首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Peroxisomes from castor bean endosperm and mung bean hypocotyl completely degrade ricinoleic acid (12-D-hydroxy-9-cis-octadecenoic acid) to acetyl-CoA. Concomitant NADH formation occurred with a stoichiometry of 9 nmol NADH formed per 1 nmol ricinoleate degraded. At the C8-intermediate level, where the hydroxy group of ricinoleic acid forms a barrier to β-oxidation, 2-hydroxyoctanoate and 2-oxooctanoate were detected as intermediates. 2-Hydroxyoctanoate was oxidized to 2-oxooctanoate with H2O2 producing a reaction exhibiting 1:1 stoichiometry of the products. The peroxisomes appeared to oxidize both isomers of racemic 2-hydroxyoctanoate. 2-Oxooctanoate was metabolized to heptanoyl-CoA (propionyl-CoA and acetyl-CoA) in a NAD-dependent, but ATP-independent, reaction. Heptanoate was not detected as an intermediate. Imidazole, an inhibitor of α-oxidation, did not effect the degradation of ricinoleate or 2-oxooctanoate. Arsenite, an inhibitor of oxidative decarboxylation, inhibited the metabolism of ricinoleate at the C8-intermediate level, according to the accumulation of 2-oxooctanoate and the stoichiometry of concomitant NADH formation. Arsenite completely inhibited the metabolism of 2-oxooctanoate. It is concluded that the barrier caused by the hydroxy group of ricinoleic acid and prevention of β-oxidation at the C8-intermediate level, is circumvented by an α-hydroxy acid oxidase reaction followed by an oxidative decarboxylation allowing return to the β-oxidation track.  相似文献   

2.
Seasonal Shifts of Photosynthesis in Portulacaria afra (L.) Jacq   总被引:6,自引:5,他引:1       下载免费PDF全文
Portulacaria afra (L.) Jacq., a perennial facultative Crassulacean acid metabolism (CAM) species, was studied under natural photoperiods and temperatures in San Diego, California. The plants were irrigated every fourth day throughout the study period. Measurements of 14CO2 uptake, stomatal resistance, and titratable acidity were made periodically from July 1981 through May 1982. P. afra maintained C3 photosynthesis during the winter and the spring. Diurnal acid fluctuations were low and maximal 14CO2 uptake occurred during the day. The day/night ratio of carbon uptake varied from 5 to 10 and indicated little nocturnal CO2 uptake. CAM photosynthesis occurred during the summer and a mixture of both C3 and CAM during the fall. Large acid fluctuations of 100 to 200 microequivalents per gram fresh weight were observed and maximal 14CO2 uptake shifted to the late night and early morning hours. Daytime stomatal closure was evident. A reduction in the day/night ratio of carbon uptake to 2 indicated a significant contribution of nocturnal CO2 uptake to the overall carbon gain of the plant. The seasonal shift from C3 to CAM was facilitated by increasing daytime temperature and accompanied by reduced daytime CO2 uptake despite irrigation.  相似文献   

3.
An engineered reversal of the β-oxidation cycle was exploited to demonstrate its utility for the synthesis of medium chain (6–10-carbons) ω-hydroxyacids and dicarboxylic acids from glycerol as the only carbon source. A redesigned β-oxidation reversal facilitated the production of medium chain carboxylic acids, which were converted to ω-hydroxyacids and dicarboxylic acids by the action of an engineered ω-oxidation pathway. The selection of a key thiolase (bktB) and thioesterase (ydiI) in combination with previously established core β-oxidation reversal enzymes, as well as the development of chromosomal expression systems for the independent control of pathway enzymes, enabled the generation of C6–C10 carboxylic acids and provided a platform for vector based independent expression of ω-functionalization enzymes. Using this approach, the expression of the Pseudomonas putida alkane monooxygenase system, encoded by alkBGT, in combination with all β-oxidation reversal enzymes resulted in the production of 6-hydroxyhexanoic acid, 8-hydroxyoctanoic acid, and 10-hydroxydecanoic acid. Following identification and characterization of potential alcohol and aldehyde dehydrogenases, chnD and chnE from Acinetobacter sp. strain SE19 were expressed in conjunction with alkBGT to demonstrate the synthesis of the C6–C10 dicarboxylic acids, adipic acid, suberic acid, and sebacic acid. The potential of a β-oxidation cycle with ω-oxidation termination pathways was further demonstrated through the production of greater than 0.8 g/L C6–C10 ω-hydroxyacids or about 0.5 g/L dicarboxylic acids of the same chain lengths from glycerol (an unrelated carbon source) using minimal media.  相似文献   

4.
The degree of C4 photosynthesis was assessed in four hybrids among C4, C4-like, and C3-C4 species in the genus Flaveria using 14C labeling, CO2 exchange, 13C discrimination, and C4 enzyme activities. The hybrids incorporated from 57 to 88% of the 14C assimilated in a 10-s exposure into C4 acids compared with 26% for the C3-C4 species Flaveria linearis, 91% for the C4 species Flaveria trinervia, and 87% for the C4-like Flaveria brownii. Those plants with high percentages of 14C initially fixed into C4 acids also metabolized the C4 acids quickly, and the percentage of 14C in 3-phosphoglyceric acid plus sugar phosphates increased for at least a 30-s exposure to 12CO2. This indicated a high degree of coordination between the carbon accumulation and reduction phases of the C4 and C3 cycles. Synthesis and metabolism of C4 acids by the species and their hybrids were highly and linearly correlated with discrimination against 13C. The relationship of 13C discrimination or 14C metabolism to O2 inhibition of photosynthesis was curvilinear, changing more rapidly at C4-like values of 14C metabolism and 13C discrimination. Incorporation of initial 14C into C4 acids showed a biphasic increase with increased activities of phosphoenolpyruvate carboxylase and NADP-malic enzyme (steep at low activities), but turnover of C4 acids was linearly related to NADP-malic enzyme activity. Several other traits were closely related to the in vitro activity of NADP-malic enzyme but not phosphoenolpyruvate carboxylase. The data indicate that the hybrids have variable degrees of C4 photosynthesis but that the carbon accumulation and reduction portions of the C4 and C3 cycles are well coordinated.  相似文献   

5.
Transport and metabolism of [2,3-14C] 1-aminocyclopropane-1-carboxylic acid (ACC) from roots to shoots in 4-day-old sunflower (Helianthus annuus L.) seedlings were studied. [14C]ACC was detected in, and 14C2H4 was evolved from, shoots 0.5 hours after [14C]ACC was supplied to roots. Ethylene emanation from the shoots returned to normal levels after 6 hours. The roots showed a similar pattern, although at 24 hours ethylene emanation was still slightly higher than in those plants that did not receive ACC. [14C]N-malonyl-ACC (MACC) was detected in both tissues at all times sampled. [14C]MACC levels surpassed [14C]ACC levels in the shoot at 2 hours, whereas [14C]MACC levels in the root remained below [14C]ACC levels until 6 hours, after which they were higher. Thin-layer chromatography analysis identified [14C] ACC in 1-hour shoot extracts, and [14C]MACC was identified in root tissues at 1 and 12 hours after treatment. [14C]ACC and [14C] MACC in the xylem sap of treated seedlings were identified by thin-layer chromatography. Xylem transport of [14C]ACC in treated seedlings, and transport of ACC in untreated seedlings, was confirmed by gas chromatography-mass spectrometry. Some evidence for the presence of [14C]MACC in xylem sap in [14C]ACC-treated seedlings is presented. A substantial amount of radioactivity in both ACC and MACC fractions was detected leaking from the roots over 24 hours. A second radiolabeled volatile compound was trapped in a CO2-trapping solution but not in mercuric perchlorate. Levels of this compound were highest after the peak of ACC levels and before peak MACC levels in both tissues, suggesting that an alternate pathway of ACC metabolism was operating in this system.  相似文献   

6.
The initial products of photosynthesis by the C3 species Flaveria cronquistii, the C4 species F. trinervia, and the C3-C4 intermediate species F. ramosissima were determined using a pulse-chase technique with 14CO2-12CO2. The intermediate species F. ramosissima incorporated at least 42% of the total soluble 14C fixed into malate and aspartate after 10 seconds of photosynthesis in 14CO2, as compared with 90% for the C4 species F. trinervia and 5% for the C3 species F. cronquistii. In both F. ramosissima and F. trinervia, turnover of labeled malate and aspartate occurred during a chase period in 12CO2, although the rate of turnover was slower in the intermediate species. Relative to F. cronquistii, F. ramosissima showed a reduced incorporation of radioactivity into serine and glycine during the pulse period. These results indicate that a functional C4 pathway of photosynthesis is operating in F. ramosissima which can account for its reduced level of photorespiration, and that this species is a true biochemical intermediate between C3 and C4 plants.  相似文献   

7.
Analyses of brain phospholipid fatty acid profiles reveal a selective deficiency and enrichment in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), respectively. In order to account for this difference in brain fatty acid levels, we hypothesized that EPA is more rapidly β-oxidized upon its entry into the brain. Wild-type C57BL/6 mice were perfused with either 14C-EPA or 14C-DHA via in situ cerebral perfusion for 40 s, followed by a bicarbonate buffer to wash out the residual radiolabeled polyunsaturated fatty acid (PUFA) in the capillaries. 14C-PUFA-perfused brains were extracted for chemical analyses of neutral lipid and phospholipid fatty acids. Based on the radioactivity in aqueous, total lipid, neutral lipid and phospholipid fractions, volume of distribution (VD, μl/g) was calculated. The VD between 14C-EPA- and 14C-DHA-perfused samples was not statistically different for total lipid, neutral lipids or total phospholipids. However, the VD of 14C-EPA in the aqueous fraction was 2.5 times higher than that of 14C-DHA (p=0.025), suggesting a more extensive β-oxidation than DHA. Furthermore, radiolabeled palmitoleic acid, a fatty acid that can be synthesized de novo, was detected in brain phospholipids from 14C-EPA but not from 14C-DHA-perfused mice suggesting that β-oxidation products of EPA were recycled into endogenous fatty acid biosynthetic pathways. These findings suggest that low levels of EPA in brain phospholipids compared to DHA may be the result of its rapid β-oxidation upon uptake by the brain.  相似文献   

8.
Littlejohn RO  Ku MS 《Plant physiology》1984,74(4):1050-1054
The nature and sequence of metabolic events during phase II (early morning) Crassulacean acid metabolism in Opuntia erinacea var columbiana (Griffiths) L. Benson were characterized. Gas exchange measurements under 2 and 21% O2 revealed increased O2 inhibition of CO2 fixation with progression of phase II. Malate and titratable acidity patterns indicated continued synthesis of C4 acids for at least 30 minutes into the light period. Potential activities of phosphoenolpyruvate carboxylase (PEPC) and NADP-malic enzyme exhibited little change during phase II, while light activation of NADP-malate dehydrogenase, pyruvate, orthophosphate dikinase, and ribulose-1,5-bisphosphate carboxylase was apparent. Short-term 14CO2 fixation experiments showed that the per cent of 14C incorporated into C4 acids decreased while incorporation into other metabolites increased with time. PEPC exhibited increased sensitivity to 2 millimolar malate, and the Ki(malate) for PEPC decreased markedly with time. Sensitivity of PEPC to malate inhibition was considerably greater at pH 7.5 than at 8.0. The results indicate that decarboxylation and synthesis of malate occur simultaneously during the early morning period, and that phase II acid metabolism is not limited by CO2 diffusion through stomata. With progression of phase II, CO2 fixation by PEPC decreases while fixation by ribulose-1,5-bisphosphate carboxylase increases.  相似文献   

9.
Y. Kamiya  N. Takahashi  J. E. Graebe 《Planta》1986,169(4):524-528
The fate of the carbon-20 atom in gibberellin (GA) biosynthesis was studied in a cell-free system from Pisum sativum. This carbon atom is lost at the aldehyde stage of oxidation when C20-GAs are converted to C19-GAs. Gibberellin A12 labeled with 14C at C-20 was prepared from [3-14C]mevalonic acid with a cell-free system from Cucurbita maxima and incubated with the pea system. Analysis of the gas and aqueous phases showed that 14CO2 was formed at the same rate and in nearly equivalent amounts as 14C-labeled C19-GAs whereas [14C]formic acid and [14C]formaldehyde were not detectable. The possibility that C-20 had been lost as formic acid which had then been converted to CO2 was investigated by control incubations with [14C]formic acid. The rate of release of 14CO2 from [14C]formic acid was only one fiftieth of the rate of 14CO2 release from [14C]GA12 as the substrate. We conclude that in the formation of C19-GAs from C20-GAs, the C-20 is removed directly as CO2.Abbreviations GAn Gibberellin An  相似文献   

10.
Beyer EM 《Plant physiology》1975,56(2):273-278
The effects of various treatments on the recently reported system in pea (Pisum sativum cv. Alaska), which results in (a) the incorporation of 14C2H4 into the tissue and (b) the conversion of 14C2H4 to 14CO2, was investigated using 2-day-old etiolated seedlings which exhibit a maximum response. Heat treatment (80 C, 1 min) completely inhibited both a and b, whereas homogenization completely inhibited b but only partially inhibited a. Detaching the cotyledons from the root-shoot axis immediately before exposing the detached cotyledons together with the root-shoot axis to 14C2H4 markedly reduced both a and b. Increasing the 14C2H4 concentration from 0.14 to over 100 μl/l progressively increased the rate of a and b with tissue incorporation being greater than 14C2H4 to 14CO2 conversion only below 0.3 μl/l 14C2H4. Reduction of the O2 concentration reduced both a and b, with over 99% inhibition occurring under anaerobic conditions. The addition of CO2 (5%) severely inhibited 14C2H4 to 14CO2 conversion without significantly affecting tissue incorporation. Exposure of etiolated seedlings to fluorescent light during 14C2H4 treatment was without effect. Similarly, indoleacetic acid, gibberellic acid, benzyladenine, abscisic acid, and dibutyryl cyclic adenosine monophosphate had no significant effect on either a or b.  相似文献   

11.
To elucidate the influence of growth temperature and of stage of maturity on lipid synthesis in seeds, oat plants (Avena sativa nuda L., variety NOS) were fed with 14CO2 at different stages after flowering, and the 14C-incorporation into the grain lipids was determined at 2, 24, and 48 hours after the end of 14CO2-application. By changing growth temperature from 12 C to 28 C after the application of 14CO2 to intact plants, a higher 14C-labeling of saturated fatty acids was found at the higher temperature. At 28 C, palmitic and stearic acids contained 23% and 9% respectively of total fatty acid-14C shortly after the 14CO2-application, whereas at 12 C the corresponding values were 19% and 4%, respectively. Within 2 days 14C-activity of saturated fatty acids decreased at both temperatures, but to a lesser degree at 28 C. The higher 14C-labeling of saturated fatty acids and its lower decrease within 2 days at 28 C clearly show a direct influence of temperature on fatty acid biosynthesis in oat grains.  相似文献   

12.
The chlorophyll-based specific activity of cytochrome oxidase and three exclusively mitochondrial enzymes of the tricarboxylic acid cycle showed little variation between leaves of C3 and C4 plants or between mesophyll and bundle sheath cells of Atriplex spongiosa and Sorghum bicolor. However, a large, light-dependent transfer of label from intermediates of the tricarboxylic acid cycle to photosynthetic products was a feature of leaves of C4 plants. This light-dependent transfer of label was barely detectable in leaves of C3 plants and in leaves of F1 and F3 hybrids of Atriplex rosea (C4) and Atriplex patula spp hastata (C3). The light-dependent transfer of label to photosynthetic products in leaves of C4 plants was inhibited by the tricarboxylic acid cycle inhibitors malonate and fluoroacetate. The requirement for continued tricarboxylic acid cycle activity was also indicated in experiments with specifically labeled succinate-14C. These experiments, together with the distribution of 14C in glucose prepared from sucrose-14C formed during the metabolism of succinate-2,3-14C, confirmed that the photosynthetic metabolism of malate and aspartate derived from the tricarboxylic acid cycle, and not the refixation of respiratory CO2, was the main path of carbon from the cycle to photosynthesis.  相似文献   

13.
《Insect Biochemistry》1990,20(2):149-156
The precursors and directionality of synthesis of the methyl branched cuticular hydrocarbons and the female contact sex pheromone, 3,11-dimethyl-2-nonacosanone, of the German cockroach, Blattella germanica, were investigated by radiotracer and carbon-13 NMR techniques. The amino acids [G-3H]valine, [4,5-3H]isoleucine and [3,4-14C2]methionine labeled the hydrocarbon fraction in a manner indicating that the carbon skeletons of all three amino acids serve as the methyl branch group donor. The incorporation of [1,4-14C2]- and [2,3-14C2]succinates into the hydrocarbon and acylglycerol/polar lipid fractions indicated that succinate also served as a precursor to methylmalonyl-CoA. Carbon-13 NMR analyses showed that [1-13C]propionate labeled the carbon adjacent to the tertiary carbon, and, for the 3,x-dimethylalkanes, that carbon-4 and not carbon-2 was enriched. [1-13C]Acetate labeled carbon-2 of these hydrocarbons. This indicates that the methyl branching groups of the 3,x-dimethylalkanes were inserted early in the chain elongation process. [3,4,5-13C3]Valine labeled the methyl, tertiary and carbon adjacent to the tertiary carbon of the methyl branched alkanes. Thus, the methyl branched hydrocarbon was formed by the insertion of methylmalonyl units derived from propionate, isoleucine, valine, methionine and succinate early in chain elongation.  相似文献   

14.
dl-[1,6-14C]Lipoic acid was synthesized and administered to rats or incubated in vitro with rat liver systems. The urinary excretion of radioactivity after labeled lipoate was administered intraperitoneally at a level of 0.5 mg/100 g body weight was maximal at 3–6 hr, with 60% of the injected radioactivity recovered within 24 hr. Respiratory 14CO2 from the same animals is maximal at 3 hr, after which it falls off markedly. Approximately 30% of the injected radioactivity was recovered as 14CO2 within 24 hr. The excretion of radioactivity after lipoate was administered by stomach tube was similar to that after intraperitoneal injection. Localization of radioactivity in the body was greatest in liver, intestinal contents, and muscle in all cases. Ionexchange and paper chromatographies of 24-hr pooled urine revealed several watersoluble radioactive metabolites. Incubation of [14C]lipoate with homogenates or mitochondrial preparations in vitro resulted in the production of 14CO2, which was decreased by incubation with unlabeled fatty acids and unaffected by the addition of carnitine or (+)-decanoylcarnitine. The rat, like certain bacteria, metabolizes lipoate via β-oxidation of the valeric acid side chain and by other metabolic reactions on the dithiolane ring, which render the molecule more water soluble.  相似文献   

15.
[1-14C]acetate and [2-14C]acetate were incorporated into the β-diketones of barley spike epicuticular wax via the peduncle. Utilizing column chromatography with dry copper acetate, the β-diketones were isolated and the labeling pattern in the hentriacontan-14, 16-dione determined after its degradation. A modified iodoform procedure was used to give myristic and palmitic acids. Radio-gas chromatography was then performed on the products of chemical α-oxidation of the separated fatty acids. This procedure, in effect, gave the specific activity of every carbon atom of hentriacontan-14,16-dione except carbon-1 to carbon-5 (from myristic acid) and carbon-27 to carbon-31 (from palmitic acid) for each labeled substrate. The specific activity of carbon-15 was determined by an indirect method. On the basis of these data it is suggested that the hentriacontan-14,16-dione is synthesized from the carbon-31 end of the molecule by elongation as follows. C2 units are added, perhaps to a mixture of short chain precursors, to give a chain with 12 carbon atoms. This chain is then elongated to one with 16 carbon atoms so that the four added carbon atoms are uniformly labeled. Following this, the chain with 16 carbon atoms is elongated with C2 units to give the complete molecule. Possibly some change in mechanism occurs in this last elongation process when the chain is 22 carbon atoms long. Barley spike wax β-diketones contain about 2% nonacosan-13, 15-dione which seems to be synthesized in an analogous manner.  相似文献   

16.
G. Norton  J. F. Harris 《Planta》1975,123(2):163-174
Summary The growth and composition of siliquas and seeds of oilseed rape was followed over 12 weeks from shortly after anthesis to maturity. Each plant produced 220 siliquas, this number being constant throughout development. Seed numbers per siliqua fell from 19 to 9 by week 5 and declined to 7 at maturity. Hull1 and seed growth followed a sigmoid pattern, but were not in phase. Seed development could be divided into 3 phases: In Phase 1, seed weight was low and starch and ethanol soluble compounds accounted for 80% DM. Phase 2, seed growth increased and storage oil and proteins were deposited accounting for 40% and 20% DM respectively at the end of this stage. Starch, glucose and fructose were utilized in this process. Phase 3 was largely concerned with the deposition of oil and protein in fixed proportions. Seed weight more than doubled while DM composition remained constant. Sugars were transferred from the hull to the seed to support this growth.The proportion of hull lipids remained constant throughout development until shortly before maturity when MGDG and DGDG fell due to chloroplast breakdown as indicated by chlorophyll disappearance. The FA composition of the hull lipids resembled that of photosynthetic tissue. In the seeds, the neutral lipids increased from 20% of the total lipids in Phase 1 to 93% at maturity. The proportion of structural lipids declined as the storage lipids increased. In Phase 1 the FA composition of the lipid resembled that of photosynthetic tissue (high in C16:0; C18:2; C18:3). In Phase 2, FA typical of storage triglycerides (C20:1; C22:1, appeared, C18:1 transitorily increased, but C18:2 and C18:3 fell dramatically. In Phase 3, the content of C22:1 continued to rise, but the proportions of the other FA remained constant.Abbreviations DM Dry matter - MGDG Monogalactosyldiglyceride - DGDG Digalactosyldiglyceride - NL Neutral lipid - PC Phosphatidyl choline - PE Phosphatidyl ethanolamine - C16:0 Palmitic acid - C18:1 Oleic acid - C18:2 Linoleic acid - C18:3 Linolenic acid - C20:1 Eicosenoic acid - C22:1 Erucic acid - FA Fatty acid  相似文献   

17.
Demand for sustainable materials motivates the development of microorganisms capable of synthesizing products from renewable substrates. A challenge to commercial production of polyhydroxyalkanoates (PHA), microbially derived polyesters, is engineering metabolic pathways to produce a polymer with the desired monomer composition from an unrelated and renewable source. Here, we demonstrate a metabolic pathway for converting glucose into medium-chain-length (mcl)-PHA composed primarily of 3-hydroxydodecanoate monomers. This pathway combines fatty acid biosynthesis, an acyl-ACP thioesterase to generate desired C12 and C14 fatty acids, β-oxidation for conversion of fatty acids to (R)-3-hydroxyacyl-CoAs, and a PHA polymerase. A key finding is that Escherichia coli expresses multiple copies of enzymes involved in β-oxidation under aerobic conditions. To produce polyhydroxydodecanoate, an acyl-ACP thioesterase (BTE), an enoyl-CoA hydratase (phaJ3), and mcl-PHA polymerase (phaC2) were overexpressed in E. coli ΔfadRABIJ. Yields were improved through expression of an acyl-CoA synthetase resulting in production over 15% CDW – the highest reported production of mcl-PHA of a defined composition from an unrelated carbon source.  相似文献   

18.
dl-[1,6-14C]Lipoic acid was administered by intraperitoneal injection to rats at the level of 0.5 mg/100 g body weight. Approximately 56% of the radioactivity was recovered in the urine. When acidified and extracted with benzene, 92% of the radioactivity remained in the aqueous phase. Gel-filtration and paper chromatography were used to identify three of the compounds in the benzene extract as lipoic, bisnorlipoic and tetranorlipoic acids. In addition, a keto compound appears to be present. The aqueous phase contained several radioactive components separable by ion-exchange and paper chromatographies. Two of these compounds were identified as lipoate and β-hydroxybisnorlipoate. No evidence for oxidation of the dithiolane ring of lipoic acid was observed. dl-[7,8-14C]Lipoic acid was administered to rats under the same conditions. The urine contained 81% of the radioactivity, 72% of which remained in the aqueous phase and 28% was extracted into benzene. In contrast to over 30% of the label from dl-(1,6-14C] lipoate being expired as 14CO2, a negligible amount of 14CO2 was produced by rats injected with dl-[7,8-14C]lipoate. The catabolites identified were the same as those found using the 1,6-labeled lipoate. Another dithiolane-intact compound was also isolated. It appears that the rat, similar to Pseudomonas putida LP, metabolizes lipoate mainly via β-oxidation of the valeric acid side chain.  相似文献   

19.
Intact cells of Flavobacterium dehydrogenans grown on glucose or acetate did not incorporate mevalonic acid-[14C]. After treatment with lysozyme the protoplasts were lysed by sonication in a dilute medium containing mevalonic acid-[14C] and the cell-free system produced incorporated label into uncyclized C40, monocyclic C45 and bicyclic C50 carotenoids of which decaprenoxanthin was the most abundant.With mevalonate-[2-14C,4R-4-3H1] the 14C:3H ratios of the carotenoids showed that the hydrogen atoms at C-2 and C-6 of the ring and that at C-3 of the 1-hydroxy, 2-methyl but-2-ene-4-yl residues of decaprenoxanthin were derived from the 4-pro-R hydrogen atom of mevalonic acid.Mevalonate-[2-14C,2R-2-3H1] and mevalonate-[2-14C,2S-2-3H1] gave ratios which showed that the C-4 hydrogen atoms of decaprenoxanthin were derived from the 2-pro-S hydrogen atom of mevalonic acid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号