首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the giant unicellular green alga, Acetabularia acetabulum (L.) Silva, development is altered by light. For example, blue light induces the vegetative apex to produce whorls of hairs that encircle the stalk and, later, blue light may trigger reproductive onset. The two goals of this study were to determine when changes in apical shape occur during formation of the reproductive structure, or "cap," and to determine which of these differentiation events require light. The first visible indication of cap initiation was a rounded swelling of the apex, which we call a knob-shaped apex (time = 0 hours). Subsequent changes in shape were a hyaline, knob-shaped apex, reached by 50% of the population 3 h later, and the formation of a whorl of unilobed chambers at 16 h. These chambers became bilobed at 33 h and trilobed at 34 h. Successive sets of cap hairs grew from protuberances found on the surface of the uppermost lobes of the chambers (superior corona). After knob, the remainder of cap formation was largely independent of light. However, the initiation of each set of cap hairs required light. If a recently initiated cap was amputated, the individual recapitulated development, repeating a portion of vegetative morphogenesis (i.e. it made whorls of sterile hairs) before initiating a new cap. The developmental sequence between amputation and initiation of a new cap required light. A model for light-regulated changes in shape at the apex of Acetabularia acetabulum, which integrates whorl and cap formation and encompasses both vegetative and reproductive development of this organism, is presented.  相似文献   

2.
* Here we analyzed the shape of the central vacuole of Acetabularia acetabulum by visualizing its development during diplophase (from juvenility through reproduction) and haplophase (from meiosis through mating). * Light microscopy and whole-organism applications of a pH-sensitive dye, neutral red, were used to visualize the anatomy of the central vacuole. We studied connectivity within the thallus by locally applying dye to morphologically distinct regions (rhizoid, stalk, apex, hairs) and observing dye movements. * In vegetative thalli most of the rhizoid, stalk and young hairs stained with dye. In reproductive structures (caps, gametangia) dye also stained the majority of the interiors. When applied to small areas, dye moved at different rates through each region of the thallus (e.g. within the stalk). Dye moved from younger hairs, but not from older hairs, into the stalk. Errors in incorporation of central vacuole into gametangia occurred at <10(-5). * These data indicate that the central vacuole of A. acetabulum is a ramified polar organelle with, potentially, a gel-like sap that actively remodels its morphology during development.  相似文献   

3.
The unicellular green macroalga Acetabularia acetabulum L. Silva is an excellent system for studying regional differentiation within a single cell. In late adults, physiologically mediated extracellular alkalinity varies along the long axis of the alga with extracellular pH more alkaline along the apical and middle regions of the stalk than at and near the rhizoid. Respiration also varies with greater respiration at and near the rhizoid than along the stalk. We hypothesized that the apical and middle regions of the stalk require greater carbonic anhydrase (CA) activity to facilitate inorganic carbon uptake for photosynthesis. Treatment of algae with the CA inhibitors acetazolamide and ethoxyzolamide decreased photosynthetic oxygen evolution along the stalk but not at the rhizoid, indicating that CA facilitates inorganic carbon uptake in the apical portions of the alga. To examine the distribution of enzymatic activity within the alga, individuals were dissected into apical, middle, and basal tissue pools and assayed for both total and external CA activity. CA activity was greatest in the apical portions. We cloned two CA genes (AaCA1 and AaCA2). Northern analysis demonstrated that both genes are expressed throughout much of the life cycle of A. acetabulum. AaCA1 mRNA first appears in early adults. AaCA2 mRNA appears in juveniles. The AaCA1 and AaCA2 mRNAs are distributed asymmetrically in late adults with highest levels of each in the apical portion of the alga. mRNA localization and enzyme activity patterns correlate for AaCA1 and AaCA2, indicating that mRNA localization is one mechanism underlying regional differentiation in A. acetabulum.  相似文献   

4.
The dasycladalean algae produce diverse whorled structures, among which the best known are the vegetative and reproductive whorls of Acetabularia acetabulum. In this paper, we review the literature pertaining to the origin of these structures. The question is addressed in terms of the necessary pattern-forming events and the possible mechanisms involved, an outlook we call the pattern formation viewpoint. The pattern-forming events involved in the morphogenesis of the vegetative and reproductive whorls of Acetabularia have been used to define five and six morphogenetic stages, respectively. We discuss three published mechanisms which account, at least in part, for the pattern-forming events. The mechanisms are mechanical buckling of the cell wall, reaction-diffusion of morphogen molecules along the cell membrane, and mechanochemical interactions between Ca2+ ions and the cytoskeleton in the cytosol. The numerous differences between these mechanisms provide experimental grounds to test their validity. To date, the results of these experiments point towards reaction diffusion as the most likely patterning mechanism. Finally, we consider the evolutionary origin of the vegetative and reproductive whorls and provide mechanistic explanations for some of the major evolutionary advances.  相似文献   

5.
Calluses were obtained from the stalk apex of sugar cane. Boththe stalk apex and callus tissues possessed firmly bound cellwall invertases. The invertases of each tissue were characterizedon the basis of their Km, optimum pH and the action of variousinhibitors. According to this characterization, the two tissuespossess different isoenzymes. Taking into account the presentisoenzymes and the known cell wall invertases from stalk tissue,we postulated a different pattern of isoenzymes for each organof the sugar cane. These differences suggest that the cell wallinvertases might be used as markers in studies of tissue differentiation. (Received May 27, 1980; )  相似文献   

6.
Calluses were obtained from the stalk apex of sugar cane. Boththe stalk apex and callus tissues possessed firmly bound cellwall invertases. The invertases of each tissue were characterizedon the basis of their Km, optimum pH and the action of variousinhibitors. According to this characterization, the two tissuespossess different isoenzymes. Taking into account the presentisoenzymes and the known cell wall invertases from stalk tissue,we postulated a different pattern of isoenzymes for each organof the sugar cane. These differences suggest that the cell wallinvertases might be used as markers in studies of tissue differentiation. (Received May 27, 1980; )  相似文献   

7.
Branching of the stalk of Acetabularia acetabulum L. (Silva) was investigated by inbreeding and by a brief treatment of gametangia with a variety of antibiotics. The position of the branch along the stalk varied, implying that branching was not restricted to any one time in development (base is oldest and apex is youngest). The branching phenotype was not inherited in Mendelian fashion. Although three microscopic structures (“bubbles,”“pustules,” and “scars”) occurred on the stalks of cells that had branched, these structures were not statistically correlated with branching in the population (n=699 cells). However, brief treatment of gametangia with a new antibiotic mixture did eliminate all macro- and microscopic structures associated with branching of the stalk in the subsequent generation. We could not fulfill Koch's postulates or provide clear evidence for the pathogenic nature of cell branching. Our brief antibiotic treatment of gametangaa of Acetabularia acetabulum was rapid, had no adverse effects, and virtually eliminated branching (and any potential pathogens) from laboratory cultures in the subsequent generations. Our method allows biochemical and molecular analyses to proceed uncomplicated by the possible presence of other organisms and provides a clean baseline for the future selection of mutations that may induce heritable branching.  相似文献   

8.
During morphogenesis in the slime mold Polysphondylium pallidum cell masses are periodically pinched off from the base of the developing sorogen. These masses round up and differentiate into secondary sorogens, which become radially ordered arrays of secondary fruiting bodies called whorls. Here we describe the morphogenesis of P. pallidum and characterize the spacing of whorls along the central stalk of the fruiting body and the spacing of sorocarps within whorls. We find both are highly regular. We propose that the linear spacing of whorls can be accounted for satisfactorily by a model that views the periodic release of cell masses from the base of the developing sorogen as the consequence of an imbalance between forces that orient amoebae toward the tip of the culminating sorogen, and cohesive forces between randomly moving cells in the basal region of the sorogen, which act as a retarding force. The orderly arrangement of fruiting bodies within whorls can be explained most easily by models that employ short-range activation and lateral inhibition.  相似文献   

9.
10.
How instructive signals are translated into robust and predictable changes in growth is a central question in developmental biology. Recently, much interest has centered on the feedback between chemical instructions and mechanical changes for pattern formation in development. In plants, the patterned arrangement of aerial organs, or phyllotaxis, is instructed by the phytohormone auxin; however, it still remains to be seen how auxin is linked, at the apex, to the biochemical and mechanical changes of the cell wall required for organ outgrowth. Here, using Atomic Force Microscopy, we demonstrate that auxin reduces tissue rigidity prior to organ outgrowth in the shoot apex of Arabidopsis thaliana, and that the de-methyl-esterification of pectin is necessary for this reduction. We further show that development of functional organs produced by pectin-mediated ectopic wall softening requires auxin signaling. Lastly, we demonstrate that coordinated localization of the auxin transport protein, PIN1, is disrupted in a naked-apex produced by increasing cell wall rigidity. Our data indicates that a feedback loop between the instructive chemical auxin and cell wall mechanics may play a crucial role in phyllotactic patterning.  相似文献   

11.
The structure and function of conserved motifs constituting the apex of Stem I in T-box mRNA leaders are investigated. We point out that this apex shares striking similarities with the L1 stalk (helices 76–78) of the ribosome. A sequence and structure analysis of both elements shows that, similarly to the head of the L1 stalk, the function of the apex of Stem I lies in the docking of tRNA through a stacking interaction with the conserved G19:C56 base pair platform. The inferred structure in the apex of Stem I consists of a module of two T-loops bound together head to tail, a module that is also present in the head of the L1 stalk, but went unnoticed. Supporting the analysis, we show that a highly conserved structure in RNAse P formerly described as the J11/12–J12/11 module, which is precisely known to bind the elbow of tRNA, constitutes a third instance of this T-loop module. A structural analysis explains why six nucleotides constituting the core of this module are highly invariant among all three types of RNA. Our finding that major RNA partners of tRNA bind the elbow with a same RNA structure suggests an explanation for the origin of the tRNA L-shape.  相似文献   

12.
Parre E  Geitmann A 《Plant physiology》2005,137(1):274-286
While callose is a well-known permeability barrier and leak sealant in plant cells, it is largely unknown whether this cell wall polymer can also serve as a load-bearing structure. Since callose occurs in exceptionally large amounts in pollen, we assessed its role for resisting tension and compression stress in this cell. The effect of callose digestion in Solanum chacoense and Lilium orientalis pollen grains demonstrated that, depending on the species, this cell wall polymer represents a major stress-bearing structure at the aperture area of germinating grains. In the pollen tube, it is involved in cell wall resistance to circumferential tension stress, and despite its absence at the growing apex, callose is indirectly involved in the establishment of tension stress resistance in this area. To investigate whether or not callose is able to provide mechanical resistance against compression stress, we subjected pollen tubes to local deformation by microindentation. The data revealed that lowering the amount of callose resulted in reduced cellular stiffness and increased viscoelasticity, thus indicating clearly that callose is able to resist compression stress. Whether this function is relevant for pollen tube mechanics, however, is unclear, as stiffened growth medium caused a decrease in callose deposition. Together, our data provide clear evidence for the capacity of cell wall callose to resist tension and compression stress, thus demonstrating that this amorphous cell wall substance can have a mechanical role in growing plant cells.  相似文献   

13.
We isolated several spontaneous phenotypes in the giant unicell Acetabularia acetabulum that have vegetative terminal morphologies. Because they arrest in vegetative development, these cell lines are effectively immortalized. However, they had to be rescued before they could be studied via classical genetics because no heterozygotes from the original self-crosses were found, that is, the wild-type siblings yielded only wild-type progeny. We attempted to rescue these phenotypes in three ways: by amputating the cell apex, by "piggybacking" the mutant nucleus through development in a binucleate heterokaryon, and by replacing the abnormal apex with a wild-type apex. We used one of our immortal cell lines, kurkku, which has a terminal phenotype consistent with arrest early in the juvenile phase of vegetative development, as a prototype for these rescue methods. The kurkku phenotype segregated 1:3 in the original self-cross in which it arose as if it were a single, recessive Mendelian trait. Although amputation failed to rescue kurkku, we succeeded in compensating for the defect both in binucleate heterokaryons and in apical grafts to wild-type cells. kurkku was always recovered in the progeny of the self-crosses of these grafts. These unique ways of analyzing vegetative mutants, combined with the ability to then perform classical genetics, may make A. acetabulum a powerful unicellular model system for the study of vegetative phase change in plants.  相似文献   

14.
15.
Cells mitigate ER stress through the unfolded protein response (UPR). Here, we report formation of ER whorls as an effector mechanism of the ER stress response. We found that strong ER stress induces formation of ER whorls, which contain ER-resident proteins such as the Sec61 complex and PKR-like ER kinase (PERK). ER whorl formation is dependent on PERK kinase activity and is mediated by COPII machinery, which facilitates ER membrane budding to form tubular-vesicular ER whorl precursors. ER whorl precursors then go through Sec22b-mediated fusion to form ER whorls. We further show that ER whorls contribute to ER stress-induced translational inhibition by possibly modulating PERK activity and by sequestering translocons in a ribosome-free environment. We propose that formation of ER whorls reflects a new type of ER stress response that controls inhibition of protein translation.Subject terms: Endoplasmic reticulum, Collective cell migration  相似文献   

16.
Morphological studies of pollen tubes have shown that the configuration of structural cellular elements differs between the growing apex and the distal part of the cell. This polarized cellular organization reflects the highly anisotropic growth behavior of this tip growing cell. Accordingly, it has frequently been postulated that physical properties of pollen tubes such as cell wall plasticity should show anisotropic distribution, but no experimental evidence for this has been published hitherto. Using micro-indentation techniques, we quantify pollen tube resistance to lateral deformation forces and analyze its visco-elasticity as a function of distance from the growing apex. Our studies reveal that cellular stiffness is significantly higher at the distal portion of the cell. This part of the cell is also completely elastic, whereas the apex shows a visco-elastic component upon deformation. To relate these data to the architecture of the particular pollen tube investigated in this study, Papaver rhoeas, we analyzed the distribution of cell wall components such as pectin, callose, and cellulose as well as the actin cytoskeleton in this cell using fluorescence label. Our data revealed that, in particular, the degree of pectin methyl esterification and the configuration of the actin cytoskeleton correlate well with the distribution of the physical properties on the longitudinal axis of the cell. This suggests a role for these cellular components in the determination of the cytomechanics of pollen tubes.  相似文献   

17.
Large vacuoles are characteristic of plant and fungal cells, and their origin has long attracted interest. The cellular slime mould provides a unique opportunity to study the de novo formation of vacuoles because, in its life cycle, a subset of the highly motile animal-like cells (prestalk cells) rapidly develops a single large vacuole and cellulosic cell wall to become plant-like cells (stalk cells). Here we describe the origin and process of vacuole formation using live-imaging of Dictyostelium cells expressing GFP-tagged ammonium transporter A (AmtA-GFP), which was found to reside on the membrane of stalk-cell vacuoles. We show that stalk-cell vacuoles originate from acidic vesicles and autophagosomes, which fuse to form autolysosomes. Their repeated fusion and expansion accompanied by concomitant cell wall formation enable the stalk cells to rapidly develop turgor pressure necessary to make the rigid stalk to hold the spores aloft. Contractile vacuoles, which are rich in H+-ATPase as in plant vacuoles, remained separate from these vacuoles. We further argue that AmtA may play an important role in the control of stalk-cell differentiation by modulating the pH of autolysosomes.  相似文献   

18.
19.
Leukocyte adhesion is determined by the balance between molecular adhesive forces and convective dispersive forces. A key parameter influencing leukocyte adhesion is the shear stress acting on the leukocyte. This measure is indispensable for determining the molecular bond forces and estimating cell deformation. To experimentally determine this shear stress, we used microparticle tracking velocimetry analyzing more than 24,000 images of 0.5 μm fluorescent microbeads flowing within mildly inflamed postcapillary venules of the cremaster muscle in vivo. Green fluorescent protein, expressed under the lysozyme-M promoter, made leukocytes visible. After applying stringent quality criteria, 3 of 69 recordings were fully analyzed. We show that endothelial cells, but not leukocytes, are covered by a significant surface layer. The wall shear rate is nearly zero near the adherent arc of each leukocyte and reaches a maximum at the apex. This peak shear rate is 2-6-fold higher than the wall shear rate in the absence of a leukocyte. Microbead trajectories show a systematic deviation toward and away from the microvessel axis upstream and downstream from the leukocyte, respectively. The flow field around adherent leukocytes in vivo allows more accurate estimates of bond forces in rolling and adherent leukocytes and improved modeling studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号