首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methylotrophic yeast Ogataea minuta IFO 10746 was selected as a suitable strain for producing human-compatible glycoproteins by means of analyses of its cell-wall mannoproteins. First, the OmURA3 gene encoding an orotidine-5'-phosphate decarboxylase was cloned and disrupted to generate a host strain with a uracil auxotrophic marker. Second, both the promoters and the terminators from the OmAOX1 gene encoding an alcohol oxidase for an inducible promoter, or those from the OmTDH1 gene encoding a glyceraldehyde-3-phosphate dehydrogenase for a constitutive promoter, were isolated to construct an expression vector system for heterologous genes. Next, the OmOCH1 gene encoding a starting enzyme with alpha-1,6-mannosyltransferase activity to form a backbone of the N-linked outer sugar chain peculiar to yeast was disrupted, and an alpha-1,2-mannosidase gene from Aspergillus saitoi with an endoplasmic reticulum retention signal (HDEL) under the control of the OmAOX1 promoter was introduced to convert the sugar chain to Man5GlcNAc2 in O. minuta. As a result, we succeeded in breeding a new methylotrophic yeast, O. minuta, producing a Man5GlcNAc2-high-mannose-type sugar chain as a prototype of a human-compatible sugar chain. We also elucidate here the usefulness of the strategy for producing human-compatible sugar chains in yeast.  相似文献   

2.
An alpha-mannosidase differing from 1,2-alpha-mannosidase was found to occur in Aspergillus saitoi. By a series of column chromatographies the enzyme was purified up to 1,000-fold, and its properties were studied in detail. The enzyme preparation, which was practically free from other exoglycosidases, showed a pH optimum of 5.0. In contrast to 1,2-alpha-mannosidase, the enzyme was strongly activated by Ca2+ ions. p-Nitrophenyl alpha-mannopyranoside was not hydrolyzed by the enzyme. Accordingly, the substrate specificity of the new alpha-mannosidase was studied by using a variety of tritium-labeled oligosaccharides. Studies with linear oligosaccharides revealed that the enzyme cleaves the Man alpha 1----3Man linkage more than 10 times faster than the Man alpha 1----6Man and the Man alpha 1----2Man linkages. Furthermore, it cleaves the Man alpha 1----6Man linkage of the Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAcOT only after its Man alpha 1----3 residue is removed. Because of this specificity, the enzyme can be used as an effective reagent to discriminate R----Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAcOT from its isomeric counterparts, Man alpha 1----6(R----Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAcOT, in which R represents sugars.  相似文献   

3.
Saccharomyces cerevisiae Man9-alpha-mannosidase, responsible for trimming Man9GlcNAc2 in the endoplasmic reticulum to Man8GlcNAc2, the substrate for oligosaccharide elongation, has been purified to homogeneity from stabilized microsomal membranes without employing autolytic digestion. The activity was solubilized by the zwitterionic detergent, 3-[(3-cholamidopropyl)dimethyl ammonio]-1-propanesulphonate (CHAPS), whose presence was necessary for maximal activity. Purification included Q-Sepharose ion-exchange chromatography, preparative isoelectric focusing and HPLC gel filtration on TSK 3000 matrix. Overall purification from post-nuclear supernatants was estimated to be 110,000-fold with a 50% recovery of activity. The purified enzyme hydrolysed Man9GlcNAc1,2 from thyroglobulin or oligosaccharide-lipid, but not invertase Man9GlcNAc, Man1 alpha 2Man1 alpha OCH3 or p-nitrophenyl-alpha-D-mannopyranoside. Conversion of thyroglobulin Man9GlcNAc to Man8GlcNAc was linear with time and enzyme concentration, with an apparent Km of 0.2 mM and a specific activity of 220 IU/mg. Glc3Man9GlcNAc2 from oligosaccharide-lipid was as good a substrate as Man9GlcNAc, but the lipid-linked Man7GlcNAc2 isomer was hydrolysed at only 10% of this rate. Hydrolysis of defined isomers of IgM and bovine thyroglobulin Man6,7,8GlcNAc indicated that, for maximal alpha 1,2-mannosidase activity, only the alpha 1,2-linked terminal mannoses on the alpha 3 branch of the Man9GlcNAc precursor were dispensable. Isomers lacking the terminal alpha 1,2-linked mannose on the alpha 6 branch were hydrolysed at only approximately 10% of the maximal rate. The enzyme exhibited a pI of 5.3 and a pH optimum at 6.5. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis in the absence of reducing agents gave a single sharp band at 66 kDa, while in the presence of beta-mercaptoethanol equimolar amounts of two peptides, one of 44 kDa and one of 23 kDa, were obtained. Sizing on Sephacryl SF300, Superose 12 and TSK 3000 provided a holoenzyme mol. wt of 60-68 kDa, indicating that the isolated active form of the Man9-alpha-mannosidase was composed of one each of the sulphydryl-bonded dissimilar peptides. The enzyme bound to concanavalin A (ConA)-Sepharose and was eluted with alpha-methylmannoside, indicating the presence of high-mannose oligosaccharides. The Man9-alpha-mannosidase required low levels of Ca2+, which could be removed by EGTA. Activity was restored by Ca2+ or Zn2+, but not by Mg2+ or Mn2+.  相似文献   

4.
This paper describes the modern enzymology in Japanese bioindustries. The invention of Takadiastase by Jokiti Takamine in 1894 has revolutionized the world of industrial enzyme production by fermentation. In 1949, a new γ-amylase (glucan 1,4-α-glucosidase, EC 3.2.1.3) from A. luchuensis (formerly designated as A. awamori), was found by Kitahara. RNase T1 (guanyloribonuclease, EC 3.1.27.3) was discovered by Sato and Egami. Ando discovered Aspergillus nuclease S1 (single-stranded nucleate endonuclease, EC 3.1.30.1). Aspergillopepsin I (EC 3.4.23.18) from A. tubingensis (formerly designated as A. saitoi) activates trypsinogen to trypsin. Shintani et al. demonstrated Asp76 of aspergillopepsin I as the binding site for the basic substrate, trypsinogen. The new oligosaccharide moieties Man10GlcNAc2 and Man11GlcNAc2 were identified with α-1,2-mannosidase (EC 3.2.1.113) from A. tubingensis. A yeast mutant compatible of producing Man5GlcNAc2 human compatible sugar chains on glycoproteins was constructed. The acid activation of protyrosinase from A. oryzae at pH 3.0 was resolved. The hyper-protein production system of glucoamylase was established in a submerged culture.  相似文献   

5.
1,2-alpha-Mannosidase catalyzes the specific cleavage of 1,2-alpha-mannose residues from protein-linked N-glycan. In this study, a novel DNA sequence homologous to the authentic 1,2-alpha-mannosidase was cloned from a cDNA library prepared from solid-state cultured Aspergillus oryzae. The fmanIB cDNA consisted of 1530 nucleotides and encoded a protein of 510 amino acids in which all consensus motifs of the class I alpha-mannosidase were conserved. Expression of the full length of 1,2-alpha-mannosidase cDNA by the Aspergillus host, though it has rarely been done with other filamentous-fungal mannosidase, was successful with fmanIB and caused an increase in both intracellular and extracellular mannosidase activity. The expressed protein (FmanIBp) specifically hydrolyzed 1,2-alpha-mannobiose with maximal activity at a pH of 5.5 and a temperature of 45 degrees C. With Man(9)GlcNAc(2) as the substrate, Man(5)GlcNAc(2) finally accumulated while hydrolysis of the 1,2-alpha-mannose residue of the middle branch was rate-limiting. To examine the intracellular localization of the enzyme, a chimeric protein of FmanIBp with green fluorescent protein was constructed. It showed a dotted fluorescence pattern in the mycelia of Aspergillus, indicative of the localization in intracellular vesicles. Based on these enzymatic and microscopic results, we estimated that FmanIBp is a fungal substitute for the mammalian Golgi 1,2-alpha-mannosidase isozyme IB. This and our previous report on the presence of another ER-type mannosidase in A. oryzae (Yoshida et al., 2000) support the notion that the filamentous fungus has similar steps of N-linked glycochain trimming to those in mammalian cells.  相似文献   

6.
The substrate specificity of neutral alpha-mannosidase purified from Japanese quail oviduct [Oku, H., Hase, S., & Ikenaka, T. (1991) J. Biochem. 110, 29-34] was analyzed by using 21 oligomannose-type sugar chains. The enzyme activated with Co2+ hydrolyzed the Man alpha 1-3 and Man alpha 1-6 bonds from the non-reducing termini of Man alpha 1-6(Man alpha 1-3)Man alpha 1-6(Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc (M5A), but hardly hydrolyzed the Man alpha 1-2 bonds of Man9GlcNAc2. The hydrolysis rate decreased as the reducing end of substrates became more bulky: the hydrolysis rate for the pyridylamino (PA) derivative of M5A as to that of M5A was 0.8; the values for M5A-Asn and Taka-amylase A having a M5A sugar chain being 0.5 and 0.04, respectively. The end product was Man beta 1-4GlcNAc2. For the substrates with the GlcNAc structure at their reducing ends (Man5GlcNAc, Man6GlcNAc and Man9GlcNAc), the hydrolysis rate was remarkably increased: Man5GlcNAc was hydrolyzed 16 times faster than M5A, and Man2GlcNAc 40 times faster than Man9GlcNAc2. The enzyme did not hydrolyze Man alpha 1-2 residue(s) linked to Man alpha 1-3Man beta 1-4GlcNAc. The end products were as follows: [formula; see text] These results suggest that oligomannose-type sugar chains with the GlcNAc structure at their reducing ends seem to be native substrates for neutral alpha-mannosidase and the enzyme seems to hydrolyze endo-beta-N-acetylgucosaminidase digests of oligomannose-type sugar chains in the cytosol.  相似文献   

7.
Jack bean α-mannosidase (JBM) is a well-studied plant vacuolar α-mannosidase, and is widely used as a tool for the enzymatic analysis of sugar chains of glycoproteins. In this study, the JBM digestion profile of hybrid-type N-glycans was examined using pyridylamino (PA-) sugar chains. The digestion efficiencies of the PA-labeled hybrid-type N-glycans Manα1,6(Manα1,3)Manα1,6(GlcNAcβ1,2Manα1,3)Manβ1,4GlcNAcβ1,4GlcNAc-PA (GNM5-PA) and Manα1,6(Manα1,3)Manα1,6(Galβ1,4GlcNAcβ1,2Manα1,3)Manβ1,4GlcNAcβ1,4GlcNAc-PA (GalGNM5-PA) were significantly lower than that of the oligomannose-type N-glycan Manα1,6(Manα1,3)Manα1,6Manβ1,4GlcNAcβ1,4GlcNAc-PA (M4-PA), and the trimming pathways of GNM5-PA and GalGNM5-PA were different from that of M4-PA, suggesting a steric hindrance to the JBM activity caused by GlcNAcβ1-2Man(α) residues of the hybrid-type N-glycans. We also found that the substrate preference of JBM for the terminal Manα1-6Man(α) and Manα1-3Man(α) linkages in the hybrid-type N-glycans was altered by the change in reaction pH, suggesting a pH-dependent change in the enzyme-substrate interaction.  相似文献   

8.
The coding region of the aspergillopepsin I (EC 3.4.23.18) gene occupies 1340 base pairs of the genomic DNA and is separated into four exons by three intros. The predicted amino-acid sequence of aspergillopepsin I consists of 325 residues and is 32% and 27% homologous with those of human pepsin and calf chymosin. The cDNA of the gene prepared from mRNA has been cloned and expressed in yeast cells. To identify the residue of the substrate binding pocket in determining the specificity of aspergillopepsin I towards basic substrates, this residue was replaced with a serine residue by site-directed mutagenesis. The mutation is a single amino-acid change, Asp-76 converted to Ser-D76S, in the enzyme. The striking feature of this is that only the trypsinogen activating activity was destroyed. We therefore concluded that Asp-76 is the binding site towards basic substrates.  相似文献   

9.
Structures of sugar chains of the third component of human complement   总被引:2,自引:0,他引:2  
Human C3, the third component of human complement, contained mannose and N-acetylglucosamine as sugar components. The sugar chains were liberated from the polypeptide chains by hydrazinolysis, and the free amino groups were N-acetylated. The reducing end residues of the sugar chains thus obtained were tagged with 2-aminopyridine, and the pyridylamino (PA-) derivatives of sugar chains were separated by high-performance liquid chromatography. The structures of purified PA-sugar chains were analyzed by a combination of stepwise exoglycosidase digestions, size determination by paper electrophoresis, methylation analysis, Smith degradation, and partial acetolysis. These results showed that C3 contained two high-mannose type sugar chains ranging from Man5GlcNAc2 to Man9GlcNAc2. Analyses of the sugar chains of alpha- and beta-chains of C3 indicated that the alpha-chain contained mainly Man8GlcNAc2 and Man9GlcNAc2, while the beta-chain contained mainly Man5GlcNAc2 and Man6GlcNAc2.  相似文献   

10.
The primary structure of the N-linked sugar chains of glucose oxidase from Aspergillus niger was investigated. These sugar chains were released from the polypeptide backbone by hydrazinolysis, and the reducing ends of the sugar chains were pyridylaminated. HPLC of the pyridylamino sugar chains with an amide-silica column showed at least seven sugar chain peaks. Chemical and exoglycosidase digestion and 400 lMHz H-NMR studies of the sugar chains of lower molecular weight showed that these were novel oligomannose-type sugar chains, (Man)5-7 (GlcNAc)2, with the structure: +/- Man alpha 1----3Man alpha 1----3(Man alpha 1----6)Man alpha 1----6(+/- Man alpha 1----3Man alpha 1---3)Man )Man beta 1----4GlcNAc beta 1----4GlcNAc.  相似文献   

11.
Four oligosaccharide fractions were isolated and purified from the kidney of goats affected with beta-mannosidosis by repeating Bio-Gel P-2 column chromatography. The structural characterization of the purified oligosaccharide fractions (oligosaccharides A, B, C1,2, and D) included sugar composition analysis by gas chromatography, sugar sequence analysis by mass spectrometry of their permethylated alditols, and by methylation analysis as well as anomeric configuration studies by exoglycosidase digestions. Oligosaccharides A and B were the major oligosaccharides accumulating in the kidney and were elucidated as Man beta 1-4GlcNAc and Man beta 1-4GlcNAc beta 1-4GlcNAc, respectively (Matsuura, F., Laine, R. A., and Jones, M. Z. (1981) Arch. Biochem. Biophys. 211, 485-493). Oligosaccharide C1,2 was a mixture of two tetrasaccharides and oligosaccharide D was a pentasaccharide. The proposed structures are: oligosaccharide C1, Man beta 1-4GlcNAc beta 1-4Man beta 1-4GlcNAc; oligosaccharide C2, Man alpha 1-6Man beta 1-4GlcNAc beta 1-4GlcNAc; oligosaccharide D, Man beta 1-4GlcNAc beta 1-4Man beta 1-4GlcNAc beta 1-4GlcNAc. Tetrasaccharide C1 and pentasaccharide D are heretofore undiscovered oligosaccharides. There is no precedent for these structures in glycoproteins or other glycoconjugates. One possibility which accounts for the presence of oligosaccharide C1 and D is that a bisecting N-acetylglucosamine (the beta-N-acetylglucosamine residue linked at the C-4 position of the beta-mannosyl residue of the trimannosyl core of the asparagine-linked sugar chains) is linked by a beta-mannosyl residue. Moreover, the detection of oligosaccharides containing two N-acetylglucosamine residues at the reducing terminus, together with those containing a single N-acetylglucosamine residue, is further corroboration of species-specific differences in glycoprotein catabolic pathways (Hancock, L. W., and Dawson, G. (1984) Fed. Proc. 43, 1552) or in glycoprotein structures.  相似文献   

12.
Asparagine-linked sugar chains of sphingolipid activator protein 1 (SAP-1) purified from normal human liver and GM1 gangliosidosis (type 1) liver were comparatively investigated. Oligosaccharides released from the two SAP-1 samples by hydrazinolysis were fractionated by paper electrophoresis and by Aleuria aurantia lectin-Sepharose and Bio-Gel P-4 (under 400 mesh) column chromatography. Structures of oligosaccharides in each fraction were estimated from data on their effective molecular sizes, behavior on immobilized lectin columns with different carbohydrate-binding specificities, results of sequential digestion by exoglycosidases with different aglycon specificities, and methylation analysis. Sugar chains of SAP-1 purified from normal human liver and from GM1 gangliosidosis (type 1) liver were different from each other, although both of them were derived from complex-type sugar chains. The sugar chains of the former were the following eight degradation products from complex-type sugar chains by exoglycosidases in lysosomes: Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAcOT, Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----6)GlcNAcOT, Man alpha 1----6Man beta 1----4GlcNAc beta 1----4GlcNAcOT, Man alpha 1----6Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----6)GlcNAcOT, Man beta 1----4GlcNAc beta 1----4GlcNAcOT, Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----6)GlcNAcOT, GlcNAc beta 1----4GlcNAcOT, and GlcNAcOT. In contrast to these, the sugar chains of the latter were sialylated and nonsialylated mono- to tetraantennary complex-type sugar chains that were not fully degraded due to a metabolic defect in acid beta-galactosidase activity.  相似文献   

13.
Structure of the carbohydrate moieties of bovine rhodopsin.   总被引:7,自引:0,他引:7  
The sugar chains of bovine rhodopsin were released from the polypeptide moiety by hydrazinolysis and reduced with NaB[3H]4 after N-acetylation. The radioactive oligosaccharides thus obtained were fractionated into three components by paper chromatography. The structures of these components were elucidated as GlcNAc beta 1 leads to 2Man alpha 1 leads to 3 (Man alpha 1 leads to 6)Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc, GlcNAc beta 1 leads to 2Man alpha 1 leads to 3(Man alpha 1 leads to 3 and 6 Man alpha 1 leads to 6)Man beta leads to 4GlcNAc beta 1 leads to 4GlcNAc, and GlcNAc beta 1 leads to 2Man alpha 1 leads to 3(Man alpha 1 leads to 3 (Man alpha 1 leads to 6)Man alpha 1 leads to 6)Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc, by sequential exoglycosidase digestion, methylation analysis, and endo-beta-N-acetylglucosaminidase D digestion. The unusual features of the sugar chains of rhodopsin molecule seem to support the proposed processing pathway for the biosynthesis of asparagine-linked sugar chains of glycoproteins.  相似文献   

14.
The structures of N-linked sugar chains of glycoproteins expressed in tobacco BY2 cultured cells are reported. Five pyridylaminated (PA-) N-linked sugar chains were derived and purified from hydrazinolysates of the glycoproteins by reversed-phase HPLC and size-fractionation HPLC. The structures of the PA-sugar chains purified were identified by two-dimensional PA-sugar chain mapping, ion-spray MS/MS analysis, and exoglycosidase digestions. The five structures fell into two categories; the major class (92.5% as molar ratio) was a xylose containing-type (Man3Fuc1 Xyl1GlcNAc2 (41.0%), GlcNAc2Man3Fuc1Xyl1GlcNAc2 (26.5%), GlcNAc1Man3Fuc1Xyl1GlcNAc2 (21.7%), Man3 Xyl1GlcNAc2 (3.3%)), and the minor class was a high-mannose type (Man5GlcNAc2 (7.5%)). This is the first report to show that alpha(1-->3) fucosylation of N-glycans does occur but beta(1-->4) galactosylation of the sugar chains does not in the tobacco cultured cells.  相似文献   

15.
Deuterolysin (EC 3.4.24.39; formerly designated as neutral proteinase II) from Aspergillus oryzae, which contains 1 g atom of zinc/mol of enzyme, is a single chain of 177 amino acid residues, includes three disulfide bonds, and has a molecular mass of 19,018 Da. Active-site determination of the recombinant enzyme expressed in Escherichia coli was performed by site-directed mutagenesis. Substitutions of His(128) and His(132) with Arg, of Glu(129) with Gln or Asp, of Asp(143) with Asn or Glu, of Asp(164) with Asn, and of Tyr(106) with Phe resulted in almost complete loss of the activity of the mutant enzymes. It can be concluded that His(128), His(132), and Asp(164) provide the Zn(2+) ligands of the enzyme according to a (65)Zn binding assay. Based on site-directed mutagenesis experiments, it was demonstrated that the three essential amino acid residues Glu(129), Asp(143), and Tyr(106) are catalytically crucial residues in the enzyme. Glu(129) may be implicated in a central role in the catalytic function. We conclude that deuterolysin is a member of a family of Zn(2+) metalloendopeptidases with a new zinc-binding motif, aspzincin, defined by the "HEXXH + D" motif and an aspartic acid as the third zinc ligand.  相似文献   

16.
The structures of the sugar chains present in two human monoclonal IgM molecules purified from the serum of a patient with Waldenstr?m's macroglobulinemia have been determined. The asparagine-linked sugar chains were liberated as oligosaccharides by hydrazinolysis and labeled by reduction with NaB3H4 after N-acetylation. Their structures were studied by serial lectin column chromatography and sequential exoglycosidase digestion in combination with methylation analysis. These two IgM's were shown to contain almost the same sugar chains. The sugar chains were a mixture of a series of high-mannose-type and biantennary complex-type oligosaccharides. The complex-type oligosaccharides contain Man alpha 1----6(+/- GlcNAc beta 1----4)(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----6)GlcNAc as their core and GlcNAc beta 1----, Gal beta 1----4GlcNAc beta 1---- and Neu5Ac alpha 2----6Gal beta 1----4GlcNAc beta 1---- groups in their outer chain moieties.  相似文献   

17.
The specificity and mode of action of an acid proteinase (EC 3.4.23.6) from Aspergillus saitoi were investigated with oxidized B-chain of insulin, angiotensin II and bradykinin. Further purification of acid proteinase was performed with N,O-dibenzyloxycarbonyl-tyrosine hexamethylene-diamino-Sepharose 4B affinity chromatography and isoelectric focusing. The purified enzyme was free of any other proteolytic activity demonstrated in Asp. saitoi. Acid proteinase from Asp. saitoi hydrolyzed primarily two peptide bonds in the oxidized B-chain of insulin, the Leu(15)-Tyr(16) bond and the Phe(24)-Phe(25) bond. Additional cleavages of the bonds His(10)-Leu(11), Ala(14)-Leu(15) and Tyr(16)-Leu(17) were also noted. Primary splitting sites at Leu(15)-Tyr(16) and Phe(24-)-Phe(25) with acid proteinase from Asp. saitoi were identical with those reported in the work of cathepsin D (EC 3.4.23.5) from human erythrocyte. Hydrolysis of angiotensin II was observed at the Tyr(4)-Ile(5) bond. In conclusion, peptide bonds which have a hydrophobic amino acid such as phenylalanine, tyrosine, leucine and isoleucine in the P'1 position (as defined by Berger and Schechter, [29]) are preferentially cleaved by the trypsinogenactivating acid proteinase from Asp. saitoi.  相似文献   

18.
Bovine prothrombin contains three asparagine-linked sugar chains in 1 molecule. The sugar chains were quantitatively released from the polypeptide backbone by hydrazinolysis. All of the oligosaccharides thus obtained contain N-acetylneuraminic acid. Sialidase treatment of these acidic oligosaccharides released three isomeric oligosaccharides, N-1, N-2 and N-3. N-3 was a typical complex type asparagine-linked sugar chain widely found in other glycoprotein, while N-1 and N-2 were unique, because they contain Gal beta 1 leads to 3GlcNAc grouping in the outer chain moiety. By comparing the data of methylation analysis of the acidic oligosaccharides before and after sialidase treatment, the structures of the sugar chains of bovine prothrombin were confirmed as a mixture of NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6(NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc leads to Asn, NeuAc alpha 2 leads to 6Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc leads to Asn, NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc leads to Asn and their partially desialized forms.  相似文献   

19.
Human chorionic gonadotropin (hCG) highly purified from urine of the patient with choriocarcinoma contains four asparagine-linked sugar chains in one molecule. The sugar chains were quantitatively liberated as radioactive oligosaccharides from polypeptide portion by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. The structures of these sugar chains were determined by the combination of sequential glycosidase digestion, periodate oxidation, and methylation analysis. As compared with the sugar chains of normal urinary and placental hCG reported previously, they include several prominent structural differences. More than 97% of the sugar chains of choriocarcinoma hCG was free from sialic acid, while the sugar chains of normal hCG were mostly sialylated. Choriocarcinoma hCG contains unusual biantennary complex-type sugar chains in addition to regular tri-, bi-, and monoantennary sugar chains. These sugar chains have two outer chains linked at the C-2 and C-4 positions of the same alpha-mannosyl residue of the trimannosyl core. Since normal hCG does not contain any triantennary sugar chains, occurrence of Gal beta 1 leads to 4GlcNAc beta 1 leads to 4Man alpha 1 leads to group is another characteristic feature of the sugar chains of choriocarcinoma hCG. The evidence that the monoantennary sugar chain of Man alpha 1 leads to 6(Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc beta 1 leads to 4(Fuc alpha 1 leads to 6)GlcNAc leads to Asn is not found in normal hCG and the sum total of fucosylated sugar chains is 50%, which is twice as much as normal hCG, indicated that fucosylation is also modified in choriocarcinoma tissue.  相似文献   

20.
Man9-mannosidase, an alpha 1,2-specific enzyme located in the endoplasmic reticulum and involved in N-linked-oligosaccharide processing, has been isolated from crude pig-liver microsomes and its substrate specificity studied using a variety of free and peptide-bound high-mannose oligosaccharide derivatives. The purified enzyme displays no activity towards synthetic alpha-mannosides, but removes three alpha 1,2-mannose residues from the natural Man9-(GlcNAc)2 substrate (M9). The alpha 1,2-mannosidic linkage remaining in the M6 intermediate is cleaved about 40-fold more slowly. Similar kinetics of hydrolysis were determined with Man9-(GlcNAc)2 N-glycosidically attached to the hexapeptide Tyr-Asn-Lys-Thr-Ser-Val (GP-M9), indicating that the specificity of the enzyme is not influenced by the peptide moiety of the substrate. The alpha 1,2-mannose residue which is largely resistant to hydrolysis, was found to be attached in both the M6 and GP-M6 intermediate to the alpha 1,3-mannose of the peripheral alpha 1,3/alpha 1,6-branch of the glycan chain. Studies with glycopeptides varying in the size and branching pattern of the sugar chains, revealed that the relative rates at which the various alpha 1,2-mannosidic linkages were cleaved, differed depending on their structural complexity. This suggests that distinct sugar residues in the aglycon moiety may be functional in substrate recognition and binding. Reduction or removal of the terminal GlcNAc residue of the chitobiose unit in M9 increased the hydrolytic susceptibility of the fourth (previously resistant) alpha 1,2-mannosidic linkage significantly. We conclude from this observation that, in addition to peripheral mannose residues, the intact chitobiose core represents a structural element affecting Man9-mannosidase specificity. A possible biological role of the enzyme during N-linked-oligosaccharide processing is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号