol of enzyme including 12 cysteine moieties. The isoelectric point of the enzyme was estimated by gel electrofocusing to be around pH 5.5. The catalytic activity showed a maximum at pH 8.0; the specific activity at the standard pH of 7.0 was 46 units/mg of protein. Fructose 1,6-bisphosphatase b, the less active phosphorylated form of the enzyme, was purified from glucose inactivated yeast. This enzyme exhibited maximal activity at pH greater than or equal to 9.5; the specific activity measured at pH 7.0 was 25 units/mg of protein. The activity ratio, with 10 mM Mg2+ relative to 2 mM Mn2+, was 4.3 and 1.8 for fructose 1,6-bisphosphatase a and fructose 1,6-bisphosphatase b, respectively. Activity of fructose 1,6-bisphosphatase a was 50% inhibited by 0.2 microM fructose 2,6-bisphosphate or 50 microM AMP. Inhibition by fructose 2,6-bisphosphate as well as by AMP decreased with a more alkaline pH in a range between pH 6.5 and 9.0. The inhibition exerted by combinations of the two metabolites at pH 7.0 was synergistic.  相似文献   

7.
The effect of calcitonin (CT) on fructose 1,6-diphosphatase activity in the hepatic cytosol was investigated after a single subcutaneous administration of the hormone to rats. Administration of CT (synthetic [Asu1,7] eel CT; 80 MRC mU/100 g body weight) produced significant increase in fructose 1,6-diphosphatase activity and calcium content in the hepatic cytosol of intact and thyroparathyroidectomized rats. Those alterations were also observed with the dose of CT at physiological level. The binding of calcium by 10 microM EGTA in the hepatic cytosol caused a clear reduction of the increase in fructose 1,6-diphosphatase activity produced by CT administration. The enzyme activity of CT-treated rats was markedly reduced by W-7 (100 microM), calmodulin inhibitor, while that of control rats was not significantly altered by the drug. Meanwhile, fructose 1,6-diphosphatase activity in the hepatic cytosol obtained from normal rats was significantly enhanced by addition of calcium ion (0.1-5.0 microM). This increase was also clearly inhibited by W-7. These results suggest that CT increases fructose 1,6-diphosphatase activity in the hepatic cytosol of rats, and that this hormonal regulation may depend on calmodulin, mediated through calcium increased in the cytosol.  相似文献   

8.
Chloroplast fructose-1,6-bisphosphatase hysteresis in response to modifiers was uncovered by carrying out the enzyme assays in two consecutive steps. The activity of chloroplast fructose-1,6-bisphosphatase, assayed at low concentrations of both fructose-1,6-bisphosphatase and Mg2+, was enhanced by preincubating the enzyme with dithiothreitol, thioredoxin f, fructose 1,6-bisphosphate, and Ca2+. In the time-dependent activation process, fructose 1,6-bisphosphate and Ca2+ could be replaced by other sugar biphosphates and Mn2+, respectively. Once activated, chloroplast fructose-1,6-bisphosphatase hydrolyzed fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate in the presence of Mg2+, Mn2+, or Fe2+. The A0.5 for fructose 1,6-bisphosphate (activator) was lowered by reduced thioredoxin f and remained unchanged when Mg2+ was varied during the assay of activity. On the contrary, the S0.5 for fructose 1,6-bisphosphate (substrate) was unaffected by reduced thioredoxin f and depended on the concentration of Mg2+. Ca2+ played a dual role on the activity of chloroplast fructose-1,6-bisphosphatase; it was a component of the concerted activation and an inhibitor in the catalytic step. Provided dithiothreitol was present, the activating effectors were not required to maintain the enzyme in the active form. Considered together these results strongly suggest that the regulation of fructose-1,6-bisphosphatase in chloroplast occurs at two different levels, the activation of the enzyme and the catalysis.  相似文献   

9.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

10.
A Mg2+-induced change of the (Na+ and K+)-stimulated adenosine triphosphatase (Na+,K+)-ATPase) from Electrophorus electricus was investigated by kinetics and fluorescence techniques. Binding of Mg2+ to a low affinity site(s) caused inhibition of (Na+,K+)-ATPase activity, an effect which was antagonized by both Na+ and ATP. Mg2+ also caused inhibition of K+-dependent dephosphorylation of the enzyme without inhibiting either (Na+)-ATPase activity or Na+-dependent phosphorylation. Mg2+ also induced a 5 to 6% enhancement in the fluorescence intensity of enzyme labeled with the fluorescent sulfhydryl reagent, 2-(4-maleimidylanilino)naphthalene-6-sulfonate. As in the case of Mg2+ inhibition of activity, the affinity for Mg2+ as an inducing agent for this effect was significantly reduced by both Na+ and ATP, suggesting that the same change was being monitored in both cases. The Mg2+ effect was reduced by both Na+ and ATP, suggesting that the same change was being monitored in both cases. The Mg2+ effect was reduced in magnitude by ouabain and prevented by oligomycin, specific inhibitors of the enzyme. In addition, K+ (and cations that substitute for K+ in supporting activity) induced a 3 to 4% enhancement in fluorescence intensity in the presence of Na+, Mg2+, and ATP, although the K+ and Mg2+ effects appeared to be different on the basis of their excitation spectra. The K+ effect was inhibited by ouabain and occurred with a rate greater than the rate of turnover of the enzyme, permitting its involvement in the catalytic cycle.  相似文献   

11.
R T Proffitt  L Sankaran 《Biochemistry》1976,15(13):2918-2925
Optimal conditions necessary for the reversible inactivation of crystalline rabbit muscle phosphofructokinase by homogeneous rabbit liver fructose-1,6-bisphosphatase have been studied. At higher enzyme levels (to 530 mug/ml of phosphofructokinase) the two proteins were mixed and incubated in a pH 7.5 buffer composed of 50 mM Tris-HC1, 2 mM potassium phosphate, and 0.2 mM dithiothreitol. Aliquots were removed at various times and assayed for enzyme activity. A time dependent inactivation of phosphofructokinase caused by 1-2.3 times its weight of fructose-1,6-bisphosphatase was observed at 30, 23, and 0 degree C. This inactivation did not require the presence of adenosine 5'-triphosphate or Mg2+ in the incubation mixture, but an adenosine 5'-triphosphate concentration of 2.7 mM or greater was required in the assay to keep phosphofructokinase in an inactive form. A mixture of activators (inorganic phosphate, (NH4)2SO4, and adenosine 5'-monophosphate), when added to the assay cuvette, restored nearly all of the expected enzyme activity. Incubations with other proteins, including aldolase, at concentrations equal to or greater than the effective quantity of fructose-1,6-bisphosphatase had no inhibitory effect on phosphofructokinase activity. Removal of tightly bound fructose 1,6-bisphosphate from phosphofructokinase could not explain this inactivation, since several analyses of crystalline phosphofructokinase averaged less than 0.1 mol of fructose 1,6-bisphosphate/320 000 g of enzyme. Furthermore, the inactivation occurred in the absence of Mg2+ where the complete lack of fructose-1-6-bisphosphatase activity was confirmed directly. At lower phosphofructokinase concentrations (0.2-2 mug/ml) the inactivation was studied directly in the assay cuvette. Higher ratios of fructose-1,6-bisphosphatase to phosphofructokinase were necessary in these cases, but oleate and 3-phosphoglycerate acted synergistically with lower amounts of fructose-1,6-bisphosphatase to cause inactivation. The inactivation did not occur when high concentrations of fructose 6-phosphate were present in the assay, or when the level of adenosine 5'-triphosphate was decreased. However, the inactivation was found at pH 8, where the effects of allosteric regulators on phosphofructokinase are greatly reduced. Experiments with rat liver phosphofructokinase showed that this enzyme was also subject to inhibition by rabbit liver fructose 1,6-bisphosphatase under conditions similar to those used in the muscle enzyme studies. Attempts to demonstrate direct interaction between phosphofructokinase and fructose-1,6-bisphosphate by physical methods were unsuccessful. Nevertheless, our results suggest that, under conditions which approximate the physiological state, the presence of fructose-1,6bisphosphatase can cause phosphofructokinase to assume an inactive conformation. This interaction may have a significant role in vivo in controlling the interrelationship between glycolysis and gluconeogenesis.  相似文献   

12.
Cytoplasmic fructose-1,6-bisphosphatase has been purified from spinach leaves to apparent homogeneity. The enzyme is a tetramer of molecular weight about 130,000. At pH 7.5, the Km for fructose 1.6-bisphosphate was 2.5 micron, and for MgCl2 0.13 mM; the enzyme was specific for fructose 1,6-bisphosphate. Saturation with Mg2+ was achieved with lower concentrations at pH 8 than at pH 7. AMP and high concentrations of fructose 1,6-bisphosphate inhibited enzyme activity. Ammonium sulfate relieved the latter inhibition but was itself inhibitory when substrate concentrations were low. Acetylation studies demonstrated that the AMP regulatory site was distinct from the catalytic site. Cytoplasmic fructose-1,6-bisphosphatase may contribute to the regulation of sucrose biosynthesis in plant leaves.  相似文献   

13.
The changes in the activity and properties of the four gluconeogenic enzymes have been followed during development of the guinea pig. Pyruvate carboxylase was almost exclusively mitochondrial and kinetically identical to the adult liver enzyme and did not appear in significant activity until after day 50 when it rose to values several times higher than those in the adult liver, then fell after birth. Little activity was detected in the fetal kidney. Phosphoenolpyruvate carboxylase appeared in the fetal liver from day 30 on, both in the mitochondrial and cytoplasmic fractions. The cytoplasmic enzyme was kinetically and chromatographically identical to the mitochondrial enzyme of the fetal and maternal liver. After birth the activity of the cytoplasmic enzyme increased and that of the particulate enzyme fell. Fetal kidney activity appeared several days before birth. Fructose 1,6-diphosphatase and glucose 6-phosphatase appeared in the fetal liver and kidney after day 40; the former showed no postnatal change while the latter rose 10-fold after birth. Fetal liver fructose 1,6-diphosphatase was more sensitive to AMP and fructose 1,6-diphosphate inhibition but was chromatographically indistinguishable from the maternal liver enzyme. Despite the presence of the gluconeogenic enzymes, gluconeogenesis and glyconeogenesis were not detected in the fetal liver until 7–9 days before birth. While the synthesis of glyceride-glycerol from 3-carbon compounds was detected from 35–40 days onwards and some of the gluconeogenic enzymes participate in that pathway, gluconeogenesis was not detected in the fetal kidney.  相似文献   

14.
1. The kinetics of the reaction catalysed by fructose bisphosphatase have been studied at pH 7.2 and at pH 9.5. The activity of the enzyme was shown to respond sigmoidally to increasing concentrations of free Mg2+ or Mn2+ ions at pH 7.2, whereas the dependence was hyperbolic at pH 9.5. At both pH values the enzyme responded hyperbolically to increasing concentrations of fructose 1,6-bisphosphate, although inhibition was observed at higher concentrations of this substrate. This high substrate inhibition was shown to be partial in nature and the enzyme was found to be more sensitive at pH 7.2 than at pH 9.5. 2. The properties of the enzyme, are consistent with the enzyme obeying either a random-order equilibrium mechanism or a compulsory-order steady-state mechanism in which fructose bisphosphate binds to the enzyme before the cation. 3. Reaction of the enzyme with a four-fold molar excess of p-chloromercuribenzoate caused activation of the enzyme when its activity was assayed in the presence of MN2+ ions but inhibition when Mg2+ ions were used. Higher concentrations of p-chloromercuribenzoate caused inhibition. This activation at low p-chloromercuribenzoate concentrations, and the reaction of 5,5'-dithio-bis(2-nitrobenzoate) with the four thiol groups in the enzyme that reacted rapidly with this reagent, were prevented or slowed by the presence of inhibitory, but not non-inhibitory, concentrations of fructose bisphosphate. After reaction with a four-fold molar excess of p-chloromercuribenzoate the enzyme was no longer sensitive to high substrate inhibition by fructose bisphosphate.  相似文献   

15.
1. Phosphofructokinase from rat liver has been partially purified by ammonium sulphate precipitation so as to remove enzymes that interfere in one assay for phosphofructokinase. The properties of this enzyme were found to be similar to those of the same enzyme from other tissues (e.g. cardiac muscle, skeletal muscle and brain) that were previously investigated by other workers. 2. Low concentrations of ATP inhibited phosphofructokinase activity by decreasing the affinity of the enzyme for the other substrate, fructose 6-phosphate. Citrate, and other intermediates of the tricarboxylic acid cycle, also inhibited the activity of phosphofructokinase. 3. This inhibition was relieved by either AMP or fructose 1,6-diphosphate; however, higher concentrations of ATP decreased and finally removed the effect of these activators. 4. Ammonium sulphate protected the enzyme from inactivation, and increased the activity by relieving the inhibition due to ATP. The latter effect was similar to that of AMP. 5. Phosphofructokinase was found in the same cellular compartment as fructose 1,6-diphosphatase, namely the soluble cytoplasm. 6. The properties of phosphofructokinase and fructose 1,6-diphosphatase are compared and a theory is proposed that affords dual control of both enzymes in the liver. The relation of this to the control of glycolysis and gluconeogenesis is discussed.  相似文献   

16.
Purified bovine hepatic fructose-1,6-diphosphatase, which exhibits maximal activity at neutral pH, is competitively inhibited by several analogs of its substrate, fructose 1,6-diphosphate. These include glucose 1,6-diphosphate (Ki = 9.4 X 10(-5) M), hexitol 1,6-diphosphate (Ki = 2.3 X 10(-4) M), and 2,5-anhydro-D-mannitol 1,6-diphosphate (Ki = 3.3 X 10(-8) M), and 2,5-anhydro-D-glucitol 1,6-diphosphate (Ki = 5.5 X 10(-7) M). The Ki values for both 2,5-anhydro-D-mannitol 1,6-diphosphate and 2,5-anhydro-D-glucitol 1,6-diphosphate are lower than the Km of 1.4 X 10(-6) M for fructose 1,6-diphosphate. Since 2,5-anhydro-D-mannitol 1,6-diphosphate is an analog of the beta anomer of fructose 1,6-diphosphate and 2,5-anhydro-D-glucitol 1,6-diphosphate is an analog of the alpha anomer, the lower Ki for the mannitol analog may indicate that the beta anomer of fructose 1,6-diphosphate, which predominates in solution, is the true substrate. The substrate analog 1,5-pentanediol diphosphate inhibits slightly (K0.5 = 5 X 10(-3) M), but 1,4-cyclohexyldiol diphosphate does not. The Ki for product inhibition by sodium phosphate is 9.4 X 10(-3) M. 2,5-Anhydro-D-mannitol 1,6-diphosphate and alpha-D-glucose 1,6-diphosphate are substrates at pH 9.0, but not at pH 6.5.  相似文献   

17.
The crystal structure of Escherichia coli phosphofructokinase complexed with its reaction products fructose 1,6-bisphosphate (Fru1,6P) and ADP/Mg2+, and the allosteric activator ADP/Mg2+, has been determined at 2.4 A resolution. The structure was solved by molecular replacement using the known structure of Bacillus stearothermophilus phosphofructokinase, and has been refined to a crystallographic R-factor of 0.165 for all data. The crystallization mixture contained the substrate fructose 6-phosphate, but the electron density maps showed clearly the presence of the product fructose 1,6-bisphosphate, presumably formed by the enzyme reaction with contaminating ATP. The crystal consists of tetrameric molecules with subunits in two different conformations despite their chemical identity. The magnesium ion in the "closed" subunit bridges the phosphate groups of the two products. In the "open" subunit, the products are about 1.5 A further apart, with the Mg2+ bound only to ADP. These two conformations probably represent two successive stages along the reaction pathway, in which the closure of the subunit is required to bring the substrates sufficiently close to react. This conformational change within the subunit is distinct from the quaternary structure change seen previously in the inactive T-state conformation. It is probably not involved in the co-operativity or allosteric control of the enzyme, since the co-operative product fructose 1,6-bisphosphate is not moved, nor are the subunit interfaces changed. The structure of the enzyme is similar to that of B. stearothermophilus phosphofructokinase, and confirms the location of the sites for the two reaction products (or substrates), and of the effector site binding the activator ADP/Mg2+. However, this structure gives a clearer picture of the active site, and of the interactions between the enzyme and its reaction products.  相似文献   

18.
C J Marcus  W L Byrne  A M Geller 《Life sciences》1974,15(10):1765-1780
Treatment of purified fructose 1,6-diphosphatase from bovine liver (which is maximally active at neutral pH) with pyridoxal 5'-phosphate produces changes in the spectral, catalytic, and allosteric properties of the enzyme. After modification the Michaelis constants for fructose-1,6-diphosphate and Mg2+ are increased, and inhibition by AMP is decreased. Substrate inhibition is decreased, but not abolished; the curve is merely shifted toward higher substrate concentration. Fructose-1, 6-diphosphate protects against the increases in the Km for fructose-1, 6-diphosphate and the Km for Mg2+, and against the changes in substrate inhibition, but not against the changes in AMP inhibition. AMP protects against the changes in AMP inhibition and the increase in the Km for magnesium, but does not prevent the changes in substrate inhibition or the increase in the Km for fructose-1, 6-diphosphate. The pH curves in the modified enzyme are altered at high, but not at low, substrate concentration.  相似文献   

19.
Sedoheptulose 1,7-diphosphatase activity of isolated spinach chloroplasts shows a requirement for (i) reduced ferredoxin and (ii) a protein factor. Activation by ferredoxin, reduced photochemically by chloroplast fragments, was optimal at pH 7.8 and at a Mg2+ concentration of 5 mM. The protein factor needed for activation appears to be the same as that required by the chloroplast fructose-1,6-diphosphatase that is activated by reduced ferredoxin. The results indicate that sedoheptulose-1,7-diphosphatase, like fructose-1,6-diphosphatase, is a regulatory enzyme whose activity in chloroplasts is controlled via ferredoxin by light.  相似文献   

20.
1. The pyruvate kinases of the desert locust fat body and flight muscle were partially purified by ammonium sulphate fractionation. 2. The fat-body enzyme is allosterically activated by very low (1mum) concentrations of fructose 1,6-diphosphate, whereas the flight-muscle enzyme is unaffected by this metabolite at physiological pH. 3. Flight-muscle pyruvate kinase is activated by preincubation at 25 degrees for 5min., whereas the fat-body enzyme is unaffected by such treatment. 4. Both enzymes require 1-2mm-ADP for maximal activity and are inhibited at higher concentrations. With the fat-body enzyme inhibition by ADP is prevented by the presence of fructose 1,6-diphosphate. 5. Both enzymes are inhibited by ATP, half-maximal inhibition occurring at about 5mm-ATP. With the fat-body enzyme ATP inhibition can be reversed by fructose 1,6-diphosphate. 6. The fat-body enzyme exhibits maximal activity at about pH7.2 and the activity decreases rapidly above this pH. This inactivation at high pH is not observed in the presence of fructose 1,6-diphosphate, i.e. maximum stimulating effects of fructose 1,6-diphosphate are observed at high pH. The flight-muscle enzyme exhibits two optima, one at about pH7.2 as with the fat-body enzyme and the other at about pH8.5. Stimulation of the enzyme activity by fructose 1,6-diphosphate was observed at pH8.5 and above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号