首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
从256个自然样品中筛选得到1株可高效转化D-木糖的酵母。通过生理生化和分子生物学方法鉴定, 证实该菌株是属于Candida tropicalis。以该酵母为研究对象, 增加木糖醇脱氢酶表达量, 通过改变代谢流以达到提高酒精产率的目的。以pXY212-XYL2质粒为基础载体, 构建了含有潮霉素抗性的pYX212-XYL2-Hygro, 电击转化进入野生型C. tropicalis, 潮霉素抗性筛选, 得到含高拷贝木糖醇脱氢酶基因的重组菌株C. tropicalis XYL2-7。重组菌的比酶活达到0.5 u/mg protein, 比原始菌株提高了3倍。实验表明, 重组菌木糖醇得率比原始菌株降低了3倍, 酒精得率提高了5倍。首次通过实验验证了热带假丝酵母利用木糖产乙醇的可行性, 这对研究酵母利用秸秆、麦糠、谷壳等纤维质农业废弃物生产燃料乙醇具有重要启示。  相似文献   

3.
代谢工程改善野生酵母利用木糖产乙醇的性能   总被引:1,自引:0,他引:1  
从256个自然样品中筛选得到1株可高效转化D-木糖的酵母。通过生理生化和分子生物学方法鉴定, 证实该菌株是属于Candida tropicalis。以该酵母为研究对象, 增加木糖醇脱氢酶表达量, 通过改变代谢流以达到提高酒精产率的目的。以pXY212-XYL2质粒为基础载体, 构建了含有潮霉素抗性的pYX212-XYL2-Hygro, 电击转化进入野生型C. tropicalis, 潮霉素抗性筛选, 得到含高拷贝木糖醇脱氢酶基因的重组菌株C. tropicalis XYL2-7。重组菌的比酶活达到0.5 u/mg protein, 比原始菌株提高了3倍。实验表明, 重组菌木糖醇得率比原始菌株降低了3倍, 酒精得率提高了5倍。首次通过实验验证了热带假丝酵母利用木糖产乙醇的可行性, 这对研究酵母利用秸秆、麦糠、谷壳等纤维质农业废弃物生产燃料乙醇具有重要启示。  相似文献   

4.
建立筛选利用木糖为碳源产乙醇酵母模型,获得一株适合利用木质纤维素为原料产乙醇的酵母菌株。样品经麦芽汁培养基培养后,以木糖为唯一碳源的筛选培养基初筛,再以重铬酸钾显色法复筛。通过生理生化和26D1/D2区对筛选得到的菌株进行分析和鉴定,该菌初步鉴定为Pichia caribbica。经过筛选得到的菌株Y2-3以木糖(40g/L)为唯一碳源发酵时:生物量为23.5g/L,木糖利用率为94.7 %,乙醇终产量为4.57 g/L;以混合糖(葡萄糖40 g/L,木糖20 g/L)发酵时:生物量为28.6 g/L,木糖利用率为94.2 %,葡萄糖利用率为95.6%,乙醇终产量为20.6 g/L。Pichia caribbica是可以转化木糖及木糖-葡萄糖混合糖为乙醇的酵母菌株,为利用木质纤维素发酵乙醇的进一步研究奠定了基础。  相似文献   

5.
在分析木质纤维素类生物质制备燃料乙醇原理基础上,重点对燃料乙醇转化过程的发酵工艺进行了论述。目前乙醇发酵工艺主要包括直接发酵、分步糖化发酵、同步糖化发酵、同步糖化共发酵和联合生物加工技术等,对这几种技术的研究现状进行了分析并对其发展趋势进行了展望,通过基因工程构建高效发酵菌种的联合生物加工技术将是未来高效发酵工艺的发展趋势,旨在为有效提高发酵菌株的底物代谢能力,获得高的乙醇产量提供重要参考。  相似文献   

6.
A novel, semicontinuous solid-phase fermentation system was used to produce fuel ethanol from sweet sorghum. The process was at an intermediate scale. In the process, dried and shredded sweet sorghum was rehydrated to 70% moisture, acidified to pH 2.0 to 3.0, and either pasteurized (12 h at 70 to 80°C) or not pasteurized before spray inoculation with a broth culture of Saccharomyces cerevisiae. Fermented pulp exited the semicontinuous fermentor after a retention time of 72 h and contained approximately 6% (vol/vol) ethanol. Ethanol yields from dry sweet sorghum were 176 to 179 liters/103 kg (85% of theoretical). Production costs for a greatly scaled-up (×1,400) conceptual version of this system were projected by calculation to average $0.47/liter for 95% ethanol. The calculated energy balance (energy output/energy input ratio) was estimated to be 1.05 when pasteurization was included and 1.31 when pasteurization was omitted. In calculating the energy balances, the output energy of the protein feed byproduct and the input energy for growing the sweet sorghum were not considered. A design for the scaled-up plant (farm scale) is provided.  相似文献   

7.
自絮凝颗粒酵母乙醇连续发酵耦合酵母回用工艺的研究   总被引:3,自引:0,他引:3  
模拟现有酒精发酵行业普遍采用的多级发酵罐串联系统,建立了一套由三级串联操作的搅拌式发酵罐和两个沉降罐组成的反应器系统,以脱胚脱皮玉米粉双酶法制备的糖化液为发酵底物,培养基初始还原糖浓度为220g/L,添加(NH4)2HPO41.5g/L和KH2PO42.5g/L,以0.057h-1的恒定稀释速率流加,将自沉降浓缩后的酵母乳先后经活化和不活化两种方式处理并循环至第一级发酵罐,系统在两种操作条件下分别达到了拟稳态。实验结果表明活化处理对改善发酵工艺技术指标方面发挥了显著的作用,发酵终点乙醇浓度达到101g/L,还原糖和残总糖分别在3.2和7.7g/L左右,发酵系统的设备生产强度指标为5.77g/(L.h),与无酵母回用的搅拌式反应器系统中自絮凝颗粒酵母乙醇发酵工艺相比,提高了70%。  相似文献   

8.
为获得广谱抗菌功能野生菌株并提高其发酵产物中抗菌物质的含量。采用管碟法和菌丝生长速率法筛选功能菌株,ITS序列分析鉴定功能菌株,通过响应面法和正交设计优化发酵生产抗菌物质的工艺。筛选到一株强效、广谱抗菌功能菌株,鉴定为Cerrena sp.,其发酵产物对金黄色葡萄球菌、大肠杆菌、白色念珠菌、枯草芽孢杆菌和水稻纹枯病菌有显著拮抗作用。该菌株的摇甁发酵配方及培养条件为:马铃薯13.99 g/L,蔗糖 41.58 g/L,VB1 0.027 g/L,麸皮7 g/L,KH2PO4 2 g/L,MgSO4·7H2O 2 g/L;摇床温度28 ℃、发酵周期10 d、种龄4 d、接种量8%、初始pH为5.0、装液量110 ml/250 ml。该菌株有明显抑菌活性,发酵工艺优化后抗菌活性提高了30.37%,为该菌株今后的应用、抗菌剂的分离提纯和产业化提供了实验依据。  相似文献   

9.
Abstract

Alcohol production from biomass has been of great interest in several countries since the mid 70s due to its potential use as a fuel. This idea, together with internal combustion engines (Otto engines), was born towards the end of the last century. Well into this century several countries used ethanol for mixture with gasoline up to a ratio of 25%. When World War II was over, alcohol lost markets, fossil fuels such as petroleum being economically more viable.  相似文献   

10.
耐高温酵母乙醇间歇发酵动力学研究   总被引:2,自引:0,他引:2  
该研究采用耐高温型酵母,在不同葡萄糖浓度(5%~30%wt)下进行了乙醇间歇发酵的动力学研究,确定了适合该酵母的最佳底物浓度范围为16%~20%(wt)。同时选取合适的动力学模型,通过实验数据的非线性性拟合,得出了不同底物浓度下对应的动力学参数值,并分析了各动力学参数值随底物浓度增加而变化的趋势。结果显示,该酵母的最大比生长速率μmax随着葡萄糖浓度的增加而有所降低,且呈线性关系:μmax=0.3161-4.1820×104s(100g/L相似文献   

11.
高效发酵木糖生产乙醇酵母菌株的构建   总被引:3,自引:0,他引:3  
获得高效发酵木糖生产乙醇的酵母菌株是木质纤维素生物转化生产燃料乙醇的重要前提。在4%乙醇驯化的基础上,选择了乙醇耐性提高的休哈塔假丝酵母(Candida shehatae)CICC1766菌株进一步进行紫外诱变,得到了木糖发酵性能较强的呼吸缺陷型突变体,并与乙醇发酵性能良好的酿酒酵母(Saccharomyces cerevisiae)ATCC4126进行原生质体融合。采用单亲灭活法对休哈塔假丝酵母原生质体进行紫外灭活,在聚乙二醇(PEG)诱导下融合,对得到的融合子进行木糖发酵能力测定,选择到了一株能够更好地利用木糖产乙醇,并且木糖发酵性能比亲本得到明显提高的融合子F6,此融合子发酵50 g/L木糖,最高乙醇浓度达到18.75g/L,乙醇得率为0.375,达到理论转化值0.511的73.4%。与原始出发菌株CICC1766相比,乙醇产量提高了28%。  相似文献   

12.
一株中型假丝酵母发酵木糖产乙醇的特性研究   总被引:1,自引:0,他引:1  
本研究对自然界中筛选得到的1株可以发酵木糖产乙醇的中型假丝酵母(Candida intermedia)的特性进行了研究.该菌株在28℃、120 r/min、72 h条件下,发酵3%木糖的乙醇产率最高,达到理论值的43.70%,发酵7%木糖得到的乙醇产量最高,为6.480 g/L.发酵时间延长到156 h,可以利用8%木糖产乙醇21.225 g/L,产率为理论值的72.87%.该菌株还可以在同样条件下,发酵13%葡萄糖得到乙醇50.965 g/L,达到理论值的76.90%.以3% 2% 3%分批补加糖,比一次性发酵8%木糖的乙醇产量提高9.91%.在葡萄糖和木糖的混合培养基中,优先利用葡萄糖,同时还表现出葡萄糖对木糖发酵的促进作用,当2%的木糖与6%葡萄糖混合时,乙醇产量比两者单独发酵的加和提高了25%.  相似文献   

13.
The most common wild yeasts infecting pressed baker's yeast in Great Britain are Candida tropicalis, C. krusei, C. mycoderma, Trichosporon cutaneum, Torulopsis candida and Rhodotorula mucilaginosa. Wild yeasts are readily detected and quantitatively estimated by plating infected baker's yeast on lysine agar, which permits of only limited growth of baker's yeast.
Morphology of wild yeast colonies on lysine agar is affected by duration of incubation, location in the agar plate, and sometimes by temperature of incubation, density of infection and numbers of baker's yeast cells present. It is therefore possible to identify each species by at least one characteristic type of colony produced under specified conditions. Ability to grow at 30° and 37° serves to distinguish further between certain species.  相似文献   

14.
在小型悬浮床反应器研究絮凝颗粒酵母酒精连续发酵工艺的基础上,建立了单釜反应器有效容积0.5m3、二级串联的中试装置。以淀粉糖化液为底物,考察了悬浮床反应器由小试到中试的放大效应,提出了该反应器工业放大时对危险截面表观气速应加以限制的原则,以保证絮凝酵母颗粒不被剪切破坏。进而在平均稀释率为0.10h-1的条件下.中试装置稳定运转一个月,获得终点发酵液中酒精浓度80~85g/L,残糖低于5.0g/L,设备平均生产酒精8.4g/L·h的结果。  相似文献   

15.
木糖发酵是利用植物纤维原料生物转化制取乙醇工业化生产的技术基础和关键。野生酵母中有些种属菌株可以高效利用木糖产生乙醇,其中毕赤酵母(Pichiastipim)的乙醇转化速度最高达到0.99g/L/h,转化率几乎接近理论值0.5g/g,发酵液中最高乙醇浓度可迭到(61±9)g/L。但工业生产中要达到毕赤酵母所要求的微氧最佳发酵条件比较困难。近十几年来许多研究尝试根据代谢工程原理,利用基因工程技术对酿酒酵母进行改造。从而提高其发酵木糖产生乙醇的能力。这些研究大多是将毕赤酵母的一些木糖发酵关键酶基因(XYL1、XYL2、XYL3以及ADHl、ADH2等)转入酿酒酵母细胞内,并试图得到正常转录和表达。但到目前为止,大部分的重组菌株的乙醇发酵性能还没有达到工业生产的要求。  相似文献   

16.
锌酵母分批流加发酵动态优化   总被引:2,自引:0,他引:2  
对锌酵母分批流加发酵过程的控制变量反应温度和pH的动态最优化进行研究。基于酵母流加发酵有抑制的状态模型.通过龙格一库塔法计算微分方程组、单纯形法优化对模型参数进行估计。采用不同的温度和pH控制策略进行研究,由此获得动力学模型参数与温度和pH关系的回归模型。在此基础上,以极大值原理、梯度法优化求解以获得最高锌酵母产量为目标的最优温度和pH分布T*(t)、pH*(t)。实验验证,在T*(t)和pH*(t)下操作,锌酵母产率可提高13.7%。  相似文献   

17.
Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts.  相似文献   

18.
By combining cellulase production, cellulose hydrolysis, and sugar fermentation into a single step, consolidated bioprocessing (CBP) represents a promising technology for biofuel production. Here we report engineering of Saccharomyces cerevisiae strains displaying a series of uni-, bi-, and trifunctional minicellulosomes. These minicellulosomes consist of (i) a miniscaffoldin containing a cellulose-binding domain and three cohesin modules, which was tethered to the cell surface through the yeast a-agglutinin adhesion receptor, and (ii) up to three types of cellulases, an endoglucanase, a cellobiohydrolase, and a β-glucosidase, each bearing a C-terminal dockerin. Cell surface assembly of the minicellulosomes was dependent on expression of the miniscaffoldin, indicating that formation of the complex was dictated by the high-affinity interactions between cohesins and dockerins. Compared to the unifunctional and bifunctional minicellulosomes, the quaternary trifunctional complexes showed enhanced enzyme-enzyme synergy and enzyme proximity synergy. More importantly, surface display of the trifunctional minicellulosomes gave yeast cells the ability to simultaneously break down and ferment phosphoric acid-swollen cellulose to ethanol with a titer of ∼1.8 g/liter. To our knowledge, this is the first report of a recombinant yeast strain capable of producing cell-associated trifunctional minicellulosomes. The strain reported here represents a useful engineering platform for developing CBP-enabling microorganisms and elucidating principles of cellulosome construction and mode of action.Alternatives to fossil fuels for transportation are under extensive investigation due to the increasing concerns about energy security, sustainability, and global climate change (22, 24, 35). Lignocellulosic biofuels, such as bioethanol, have been widely regarded as a promising and the only foreseeable alternative to petroleum products currently used in transportation (11, 35, 39, 41). The central technological impediment to more widespread utilization of lignocellulose is the absence of low-cost technology to break down its major component, cellulose (19, 41). Cellulose (a linear homopolymer of glucose linked by β-1,4-glycosidic bonds) is insoluble, forms a distinct crystalline structure, and is protected by a complex plant cell wall structural matrix (10, 32). As a result, a separate processing step is required to produce large amounts of cellulases for the hydrolysis of cellulose into fermentable glucose, which makes cellulosic ethanol too expensive to compete with gasoline. Therefore, consolidated bioprocessing (CBP), which combines enzyme production, cellulose hydrolysis, and fermentation in a single step, has been proposed to significantly lower the cost of cellulosic ethanol production (23, 24). However, the great potential of CBP cannot be realized using microorganisms available today.One engineering strategy to construct CBP-enabling microbes is to endow ethanologenic microorganisms, such as Saccharomyces cerevisiae, with the ability to utilize cellulose by heterologously expressing a functional cellulase system. Nature has provided two ways of designing such systems: (i) noncomplexed cellulase systems, in which free enzymes are secreted and act discretely, and (ii) complexed cellulase systems, namely, cellulosomes, in which many enzymes are held together by a noncatalytic scaffoldin protein through high-affinity interactions between its cohesins and enzyme-borne dockerins (24). By mimicking the noncomplexed cellulase system, several groups successfully constructed cellulolytic S. cerevisiae strains that directly ferment amorphous cellulose to ethanol, although the titer and yield were relatively low (12, 16, 17). Compared to the noncomplexed cellulase systems, the cellulosome exhibits much greater degradative potential as a result of its highly ordered structural organization that enables enzyme proximity synergy and enzyme-substrate-microbe complex synergy (2, 13, 14, 21). Therefore, the second strategy could provide a “quantum leap” in development of biomass-to-biofuel technology (3).Recent studies revealed the modular nature of cellulosome assembly; by simply appending a dockerin domain, up to three enzymes (either cellulosomal or noncellulosomal) with different origins could be incorporated into a chimeric miniscaffoldin consisting of divergent cohesin domains to form a minicellulosome in vitro. The chimeric miniscaffoldin was in the form of either purified (7, 15, 26) or yeast surface-displayed protein (34). In both cases, the resulting recombinant minicellulosomes showed enhanced hydrolysis activity with cellulose. These results indicate that the high-affinity cohesin-dockerin interactions are sufficient to dictate assembly of a functional cellulosome. Therefore, in theory, the same results could also be achieved in vivo by coexpressing the cellulosomal components in a recombinant host. To date, in vivo production of recombinant cellulosomes has been limited to unifunctional complexes containing only one type of cellulolytic enzyme (1, 8, 27). Since complete enzymatic hydrolysis of cellulose requires synergistic action of three types of cellulases, endoglucanases (EGs) (EC 3.2.1.4), exoglucanases (including cellodextrinases [EC 3.2.1.74] and cellobiohydrolases [CBHs] [EC 3.2.1.91]), and β-glucosidases (BGLs) (EC 3.2.1.21) (24), none of the engineered microorganisms were shown to utilize cellulose directly.In this study, we report the first successful assembly of trifunctional minicellulosomes in S. cerevisiae. The resulting recombinant strain was able to simultaneously hydrolyze and ferment amorphous cellulose to ethanol, demonstrating the feasibility of constructing cellulolytic and fermentative yeasts by displaying recombinant minicellulosomes on the cell surface. We chose the cell surface display format over secretory proteins to potentially incorporate the cellulose-enzyme-microbe complex synergy unique to native cellulolytic microorganisms (21). Coupled with flow cytometry, yeast surface display provides a more convenient engineering platform, avoiding labor-intensive protein purification steps. Such a cell-bound format is also amenable to analysis of enzyme activity with insoluble substrates (31). Therefore, the system described here could be a useful tool for studying and engineering recombinant cellulosomes for various industrial and biotechnological applications.  相似文献   

19.
木质纤维素原料水解产物的主要成分是葡萄糖和木糖,其中葡萄糖很容易发酵,致使木糖成为木质纤维素发酵的关键,休哈塔假丝酵母(Candida shehatae)1766是自然界木糖发酵性能较好的天然酵母之一。研究了发酵温度、发酵时间、接种量、初始pH值、摇床转速等因素对休哈塔假丝酵母1766发酵木糖生产乙醇的影响,由正交试验初步确定了休哈塔假丝酵母发酵木糖制乙醇工艺的适宜条件为好氧条件,发酵时间为2d,发酵温度为28℃,摇床转速为150r/min,初始pH值为5,此时乙醇收率最高可达68.62%。  相似文献   

20.
Aspergillus oryzae glucoamylases encoded by glaA and glaB, and Rhizopus oryzae glucoamylase, were displayed on the cell surface of sake yeast Saccharomyces cerevisiae GRI-117-UK and laboratory yeast S. cerevisiae MT8-1. Among constructed transformants, GRI-117-UK/pUDGAA, displaying glaA glucoamylase, produced the most ethanol from liquefied starch, although MT8-1/pUDGAR, displaying R. oryzae glucoamylase, had the highest glucoamylase activity on its cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号