首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Defective folding of cystic fibrosis transmembrane conductance regulator protein missing Phe508 (DeltaF508) is the major cause of cystic fibrosis. The folding defect in DeltaF508 cystic fibrosis transmembrane conductance regulator might be correctable because misfolding of a P-glycoprotein (P-gp; ABCB1) mutant lacking the equivalent residue (DeltaY490) could be corrected with drug substrates or by introduction of an arginine residue into transmembrane (TM) segments 5 (I306R) or 6 (F343R). Possible mechanisms of arginine rescue were that they mimicked some of the effects of drug substrate interactions with P-gp or that they affected global folding such that all drug substrate/modulator interactions with P-gp were altered. To distinguish between these mechanisms, we tested whether arginines introduced into other TMs predicted to line the drug-binding pocket (TM1 or TM3) would affect folding. It was found that mutation of L65R(TM1) or T199R(TM3) promoted maturation of processing mutants. We then tested whether arginine suppressor mutations had local or global effects on P-gp interactions with drug substrates and modulators. The L65R(TM1), T199R(TM3), I306R(TM5), or F343R(TM6) mutations were introduced into the P-gp mutant L339C(TM6)/F728C(TM7), and thiol cross-linking was carried out in the presence of various concentrations of vinblastine, cyclosporin A, or rhodamine B. The presence of arginine residues reduced the apparent affinity of P-gp for vinblastine (L65R, T199R, and I306R), cyclosporin (I306R and F343R), or rhodamine B (F343R) by 4-60-fold. These results show that the arginine mutations affect a subset of drug-binding sites and suggest that they rescue processing mutants by mimicking drug substrate interactions with P-gp.  相似文献   

2.
P-glycoprotein (P-gp, ATP-binding cassette B1) is a drug pump that extracts toxic drug substrates from the plasma membrane and catalyzes their ATP-dependent efflux. To map the residues in the drug translocation pathway, we performed arginine-scanning mutagenesis on all transmembrane (TM) segments (total = 237 residues) of a P-gp processing mutant (G251V) defective in folding (15% maturation efficiency) (glycosylation state used to monitor folding). The rationale was that arginines introduced into the drug-binding sites would mimic drug rescue and enhance maturation of wild-type or processing mutants of P-gp. It was found that 38 of the 89 mutants that matured had enhanced maturation. Enhancer mutations were found in 11 of the 12 TM segments with the largest number found in TMs 6 and 12 (seven in each), TMs that are critical for P-gp-drug substrate interactions. Modeling of the TM segments showed that the enhancer arginines were found on the hydrophilic face, whereas inhibitory arginines were located on a hydrophobic face that may be in contact with the lipid bilayer. It was found that many of the enhancer arginines caused large alterations in P-gp-drug interactions in ATPase assays. For example, mutants A302R (TM5), L339R (TM6), G872R (TM10), F942R (TM11), Q946R (TM11), V982R (TM12), and S993R (TM12) reduced the apparent affinity for verapamil by ∼10-fold, whereas the F336R (TM6) and M986R (TM12) mutations caused at least a 10-fold increase in apparent affinity for rhodamine B. The results suggest that P-gp contains a large aqueous-filled drug translocation pathway with multiple drug-binding sites that can accommodate the bulky arginine side chains to promote folding of the protein.The human multidrug resistance P-glycoprotein (P-gp, ATP-binding cassette B1)2 is an ATP-dependent drug pump that mediates efflux of a broad range of hydrophobic compounds out of the cell (1). It is expressed in the epithelium of liver, kidney, and gastrointestinal tract and at the blood-brain or blood-testes barrier where it functions to protect us from cytotoxic compounds. It is clinically important because it contributes to multidrug resistance in diseases such as cancer and AIDS (1).P-gp is an ATP-binding cassette transporter of 1280 amino acids that consists of two homologous halves (2). Each half begins with a transmembrane domain (TMD) containing six TM segments followed by a nucleotide-binding domain (NBD).A key goal to understanding the mechanism of P-gp drug transport is to identify the amino acids that line the drug translocation pathway. Because P-gp extracts drug substrates from the lipid bilayer, the drug-binding pocket/drug translocation pathway are predicted to reside in the transmembrane (TM) segments. We previously showed that the TMDs alone were sufficient for drug binding (3). Expression of the TMDs as separate polypeptides showed that both TMD1 and TMD2 were required for binding drug substrate (4). The results of studies utilizing cysteine-scanning mutagenesis and labeling with thiol-reactive drug substrates suggested that all of the TM segments contribute to the drug-binding pocket/drug translocation pathway (reviewed in Ref. 5). The next step is to identify the specific amino acids that line the drug translocation pathway. It is important to identify amino acids that line the drug translocation pathway and to compare whether the biochemical evidence supports a model of P-gp structure in the closed conformation (6) (NBDs close together that was based on the bacterial Sav1866 crystal structure (7)) or the recent crystal structure of mouse P-gp in the open conformation (NBDs far apart) (8). There have been concerns that the mouse P-gp structure may be a non-native structure or in a conformation that exists very transiently (9).Our approach to map the drug translocation pathway has been to use arginine-scanning mutagenesis of the TM segments of a P-gp processing mutant (G251V) that shows partial maturation (∼15% maturation efficiency) (10). Maturation efficiency can be used to detect folding of P-gp in whole cells by monitoring the conversion of P-gp from a core-glycosylated (150 kDa) protein to a mature protein (170 kDa) that contains complex carbohydrate. Because mutant G251V shows partial maturation, we can detect whether an introduced arginine promotes, inhibits, or has a neutral effect on folding. The rationale for using arginine-scanning mutagenesis was that arginine has a large free energy barrier (17 kcal/mol) for insertion into the lipid bilayer because it is highly charged (11). Therefore, introduction of an arginine into a lipid face of the G251V mutant would likely inhibit maturation, whereas an arginine introduced into the aqueous face of the drug translocation pathway would not inhibit maturation of the mutant P-gp.In an initial study on TM1, we demonstrated the feasibility of the approach (10). All arginines introduced into the predicted lipid-facing positions inhibited maturation, whereas those introduced into positions predicted to face the drug translocation pathway did not. A particularly intriguing observation was that some arginines promoted maturation. The residues at these positions were coincidentally at positions identical to those that reacted with thiol-reactive drug substrates in cysteine-scanning mutagenesis studies and were found to be within the drug-binding pocket (10, 12). This suggested that arginine-scanning mutagenesis could be a useful approach for identifying residues in the drug translocation pathway and for determining the orientation of the TM segments in the membrane.Arginines that promote maturation appear to identify positions that are important for P-gp-drug interactions because they appear to mimic drug rescue of P-gp. It was also found that the ability of arginines (such as I306R in TM5) to promote maturation involved global enhancement of P-gp folding rather than simply compensating for a localized mutation (such as G251V) because other processing mutants could also be rescued (12). Because these arginine mutations enhance folding of P-gp in general, they will be described as enhancer rather than suppressor arginines. In this study we performed arginine-scanning mutagenesis on TMs 2–12 of P-gp processing mutant G251V to determine their orientations in the membrane and to identify residues that line the drug translocation pathway.  相似文献   

3.
Deletion of Phe-508 (DeltaF508) in cystic fibrosis transmembrane conductance regulator causes cystic fibrosis because of misfolding of the protein. P-glycoprotein (P-gp) containing the equivalent mutation (DeltaY490) is also misfolded but can be rescued with drug substrates. Whether rescue is due to direct binding of drug substrate to the transmembrane (TM) segments or to indirect effects on cellular protein folding pathways is still controversial. P-gp-drug substrate interactions likely involve hydrogen bonds. If the mechanism of drug rescue involves changes to TM packing then we should be able to identify suppressor mutations in the TM segments that can mimic the drug rescue effects. We predicted that an arginine residue in the TM segments predicted to line the drug-binding pocket of P-gp (I306(TM5) or F343(TM6)) might suppress DeltaY490 P-gp protein misfolding because it has the highest propensity to form hydrogen bonds. We show that R306(TM5) or R343(TM6) increased the relative amount of mature DeltaY490 P-gp by 6-fold. Most other changes to Ile-306 or Phe-343 did not enhance maturation of DeltaY490 P-gp. The I306R mutant also promoted maturation of misprocessed mutants that had mutations in the second nucleotide-binding domain (L1260A), the cytoplasmic loops (G251V, F804A), the linker region (P709A), or in TM segments (G300V, G722A). These results show that arginine residues in the TM domains can mimic the drug rescue effects and are effective suppressor mutations for processing mutations located throughout the molecule.  相似文献   

4.
Loo TW  Bartlett MC  Clarke DM 《Biochemistry》2005,44(30):10250-10258
P-glycoprotein (P-gp, ABCB1) actively pumps a broad range of structurally unrelated cytotoxic compounds out of the cell. It has two homologous halves that are joined by a linker region. Each half has a transmembrane (TM) domain containing six TM segments and a nucleotide-binding domain (NBD). Cross-linking studies have shown that the drug-binding pocket is at the interface between the TM domains. The two NBDs interact to form the ATP-binding sites. Coupling of ATP hydrolysis to drug efflux has been postulated to occur by conversion of the binding pocket from a high-affinity to a low-affinity state through alterations in the packing of the TM segments. TM 11 has also been reported to be important for drug binding. Here, we used cysteine-scanning mutagenesis and oxidative cross-linking to test for changes in the packing of TM 11 during ATP hydrolysis. We generated 350 double cysteine mutants that contained one cysteine at the extracellular end of TM11 and another cysteine at the extracellular ends of TMs 1, 3, 4, 5, or 6. The mutants were expressed in HEK293 cells and treated with oxidant in the absence or presence of ATP. Cross-linked product was not detected in SDS-PAGE gels in the absence of ATP. By contrast, cross-linked product was detected in mutants M68C(TM1)/Y950C(TM11), M68C(TM1)/Y953C(TM11), M68C(TM1)/A954C(TM11), M69C(TM1)/A954C(TM11), and M69C(TM1)/ F957C(TM11) in the presence of ATP but not with ADP or AMP.PNP. These results indicate that rearrangement of TM11 may contribute to the release of drug substrate during ATP hydrolysis.  相似文献   

5.
The drug-binding domain of the human multidrug resistance P-glycoprotein (P-gp) probably consists of residues from multiple transmembrane (TM) segments. In this study, we tested whether the amino acids in TM11 participate in binding drug substrates. Each residue in TM11 was initially altered by site-directed mutagenesis and assayed for drug-stimulated ATPase activity in the presence of verapamil, vinblastine, or colchicine. Mutants G939V, F942A, T945A, Q946A, A947L, Y953A, A954L, and G955V had altered drug-stimulated ATPase activities. Direct evidence for binding of drug substrate was then determined by cysteine-scanning mutagenesis of the residues in TM11 and inhibition of drug-stimulated ATPase activity by dibromobimane, a thiol-reactive substrate. Dibromobimane inhibited the drug-stimulated ATPase activities of two mutants, F942C and T945C, by more than 75%. These results suggest that residues Phe(942) and Thr(945) in TM11, together with residues previously identified in TM6 (Leu(339) and Ala(342)) and TM12 (Leu(975), Val(982), and Ala(985)) (Loo, T. W., and Clarke, D. M. (1997) J. Biol. Chem. 272, 31945-31948) form part of the drug-binding domain of P-gp.  相似文献   

6.
ABC (ATP-binding cassette) transporters are clinically important because drug pumps like P-glycoprotein (P-gp, ABCB1) confer multidrug resistance and mutant ABC proteins are responsible for many protein-folding diseases such as cystic fibrosis. Identification of the tariquidar-binding site has been the subject of intensive molecular modeling studies because it is the most potent inhibitor and corrector of P-gp. Tariquidar is a unique P-gp inhibitor because it locks the pump in a conformation that blocks drug efflux but activates ATPase activity. In silico docking studies have identified several potential tariquidar-binding sites. Here, we show through cross-linking studies that tariquidar most likely binds to sites within the transmembrane (TM) segments located in one wing or at the interface between the two wings (12 TM segments form 2 divergent wings). We then introduced arginine residues at all positions in the 12 TM segments (223 mutants) of P-gp. The rationale was that a charged residue in the drug-binding pocket would disrupt hydrophobic interaction with tariquidar and inhibit its ability to rescue processing mutants or stimulate ATPase activity. Arginines introduced at 30 positions significantly inhibited tariquidar rescue of a processing mutant and activation of ATPase activity. The results suggest that tariquidar binds to a site within the drug-binding pocket at the interface between the TM segments of both structural wings. Tariquidar differed from other drug substrates, however, as it stabilized the first TM domain. Stabilization of the first TM domain appears to be a key mechanism for high efficiency rescue of ABC processing mutants that cause disease.  相似文献   

7.
P-glycoprotein (P-gp; ABCB1) transports a wide variety of structurally diverse compounds out of the cell. The protein has two homologous halves joined by a linker region. Each half consists of a transmembrane (TM) domain with six TM segments and a nucleotide-binding domain. The drug substrate-binding pocket is at the interface between the TM segments in each half of the protein. Preliminary studies suggested that the arrangement of the two halves of P-gp shows rotational symmetry (i.e. "head-to-tail" arrangement). Here, we tested this model by determining whether the cytoplasmic ends of TM2 and TM3 in the N-terminal half are in close contact with TM11 in the C-terminal half. Mutants containing a pair of cysteines in TM2/TM11 or TM3/TM11 were subjected to oxidative cross-linking with copper phenanthroline. Two of the 110 TM2/TM11 mutants, V133C(TM2)/G939C(TM11) and C137C(TM2)/A935C (TM11), were cross-linked at 4 degrees C, when thermal motion is reduced. Cross-linking was specific since no cross-linked product was detected in the 100 double Cys TM3/TM11 mutants. Vanadate trapping of nucleotide or the presence of some drug substrates inhibited cross-linking of mutants V133C(TM2)/G939C(TM11) and C137C(TM2)/A935C(TM11). Cross-linking of TM2 and TM11 also blocked drug-stimulated ATPase activity. The close proximity of TM2/TM11 and TM5/TM8 (Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2004) J. Biol. Chem. 279, 7692-7697) indicates that these regions between the two halves must enclose the drug-binding pocket at the cytoplasmic side of P-gp. They may form the "hinges" required for conformational changes during the transport cycle.  相似文献   

8.
Equilibrative nucleoside transporters (ENTs) are important for the metabolic salvage of nucleosides and the cellular uptake of antineoplastic and antiviral nucleoside analogs. Human equilibrative nucleoside transporter 1 (hENT1) is inhibited by nanomolar concentrations of structurally diverse compounds, including dipyridamole, dilazep, nitrobenzylmercaptopurine ribonucleoside (NBMPR), draflazine, and soluflazine. Random mutagenesis and screening by functional complementation for inhibitor-resistant mutants in yeast revealed mutations at Phe-334 and Asn-338. Both residues are predicted to lie in transmembrane segment 8 (TM 8), which contains residues that are highly conserved in the ENT family. F334Y displayed increased V(max) values that were attributed to increased rates of catalytic turnover, and N338Q and N338C displayed altered membrane distributions that appeared to be because of protein folding defects. Mutations of Phe-334 or Asn-338 impaired interactions with dilazep and dipyridamole, whereas mutations of Asn-338 impaired interactions with draflazine and soluflazine. A helical wheel projection of TM 8 predicted that Phe-334 and Asn-338 lie in close proximity to other highly conserved and/or hydrophilic residues, suggesting that they form part of a structurally important region that influences interactions with inhibitors, protein folding, and rates of conformational change during the transport cycle.  相似文献   

9.
The most common cause of cystic fibrosis (CF) is defective folding of a cystic fibrosis transmembrane conductance regulator (CFTR) mutant lacking Phe(508) (DeltaF508). The DeltaF508 protein appears to be trapped in a prefolded state with incomplete packing of the transmembrane (TM) segments, a defect that can be repaired by expression in the presence of correctors such as corr-4a, VRT-325, and VRT-532. To determine whether the mechanism of correctors involves direct interactions with CFTR, our approach was to test whether correctors blocked disulfide cross-linking between cysteines introduced into the two halves of a Cys-less CFTR. Although replacement of the 18 endogenous cysteines of CFTR with Ser or Ala yields a Cys-less mutant that does not mature at 37 degrees C, we found that maturation could be restored if Val(510) was changed to Ala, Cys, Ser, Thr, Gly, Ala, or Asp. The V510D mutation also promoted maturation of DeltaF508 CFTR. The Cys-less/V510A mutant was used for subsequent cross-linking analysis as it yielded relatively high levels of mature protein that was functional in iodide efflux assays. We tested for cross-linking between cysteines introduced into TM6 and TM7 of Cys-less CFTR/V510A because cross-linking between TM6 and TM7 of P-glycoprotein, the sister protein of CFTR, was inhibited with the corrector VRT-325. Cys-less CFTR/V510A mutant containing cysteines at I340C(TM6) and S877C(TM7) could be cross-linked with a homobifunctional cross-linker. Correctors and the CFTR channel blocker benzbromarone, but not P-glycoprotein substrates, inhibited cross-linking of mutant I340C(TM6)/S877C(TM7). These results suggest that corrector molecules such as corr-4a interact directly with CFTR.  相似文献   

10.
11.
The Na(+)/H(+) exchanger isoform 1 is an integral membrane protein that regulates intracellular pH by exchanging one intracellular H(+) for one extracellular Na(+). It is composed of an N-terminal membrane domain of 12 transmembrane segments and an intracellular C-terminal regulatory domain. We characterized the structural and functional aspects of the critical transmembrane segment VII (TM VII, residues 251-273) by using alanine scanning mutagenesis and high resolution NMR. Each residue of TM VII was mutated to alanine, the full-length protein expressed, and its activity characterized. TM VII was sensitive to mutation. Mutations at 13 of 22 residues resulted in severely reduced activity, whereas other mutants exhibited varying degrees of decreases in activity. The impaired activities sometimes resulted from low expression and/or low surface targeting. Three of the alanine scanning mutant proteins displayed increased, and two displayed decreased resistance to the Na(+)/H(+) exchanger isoform 1 inhibitor EMD87580. The structure of a peptide of TM VII was determined by using high resolution NMR in dodecylphosphocholine micelles. TM VII is predominantly alpha-helical, with a break in the helix at the functionally critical residues Gly(261)-Glu(262). The relative positions and orientations of the N- and C-terminal helical segments are seen to vary about this extended segment in the ensemble of NMR structures. Our results show that TM VII is a critical transmembrane segment structured as an interrupted helix, with several residues that are essential to both protein function and sensitivity to inhibition.  相似文献   

12.
ATP-binding cassette (ABC) proteins contain two nucleotide-binding domains (NBDs) and two transmembrane (TM) domains (TMDs). Interdomain interactions and packing of the TM segments are critical for function, and disruption by genetic mutations contributes to disease. P-glycoprotein (P-gp) is a useful model to identify mechanisms that repair processing defects because numerous arginine suppressor mutations have been identified in the TM segments. Here, we tested the prediction that a mechanism of arginine rescue was to promote intradomain interactions between TM segments and restore interdomain assembly. We found that suppressor W232R(TM4/TMD1) rescued mutants with processing mutations in any domain and restored defective NBD1-NBD2, NBD1-TMD2, and TMD1-TMD2 interactions. W232R also promoted packing of the TM segments because it rescued a truncation mutant lacking both NBDs. The mechanism of W232R rescue likely involved intradomain hydrogen bond interactions with Asn296(TM5) since only N296A abolished rescue by W232R and rescue was only observed when Trp232 was replaced with hydrogen-bonding residues. In TMD2, suppressor T945R(TM11) also promoted packing of the TM segments because it rescued the truncation mutant lacking the NBDs and suppressed formation of alternative topologies. We propose that T945R rescue was mediated by interactions with Glu875(TM10) since T945E/E875R promoted maturation while T945R/E875A did not.  相似文献   

13.
Several studies have proposed that angiotensin II (Ang II) binds to its receptor AT1 through interactions with residues in helices V and VI, suggesting that the distance between these helices is crucial for ligand binding. Based on a 3D model of AT1 in which the C-terminus of Ang II is docked, we identified the hydrophobic residues of TM V and VI pointing towards the external face of the helices, which may play a role in the structure of the binding pocket and in the structural integrity of the receptor. We performed a systematic mutagenesis study of these residues and examined the binding, localization, maturation, and dimerization of the mutated receptors. We found that mutations of hydrophobic residues to alanine in helix V do not alter binding, whereas mutations to glutamate lead to loss of binding without a loss in cell surface expression, suggesting that the external face of helix V may not directly participate in binding, but may rather contribute to the structure of the binding pocket. In contrast, mutations of hydrophobic residues to glutamate in helix VI lead to a loss in cell surface expression, suggesting that the external surface of helix VI plays a structural role and ensures correct folding of the receptor.  相似文献   

14.
P-glycoprotein (P-gp; ABCB1) actively transports a broad range of structurally unrelated compounds out of the cell. An important step in the transport cycle is coupling of drug binding with ATP hydrolysis. Drug substrates such as verapamil bind in a common drug-binding pocket at the interface between the TM (transmembrane) domains of P-gp and stimulate ATPase activity. In the present study, we used cysteine-scanning mutagenesis and reaction with an MTS (methanethiosulphonate) thiol-reactive analogue of verapamil (MTS-verapamil) to test whether the first TM segment [TM1 (TM segment 1)] forms part of the drug-binding pocket. One mutant, L65C, showed elevated ATPase activity (10.7-fold higher than an untreated control) after removal of unchanged MTS-verapamil. The elevated ATPase activity was due to covalent attachment of MTS-verapamil to Cys65 because treatment with dithiothreitol returned the ATPase activity to basal levels. Verapamil covalently attached to Cys65 appears to occupy the drug-binding pocket because verapamil protected mutant L65C from modification by MTS-verapamil. The ATPase activity of the MTS-verapamil-modified mutant L65C could not be further stimulated with verapamil, calcein acetoxymethyl ester or demecolcine. The ATPase activity could be inhibited by cyclosporin A but not by trans-(E)-flupentixol. These results suggest that TM1 contributes to the drug-binding pocket.  相似文献   

15.
Shi L  Simpson MM  Ballesteros JA  Javitch JA 《Biochemistry》2001,40(41):12339-12348
The binding site of the dopamine D2 receptor, like that of homologous G-protein-coupled receptors (GPCRs), is contained within a water-accessible crevice formed among its seven transmembrane segments (TMs). Using the substituted-cysteine-accessibility method (SCAM), we are mapping the residues that contribute to the surface of this binding-site crevice. We have now mutated to cysteine, one at a time, 21 consecutive residues in TM1. Six of these mutants reacted with charged sulfhydryl reagents, whereas bound antagonist only protected N52(1.50)C from reaction. Except for A38(1.36)C, none of the substituted cysteine mutants in the extracellular half of TM1 appeared to be accessible. Pro(1.48) is highly conserved in opsins, but absent in catecholamine receptors, and the high-resolution rhodopsin structure showed that Pro(1.48) bends the extracellular portion of TM1 inward toward TM2 and TM7. Analysis of the conversation of residues in the extracellular portion of TM1 of opsins showed a pattern consistent with alpha-helical structure with a conserved face. In contrast, this region in catecholamine receptors is poorly conserved, suggesting a lack of critical contacts. Thus, in catecholamine receptors in the absence of Pro(1.48), TM1 may be straighter and therefore further from the helix bundle, consistent with the apparent lack of conserved contact residues. When examined in the context of a model of the D2 receptor, the accessible residues in the cytoplasmic half of TM1 are at the interface with TM7 and with helix 8 (H8). We propose the existence of critical contacts of TM1, TM7, and H8 that may stabilize the inactive state of the receptor.  相似文献   

16.
We constructed a single cysteine panel encompassing transmembrane helix two (TM2) of OxlT, the oxalate/formate antiporter of Oxalobacter formigenes. Among the 21 positions targeted, cysteine substitution identified one (phenylalanine 59) as essential to OxlT expression and three (glutamine 56, glutamine 66, and serine 69) as potentially critical to OxlT function. By probing membranes with a bulky hydrophilic probe (Oregon Green maleimide) we also located a central inaccessible core of at least eight residues in length, extending from leucine 61 to glycine 68. Functional assays based on reconstitution of crude detergent extracts showed that of single cysteine mutants within the TM2 core only the Q63C variant was substantially (> or =95%) inhibited by thiol-specific agents (carboxyethyl methanethiosulfonate and ethylsulfonate methanethiosulfonate). Subsequent analytical work using the purified Q63C protein showed that inhibition by ethylsulfonate methanethiosulfonate was blocked by substrate and that the concentration dependence of such substrate protection occurred with a binding constant of 0.16 mm oxalate, comparable with the Michaelis constant observed for oxalate transport (0.23 mm). These findings lead us to conclude that position 63 lies on the OxlT translocation pathway. Our conclusion is strengthened by the finding that position 63, along with most other positions relevant to TM2 function, is found on a helical face that can be cross-linked to the pathway-facing surface of TM11 (Fu, D., Sarker, R. I., Bolton, E., and Maloney, P. C. (2001) J. Biol. Chem. 276, 8753-8760).  相似文献   

17.
Chiang CS  Shirinian L  Sukharev S 《Biochemistry》2005,44(37):12589-12597
Tyrosines and tryptophans that anchor both ends of the helices to membrane interfaces in many transmembrane proteins are not common in MscL and homologous mechanosensitive channels. This characteristic absence of two aromatic "belts" may be critical for MscL function as the opening transition is predicted to be associated with a strong helical reorientation. A single tyrosine (Y75) on the extracellular side of the M2 helix of pentameric EcoMscL is absent in TbMscL, which instead has a single tyrosine (Y87) on the cytoplasmic side of M2. Moving the tyrosine of EcoMscL to the intracellular side (Y75F/F93Y) or capping the TM2 helix on both sides (F93Y/W) slows the kinetics of gating and increases the threshold for activation, leading to a partial loss-of-function in osmotic shock survival assays. Increasing the distance between the caps (L98W, L102Y/W) partially restores channel function presumably by loosening restraints for tilting. Capping the TM2 helix with a charged residue (Y75E) causes a right shift of the activation curve ("stiff" phenotype) and abolishes function. Introducing a "cap" into the TM1 helix (I41W) decreases the activation threshold and shortens the mean open time but unexpectedly leads to a complete loss-of-function in vivo. The data are consistent with the view that restraining helical positions in MscL by introducing specific protein-lipid interactions at membrane interfaces compromises MscL function. Subtle differences in osmotic shock survival are more evident at low levels of mutant protein expression. We observed a correlation between the right shift of tension activation threshold and the loss-of-function channel phenotype, with a few exceptions that point to other parameters of gating that may define the osmotic rescuing ability in vivo.  相似文献   

18.
Prosurfactant protein C (proSP‐C) is a 197‐residue integral membrane protein, in which the C‐terminal domain (CTC, positions 59–197) is localized in the endoplasmic reticulum (ER) lumen and contains a Brichos domain (positions 94–197). Mature SP‐C corresponds largely to the transmembrane (TM) region of proSP‐C. CTC binds to SP‐C, provided that it is in nonhelical conformation, and can prevent formation of intracellular amyloid‐like inclusions of proSP‐C that harbor mutations linked to interstitial lung disease (ILD). Herein it is shown that expression of proSP‐C (1–58), that is, the N‐terminal propeptide and the TM region, in HEK293 cells results in virtually no detectable protein, while coexpression of CTC in trans yields SDS‐soluble monomeric proSP‐C (1–58). Recombinant human (rh) CTC binds to cellulose‐bound peptides derived from the nonpolar TM region, but not the polar cytosolic part, of proSP‐C, and requires ≥5‐residues for maximal binding. Binding of rhCTC to a nonhelical peptide derived from SP‐C results in α‐helix formation provided that it contains a long TM segment. Finally, rhCTC and rhCTC Brichos domain shows very similar substrate specificities, but rhCTCL188Q, a mutation linked to ILD is unable to bind all peptides analyzed. These data indicate that the Brichos domain of proSP‐C is a chaperone that induces α‐helix formation of an aggregation‐prone TM region.  相似文献   

19.
Integral membrane proteins often contain proline residues in their alpha-helical transmembrane (TM) fragments, which may strongly influence their folding and association. Pro-scanning mutagenesis of the helical domain of glycophorin A (GpA) showed that replacement of the residues located at the center abrogates helix packing while substitution of the residues forming the ending helical turns allows dimer formation. Synthetic TM peptides revealed that a point mutation of one of the residues of the dimerization motif (L75P) located at the N-terminal helical turn of the GpA TM fragment, adopts a secondary structure and oligomeric state similar to the wild-type sequence in detergents. In addition, both glycosylation mapping in biological membranes and molecular dynamics showed that the presence of a proline residue at the lipid/water interface has as an effect the extension of the helical end. Thus, helix packing can be an important factor that determines appearance of proline in TM helices. Membrane proteins might accumulate proline residues at the two ends of their TM segments in order to modulate the exposition of key amino acid residues at the interface for molecular recognition events while allowing stable association and native folding.  相似文献   

20.
The bacterial H+-translocating NADH:quinone oxidoreductase (NDH-1) catalyzes electron transfer from NADH to quinone coupled with proton pumping across the cytoplasmic membrane. The NuoK subunit (counterpart of the mitochondrial ND4L subunit) is one of the seven hydrophobic subunits in the membrane domain and bears three transmembrane segments (TM1–3). Two glutamic residues located in the adjacent transmembrane helices of NuoK are important for the energy coupled activity of NDH-1. In particular, mutation of the highly conserved carboxyl residue (KGlu-36 in TM2) to Ala led to a complete loss of the NDH-1 activities. Mutation of the second conserved carboxyl residue (KGlu-72 in TM3) moderately reduced the activities. To clarify the contribution of NuoK to the mechanism of proton translocation, we relocated these two conserved residues. When we shifted KGlu-36 along TM2 to positions 32, 38, 39, and 40, the mutants largely retained energy transducing NDH-1 activities. According to the recent structural information, these positions are located in the vicinity of KGlu-36, present in the same helix phase, in an immediately before and after helix turn. In an earlier study, a double mutation of two arginine residues located in a short cytoplasmic loop between TM1 and TM2 (loop-1) showed a drastic effect on energy transducing activities. Therefore, the importance of this cytosolic loop of NuoK (KArg-25, KArg-26, and KAsn-27) for the energy transducing activities was extensively studied. The probable roles of subunit NuoK in the energy transducing mechanism of NDH-1 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号