首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L P Pan  M Frame  B Durham  D Davis  F Millett 《Biochemistry》1990,29(13):3231-3236
A new technique has been developed to measure intracomplex electron transfer between cytochrome c and its redox partners. Cytochrome c derivatives labeled at single lysine amino groups with ruthenium bisbipyridine dicarboxybipyridine were prepared as previously described [Pan, L.P., Durham, B., Wolinska, J., & Millett, F. (1988) Biochemistry 27, 7180-7184]. Excitation of RuII with a short light pulse resulted in the formation of the excited-state RuII*, which rapidly transferred an electron to the ferric heme group to form FeII and RuIII. Aniline was included in the buffer to reduce RuIII to RuII, leaving the heme group in the ferrous state. This process was complete within the lifetime of the light pulse. When plastocyanin was present in the solution, electron transfer from the ferrous heme of cytochrome c to CuII in plastocyanin was observed. All of the ruthenium cytochrome c derivatives formed electrostatic complexes with plastocyanin at low ionic strength, allowing intracomplex electron-transfer rate constants to be measured. The rate constants for derivatives modified at the indicated lysines were as follows: Lys 13, 1920 s-1; Lys 8, 1480 s-1; Lys 7, 1340 s-1; Lys 86, 1020 s-1; Lys 25, 820 s-1; Lys 72, 800 s-1; Lys 27, 530 s-1. It is interesting that the derivative modified at lysine 13 at the top of the heme crevice had the largest rate constant, while lysine 27 at the right side of the heme crevice had the smallest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
L P Pan  B Durham  J Wolinska  F Millett 《Biochemistry》1988,27(19):7180-7184
A novel two-step procedure has been developed to prepare cytochrome c derivatives labeled at specific lysine amino groups with ruthenium bis(bipyridine) dicarboxybipyridine [RuII(bpy)2(dcbpy)]. In the first step, cytochrome c was treated with the mono-N-hydroxysuccinimide ester of 4,4'-dicarboxy-2,2'-bipyridine (dcbpy) to convert positively charged lysine amino groups to negatively charged dcbpy-lysine groups. Singly labeled dcbpy-cytochrome c derivatives were then separated and purified by ion-exchange chromatography. In the second step, the individual dcbpy-cytochrome c derivatives were treated with RuII(bpy)2CO3 to form singly labeled RuII(bpy)2(dcbpy-cytochrome c) derivatives. The specific lysine labeled in each derivative was determined by reverse-phase chromatography of a tryptic digest. All of the derivatives had a strong luminescence emission centered at 662 nm, but the luminescence decay rates were increased relative to that of a non-heme protein control, RuII(bpy)2(dcbpy-lysozyme), which was 1.8 X 10(6) s-1. The luminescence decay rates were found to be 21, 16, 7.2, 5.7, 4.3, 4.3, and 3.5 X 10(6) s-1 for derivatives singly labeled at lysines 13, 72, 25, 7, 39, 86, and 87, respectively. There was an inverse relationship between the luminescence decay rates and the distances between the ruthenium labels and the heme group. The increased luminescence decay rates observed in the cytochrome c derivatives might be due to electron transfer from the excited triplet state of ruthenium to the ferric heme group. However, it is also possible that an energy-transfer mechanism might contribute to the luminescence quenching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In order to define the interaction domain on Rhodospirillum rubrum cytochrome c2 for the photosynthetic reaction center, positively charged lysine amino groups on cytochrome c2 were modified to form negatively charged carboxydinitrophenyl lysines. The reaction mixture was separated into six different fractions by ion exchange chromatography on carboxymethylcellulose and sulfopropyl-Sepharose. Peptide mapping studies indicated that fraction A consisted of a mixture of singly labeled derivatives modified at lysines 58, 81, and 109 on the back of cytochrome c2. Fractions C1, C2, C3, and C4 were found to be mixtures of singly labeled derivatives modified at lysines 9, 13, 75, 86, and 88 on the front of cytochrome c2 surrounding the heme crevice. The photooxidation of the carboxydinitrophenyl-cytochrome c2 derivatives by reaction centers purified from R. rubrum was measured following excitation with a laser pulse. The second-order rate constant of fraction A modified at backside lysines was found to be 2.3 X 10(7) M-1 s-1, nearly the same as that of native cytochrome c2, 2.6 X 10(7) M-1 s-1. However, the rate constants of fractions C1-C4 were found to be 6 to 12-fold smaller than that of native cytochrome c2. These results indicate that lysines surrounding the heme crevice of cytochrome c2 are involved in electrostatic interactions with carboxylate groups at the binding site of the reaction center. The reaction rates of horse heart cytochrome c derivatives modified at single lysine amino groups with trifluoroacetyl or trifluoromethylphenylcarbamoyl were also measured. Modification of lysines 8, 13, 25, 27, 72, 79, or 87 surrounding the heme crevice was found to significantly lower the rate of reaction, while modification of lysines in other regions had no effect. This indicates that the reaction of horse heart cytochrome c with the reaction center also involves the heme crevice domain.  相似文献   

4.
S Hahm  B Durham  F Millett 《Biochemistry》1992,31(13):3472-3477
The reactions of yeast cytochrome c peroxidase with horse cytochrome c derivatives labeled at specific lysine amino groups with (dicarboxybipyridine)(bisbipyridine)ruthenium(II) [Ru(II)] were studied by flash photolysis. All of the derivatives formed complexes with cytochrome c peroxidase compound I (CMPI) at low ionic strength (2 mM sodium phosphate, pH 7). Excitation of Ru(II) to Ru(II*) with a short laser flash resulted in electron transfer to the ferric heme group in cytochrome c, followed by electron transfer to the radical site in CMPI. This reaction was biphasic and the rate constants were independent of CMPI concentration, indicating that both phases represented intracomplex electron transfer from the cytochrome c heme to the radical site in CMPI. The rate constants of the fast phase were 5200, 19,000, 55,000, and 14,300 s-1 for the derivatives modified at lysines 13, 25, 27, and 72, respectively. The rate constants of the slow phase were 260, 520, 200, and 350 s-1 for the same derivatives. These results suggest that there are two binding orientations for cytochrome c on CMPI. The binding orientation responsible for the fast phase involves a geometry that supports rapid electron transfer, while that for the slow phase allows only slow electron transfer. Increasing the ionic strength up to 40 mM increased the rate constant of the slow phase and decreased that of the fast phase. A single intracomplex electron transfer phase with a rate constant of 2800 s-1 was observed for the lysine 72 derivative at this ionic strength. When a series of light flashes was used to titrate CMPI to CMPII, the reaction between the cytochrome c derivative and the Fe(IV) site in CMPII was observed. The rate constants for this reaction were 110, 250, 350, and 140 s-1 for the above derivatives measured in low ionic strength buffer.  相似文献   

5.
3,4-Dihydroxyphenylalanine (DOPA) is not a preferred substrate of Rhus vernicifera laccase, as rate constants for the anaerobic reduction of the type 1 cupric atom by L-DOPA (6.3 X 10(1) M-1 s-1), D-DOPA (2.6 X 10(1) M-1 s-1), and L-DOPA methyl ester (2.6 X 10(1) M-1 s-1) are considerably smaller than k1 (catechol) (7 X 10(2) M-1 s-1) and rate constants characteristic of numerous other nonphysiological organic substrates (25 degrees C, pH 7.0, I = 0.5 M). The reactions of DOPA derivatives with laccase are unique, however, in that a two-term rate law pertains: kobsd = k0 + k1[phenol]; k0(L-DOPA) = 7 X 10(-2) s-1. The reactivities of other catechol derivatives (pyrogallol, gallic acid, and methyl gallate) with laccase type 1 copper were also examined.  相似文献   

6.
Electron transfer within complexes of cytochrome c (Cc) and cytochrome c peroxidase (CcP) was studied to determine whether the reactions are gated by fluctuations in configuration. Electron transfer in the physiological complex of yeast Cc (yCc) and CcP was studied using the Ru-39-Cc derivative, in which the H39C/C102T variant of yeast iso-1-cytochrome c is labeled at the single cysteine residue on the back surface with trisbipyridylruthenium(II). Laser excitation of the 1:1 Ru-39-Cc-CcP compound I complex at low ionic strength results in rapid electron transfer from RuII to heme c FeIII, followed by electron transfer from heme c FeII to the Trp-191 indolyl radical cation with a rate constant keta of 2 x 10(6) s-1 at 20 degrees C. keta is not changed by increasing the viscosity up to 40 cP with glycerol and is independent of temperature. These results suggest that this reaction is not gated by fluctuations in the configuration of the complex, but may represent the elementary electron transfer step. The value of keta is consistent with the efficient pathway for electron transfer in the crystalline yCc-CcP complex, which has a distance of 16 A between the edge of heme c and the Trp-191 indole [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755]. Electron transfer in the complex of horse Cc (hCc) and CcP was examined using Ru-27-Cc, in which hCc is labeled with trisbipyridylruthenium(II) at Lys-27. Laser excitation of the Ru-27-Cc-CcP complex results in electron transfer from RuII to heme c FeII with a rate constant k1 of 2.3 x 10(7) s-1, followed by oxidation of the Trp-191 indole to a radical cation by RuIII with a rate constant k3 of 7 x 10(6) s-1. The cycle is completed by electron transfer from heme c FeII to the Trp-191 radical cation with a rate constant k4 of 6.1 x 10(4) s-1. The rate constant k4 decreases to 3.4 x 10(3) s-1 as the viscosity is increased to 84 cP, but the rate constants k1 and k3 remain the same. The results are consistent with a gating mechanism in which the Ru-27-Cc-CcP complex undergoes fluctuations between a major state A with the configuration of the hCc-CcP crystalline complex and a minor state B with the configuration of the yCc-CcP complex. The hCc-CcP complex, state A, has an inefficient pathway for electron transfer from heme c to the Trp-191 indolyl radical cation with a distance of 20.5 A and a predicted value of 5 x 10(2) s-1 for k4A. The observed rate constant k4 is thus gated by the rate constant ka for conversion of state A to state B, where the rate of electron transfer k4B is expected to be 2 x 10(6) s-1. The temperature dependence of k4 provides activation parameters that are consistent with the proposed gating mechanism. These studies provide evidence that configurational gating does not control electron transfer in the physiological yCc-CcP complex, but is required in the nonphysiological hCc-CcP complex.  相似文献   

7.
In order to define the interaction domain on Rhodobacter sphaeroides cytochrome c2 for the photosynthetic reaction center, positively charged lysine amino groups on cytochrome c2 were modified to form negatively charged (carboxydinitrophenyl)- (CDNP-) lysines. The reaction mixture was separated into several different fractions by ion-exchange chromatography on (carboxymethyl)cellulose. Tryptic digests of these fractions were analyzed by reverse-phase peptide mapping to determine the lysines that had been modified. Fraction A was found to consist of a mixture of singly labeled derivatives modified at lysine-35, -88, -95, -97, and -105 and several other unidentified lysines comprising 32% of the total. Although it was not possible to resolve these derivatives, all of the identified lysines are located on the front surface of cytochrome c2 near the heme crevice. The second-order rate constant for the reaction of native cytochrome c2 with reaction centers was 2.0 X 10(8) M-1 s-1, while that for fraction A was 20-fold less, 1.0 X 10(7) M-1 s-1. This suggests that lysines surrounding the heme crevice of cytochrome c2 are involved in electrostatic interactions with carboxylate groups at the binding site of the reaction center. The reaction rates of horse heart cytochrome c derivatives modified at single lysine amino groups with trifluoroacetyl or trifluoromethylphenylcarbamoyl were also measured. Modification of lysine-8, -13, -27, -72, -79, and -87 surrounding the heme crevice significantly lowered the rate of reaction, while modification of lysines in other regions had no effect. This indicates that the reaction of horse heart cytochrome c with the reaction center also involves the heme crevice domain.  相似文献   

8.
U B Goli  R E Galardy 《Biochemistry》1986,25(22):7136-7142
Five phosphorus-containing inhibitors of angiotensin converting enzyme were found to exhibit slow, tight-binding kinetics by using furanacryloyl-L-phenylalanylglycylglycine as substrate at pH 7.50 and T = 25 degrees C. Two of the inhibitors, (O-ethylphospho)-Ala-Pro (2) and (O-isopropylphospho)-Ala-Pro (3), are found to follow at minimum a two-step mechanism of binding (mechanism B) to the enzyme. This mechanism consists of an initial fast formation of a weaker enzyme-inhibitor complex (Ki = 130 nM for 2 and 180 nM for 3) followed by a slow reversible isomerization to a tighter complex with measurable forward (K3) and reverse (k4) rate constants (k3 = 4.5 X 10(-2) s-1 for 2 and 5.4 X 10(-2) s-1 for 3; k4 = 9.2 X 10(-3) s-1 for 2 and 3.5 X 10(-3) s-1 for 3). For the remaining three inhibitors, phospho-Ala-Pro (1), (O-benzyl-phospho)-Ala-Pro (4), and (P-phenethylphosphono)-Ala-Pro (5), a one-step binding mechanism (mechanism A) is observed under the conditions of the experiment. The second-order rate constants k1 (M-1 s-1) for the binding of these inhibitors to converting enzyme are found to have values more than 3 orders of magnitude lower than the diffusion-controlled limit for a bimolecular reaction involving the enzyme, viz., 3.9 X 10(5) for 1, 2.2 X 10(5) for 4, and 4.8 X 10(5) for 5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Oxidation processes of radiation-generated three-electron-bonded intermediates derived from methionine Met2[S+...S] and Met[S...X] (X=Cl,Br) were investigated through reaction with tryptophan and tyrosine, using the optical pulse radiolysis method. Bimolecular rate constants have been measured for the reactions Met2[S+...S] with TrpH(k=3.8 x 10(8) dm3 mol-1 s-1 and k = 4.9 X 10(8) dm3 mol-1 s-1 at at ph 1 and 4.3, respectively) and Met2[S+...S] with tyrosine, k=3.8 x 10(7) dm3 mol-1 s-1. Rate constants for intermolecular transformation of Met[S...Br] and Met[S...Cl] into TrpH+. or Trp. were also estimated. They varied from 4.7 X 10(8) dm3 mol-1 s-1 (bromide species) to 1.0 X 10(9)dm3 mol-1 s-1 (chloride species). It has also been established azide radicals N-6, N.3 in contrast to dihalide radicals (X-2) do not form transients of Met[S...X] (X = N3)-type. However, oxidation of N-3 by Met2[S+...S] occurs with a bimolecular rate constant of 2.8 X 10(8) dm3 mol-1 s-1. These results are discussed in the light of some equilibria which have been proposed earlier for methionine-halide systems.  相似文献   

10.
R L Kogan  T H Fife 《Biochemistry》1985,24(11):2610-2614
The second-order rate constants k2/Km for acylation of alpha-chymotrypsin by a series of N-acylimidazole derivatives of aliphatic carboxylic acids have been determined at 30 degrees C by proflavin displacement from the active site. With cyclohexyl-substituted N-acylimidazoles, the rate constants increase with increasing chain length of the acyl group; i.e., k2/Km is in the order cyclohexylcarbonyl less than cyclohexylacetyl less than beta-cyclohexylpropionyl. The latter substrate has k2/Km = 1.2 X 10(6) M-1 s-1 at pH 8.0, which appears to be a maximum value for N-acylimidazole substrates. A further increase in the chain length of the acyl group with (gamma-cyclohexylbutyryl)imidazole results in a decrease in k2/Km. Hydrophobic effects of the hydrocarbon acyl groups are of predominant importance with regard to the relative values of k2/Km for aliphatic N-acylimidazole substrates. There is a linear correlation of the logarithms of the rate constants at pH 8.0 with the hydrophobic substituent constants, pi, having a slope of 1.71 (r = 0.90). On the other hand, there is little apparent correlation with the Taft steric effect constants, Es. A four-parameter equation including both pi and Es improved the correlation only slightly [log (k2/Km) = 1.88 pi + 1.01 Es + C]. In contrast, steric effects as reflected in the Es constants are the major influence in acylation of the enzyme by corresponding p-nitrophenyl esters. There are very likely significant differences in transition-state structure with the two types of substrates.  相似文献   

11.
We have investigated the inhibition of human leukocyte elastase and cathepsin G by recombinant Eglin c under near physiological conditions. The association rate constants k on of Eglin c for elastase and cathepsin G were 1.3 X 10(7) M-1 s-1 and 2 X 10(6) M-1 s-1, respectively. Under identical conditions, the k on for the association of human plasma alpha 1-proteinase inhibitor with the two leukocproteinases were 2.4 X 10(7) M-1 s-1 and 10(6) M-1 s-1, respectively. The consistency of these data could be verified using a set of competition experiments. The elastase-Eglin c interaction was studied in greater detail. The dissociation rate constant k off was determined by trapping of free elastase from an equilibrium mixture of elastase and Eglin c with alpha 1-proteinase inhibitor or alpha 2-macroglobulin. The rate of dissociation was very low (k off = 3.5 X 10(-5) s-1). The calculated equilibrium dissociation constant of the complex, Ki(calc) = k off/k on, was found to be 2.7 X 10(-12) M. Ki was also measured by adding elastase to mixtures of Eglin c and substrate and determining the steady-state rates of substrate hydrolysis. The Ki determined from these experiments (7.5 X 10(-11) M) was significantly higher than Ki(calc). This discrepancy might be explained by assuming that the interaction of Eglin c with elastase involves two steps: a fast binding reaction followed by a slow isomerization step. From the above kinetic constants it may be inferred that at a therapeutic concentration of 5 X 10(-7) M, Eglin c will inhibit leukocyte elastase in one second and will bind this enzyme in a "pseudo-irreversible" manner.  相似文献   

12.
The kinetics of reduction of indigocarmine-dye-oxidized Fe protein of nitrogenase from Klebsiella pneumoniae (Kp2ox) by sodium dithionite in the presence and absence of MgADP were studied by stopped-flow spectrophotometry at 23 degrees C and at pH 7.4. Highly co-operative binding of 2MgADP (composite K greater than 4 X 10(10) M-2) to Kp2ox induced a rapid conformation change which caused the redox-active 4Fe-4S centre to be reduced by SO2-.(formed by the predissociation of dithionite ion) with k = 3 X 10(6) M-1.s-1. This rate constant is at least 30 times lower than that for the reduction of free Kp2ox (k greater than 10(8) M-1.s-1). Two mechanisms have been considered and limits obtained for the rate constants for MgADP binding/dissociation and a protein conformation change. Both mechanisms give rate constants (e.g. MgADP binding 3 X 10(5) less than k less than 3 X 10(6) M-1.s-1 and protein conformation change 6 X 10(2) less than k less than 6 X 10(3) s-1) that are similar to those reported for creatine kinase (EC 2.7.3.2). The kinetics also show that in the catalytic cycle of nitrogenase with sodium dithionite as reductant replacement of 2MgADP by 2MgATP occurs on reduced and not oxidized Kp2. Although the Kp2ox was reduced stoichiometrically by SO2-. and bound two equivalents of MgADP with complete conversion into the less-reactive conformation, it was only 45% active with respect to its ability to effect MgATP-dependent electron transfer to the MoFe protein.  相似文献   

13.
A steady-state kinetic analysis was made of thiocyanate (SCN-) oxidation catalyzed by human peroxidase (SPO) isolated from parotid saliva. For comparative purposes, bovine lactoperoxidase (LPO) was also studied. Both enzymes followed the classical Theorell-Chance mechanism under the initial conditions [H2O2] less than 0.2mM, [SCN-] less than 10mM, and pH greater than 6.0. The pH-independent rate constants (k1) for the formation of compound I were estimated to be 8 X 10(6) M-1 s-1 (SD = 1, n = 18) for LPO and 5 X 10(6) M-1 s-1 (SD = 1, n = 11) for SPO. The pH-independent second-order rate constants (k4) for the oxidation of thiocyanate by compound I were estimated to be 5 X 10(6) M-1 s-1 (SD = 1, n = 18) for LPO and 9 X 10(6) M-1 s-1 (SD = 2, n = 11) for SPO. Both enzymes were inhibited by SCN- at pH less than 6. The pH-independent equilibrium constant (Ki) for the formation of the inhibited enzyme-SCN- complex was estimated to be 24 M-1 (SD = 12, n = 8) for LPO and 44 M-1 (SD = 4, n = 10) for SPO. An apparent pH dependence of the estimated values for k4 and Ki for both LPO and SPO was consistent with a mechanism based on assumptions that protonation of compound I was necessary for the SCN- peroxidation step, that a second protonation of compound I gave an inactive form, and that the inhibited enzyme-SCN- complex could be further protonated to give another inactive form.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
J Tsuzuki  J A Kiger 《Biochemistry》1978,17(15):2961-2970
Cyclic AMP-dependent protein kinase and its regulatory subunit were isolated from Drosophila melanogaster embryos. The profiles of cyclic AMP binding by these proteins were significantly different. In order to explain such a difference and to find the mode of enzyme activation by cyclic AMP, a kinetic study of cyclic AMP binding was carried out. First, the association rate constant k1 and dissociation rate constant k-1 in the cyclic AMP-regulatory subunit interaction at 0 degrees C were estimated to be 2.3 X 10(6)M-1s-1 and 1.1 X 10(-3)s-1, respectively. Secondly, the three possible modes of enzyme activation by cyclic AMP were mathematically considered and could be described by a unique formula: r=APt + BQt (A + B=1) in which the parameters A, B, P, and Q are equivalent to rate constants in the sense that the rate constants are simply expressed by these parameters. Thirdly, the values of the parameters and subsequently the values of rate constants involved in the possible mechanisms were evaluated using a curve-fitting technique and compared with experimental observation. It was then found that the following mechanism was the only one which fitted the experimental observations. Namely, RC + L k3 equilibrium k-3 LRC k4 equilibrium k-4 RL + C where R, C, and L represent the regulatory and catalytic subunits and cyclic AMP as a ligand. Thus, our results indicate that in the presence of cyclic AMP the active enzyme (C) is released from a ternary intermediate which is the primary product of the cyclic AMP-holoenzyme interaction. The estimated values of the rate constants are: k3=3.5 X 10(6)M-1s-1;k-3=7.3 X 10(-1)s-1;and k4=3.8 X 10(-2)s. These estimates indicate that the reaction LRC leads to RL + C is relatively slow and limits the rate of the overall reaction. By comparing k-3 and k4, it is apparent that a large part of newly formed ternary intermediate reverts to the holoenzyme.  相似文献   

15.
Deacylation rate constants, k3, were measured for the human acyl-plasmins which contain in the acyl portion, RCO, the R groups methyl, cyclohexyl, p-nitrophenyl, isobutyl, trans-isopropenyl, phenyl, alpha-naphthyl, anisoyl and p-guanidinophenyl. Values of k3 were also determined for the porcine acyl-plasmins which have R = methyl, cyclohexyl, phenyl, anisoyl and p-guanidinophenyl. In general, for both the human and porcine acyl-plasmins, k3 decreased as the electron-donating ability of the acyl group increased. At 25 degrees C, the human acyl-plasmin with R = methyl has the highest k3, 1.06 +/- 0.05 X 10(-2) s-1, and the porcine acyl-plasmin with R = p-guanidinophenyl the lowest k3, 1.4 +/- 0.1 X 10(-6) s-1.  相似文献   

16.
Streptokinase reacts very rapidly with human plasmin (rate constant 5.4 S 10(7) M-1 s-1) forming a 1:1 stoichiometric complex which has a dissociation constant of 5 X 10(-11) M. This plasmin-streptokinase complex is 10(5) times less reactive towards alpha 2-antiplasmin than plasmin, the inhibition rate constant being 1.4 X 10(2) M-1 s-1. The loss of reactivity of the streptokinase-plasmin complex towards alpha 2-antiplasmin is independent of the lysine binding sites in plasmin since low-Mr plasmin, which lacks these sites, and plasmin in which the sites have been blocked by 6-aminohexanoic acid, are both equally unreactive towards alpha 2-antiplasmin on reaction with streptokinase. The plasmin-streptokinase complex binds to Sepharose-lysine and Sepharose-fibrin monomer in the same fashion as free plasmin, showing that the lysine binding sites are fully exposed in the complex. Bovine plasmin is rapidly inhibited by human alpha 2-antiplasmin (k1 = 1.6 X 10(6) M-1 s-1) and similarly loses reactivity towards the inhibitor on complex formation with streptokinase (50% binding at 0.4 microM streptokinase).  相似文献   

17.
By using the technique of pulse radiolysis to generate O2-., it is demonstrated that Co(II) derivatives of bovine superoxide dismutase in which the copper alone and both the copper and zinc of the enzyme have been substituted by Co(II), resulting in (Co,Zn)- and (Co,Co)-proteins, are capable of catalytically dismutating O2-. with 'turnover' rate constants of 4.8 X 10(6) dm3.s-1.mol-1 and 3.1 X 10(6) dm3.s-1.mol-1 respectively. The activities of the proteins are independent of the pH (7.4-9.4) and are about three orders of magnitude less than that of the native (Cu,Zn)-protein. The rate constants for the initial interaction of O2-. with the Co-proteins were determined to be (1.5-1.6) X 10(9) dm3.s-1.mol-1; however, in the presence of phosphate, partial inhibition is apparent [k approximately (1.9-2.3) X 10(8) dm3.s-1.mol-1]. To account for the experimental observations, two reaction schemes are presented, involving initially either complex-formation or redox reactions between O2-. and Co(II). This is the first demonstration that substitution of a metal into the vacant copper site of (Cu,Zn)-protein results in proteins that retain superoxide dismutase activity.  相似文献   

18.
A detailed kinetic study on the successive four-step reduction of cyt c3, which has four heme units in a single protein, III4 leads to III3II leads to III2II2 leads to III II3 leads to II4, was carried out by stopped-flow electronic spectroscopy (SF-UV) and stopped-flow circular dichroism spectroscopy (SF-CD). Based on the absorbance change vs. time and the ellipticity change vs. time at the characteristic CD, together with the electronic absorption of the enzyme, rate constants for the successive four electron transfer steps, k1-k4, were successfully estimated by computer simulation. The rate constants of the four steps (k1 = 19.8 s-1, k2 = 11.9 s-1, k3 = 8.9 s-1, and k4 = 1.6 s-1; 8.0 10(-4) M Na2S2O4) are quite different from the statistical values (4: 3: 2: 1), thus excluding the possibility of random reduction of hemes of equal reactivities. Instead, each heme has its own reactivity, probably dependent on its local environment. The value of k3 is somewhat higher than the statistical value, indicating the existence of an autoacceleration effect, although small. This autoacceleration is most probably due to a unique heme-heme and/or heme-environment interaction since unusual CD and electronic absorptions were observed at 350-400 nm at about the time corresponding.  相似文献   

19.
E P Lennette  B V Plapp 《Biochemistry》1979,18(18):3933-3938
The reaction of the imidazole group of histidine hydantoin with bromoacetate was studied as a model for carboxymethylation of histidine residues in proteins. pK values of 6.4 and 9.1 (25 degrees C) and apparent heats of ionization of 7.8 and 8.7 kcal/mol were determined for the imidazole and hydantoin rings, respectively. At pH values corresponding to the isoelectric points for histidine hydantoin, the rates of carboxymethylation at 12, 25, 37, and 50 degrees C were determined; the modified hydantoins were hydrolyzed to the corresponding histidine derivatives for quantitative amino acid analysis. At pH 7.72 and 25 degrees C, the imidazole tele-N was alkylated (k = 3.9 X 10(-5) M-1 s-1) twice as fast as the pros-N. The monocarboxymethyl derivatives were carboxymethylated at the same rate at the pros-N (k = 2.1 X 10(-5) M-1 s-1) but 3 times faster at the tele-N (k = 11 X 10(-5) M-1 s-1). The enthalpies of activation determined for carboxymethylation of the imidazole ring and its monocarboxymethyl derivatives were similar (15.9 +/- 0.7 kcal/mol). delta S for the four carboxymethylations was -25 +/- 2 eu. The electrostatic component of delta S (delta S es) was calculated from the influence of the dielectric constant on the reaction rate at 25 degrees C. delta S es was slightly negative (-4 +/- 1 eu) for mono- or dicarboxymethylations, indicating some charge separation in the transition state. The nonelectrostatic entropy of activation was -21 +/- 2 eu for all four carboxymethylations.  相似文献   

20.
Heme transfer between phospholipid membranes and uptake by apohemoglobin   总被引:4,自引:0,他引:4  
The incorporation of CO-heme into single bilayer, egg lecithin vesicles was examined by following the spectral changes that occur when the porphyrin becomes embedded in the membranes. The rate of CO-heme uptake by liposomes is extremely fast (t1/2 less than or equal to 20 ms at 10 degrees C), and the maximum extent is roughly 1 heme/5 phospholipid molecules. This limiting stoichiometry is due to unfavorable electrostatic interactions between the propionate groups of the bound CO-heme. This effect was treated theoretically by attenuating the intrinsic heme partitioning equilibrium constant with an exponential term reflecting the surface potential of the membranes. The surface potential was assumed to be proportional to the concentration of CO-heme in the membranes, and the final expression is Kp = Kop exp[-AHb/VpCp], where Kp is the observed partition constant; Kop, the intrinsic constant; Hb, the concentration of bound heme in the suspension; Vp, the partial molar volume of egg lecithin; Cp, the concentration of lipid phosphate; and A, an empirical constant representing the capacitance of the membrane for heme. For the analysis of kinetic data, the electrostatic term is assumed to apply only to the membrane dissociation rate constant, k-1, and not the association rate constant, k1. The dissociation rate was measured independently either by following the transfer of CO-heme from one vesicle fraction to another or by monitoring heme efflux from the membranes and incorporation into apohemoglobin at high protein concentrations. The data for all three sets of experiments, heme uptake, transfer, and incorporation into globin at 10 degrees C, were fitted quantitatively to the partitioning mechanism using A = 15 M-1, Kop = 5 X 10(5), k1 = 2 X 10(6) s-1, and k0(-1) = 4 s-1. Thus, heme can spontaneously migrate across lipid-water interfaces and hence diffuse rapidly from the mitochondrial inner membrane where it is synthesized to the rough endoplasmic reticulum where it is incorporated into hemoglobin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号