共查询到20条相似文献,搜索用时 0 毫秒
1.
Expression of bottom component RNA of cowpea mosaic virus in cowpea protoplasts 总被引:6,自引:9,他引:6 下载免费PDF全文
Upon inoculation of cowpea protoplasts with the bottom component of cowpea mosaic virus, at least six virus-induced proteins (with sizes of 170, 110, 87, 84, 60, and 32 kilodaltons) are synthesized, but not the capsid proteins (37 and 23 kilodaltons). These bottom-component-induced proteins were studied with respect to their genetic origin and mode of synthesis. The analyses were based on their electrophoretic peptide patterns resulting from partial digestion with Staphylococcus aureus protease V8. Comparison of the peptide patterns of the virus-induced proteins with those of the cowpea mosaic virus RNA-coded polypeptides produced in rabbit reticulocyte lysate showed that the 170- and 32-kilodalton polypeptides, which are the first viral products in cowpea mosaic virus-infected cells, were actually coded by the bottom component RNA of the virus. The 110-, 87-, and 84-kilodalton polypeptides, and possibly the 60-kilodalton polypeptide, appeared to have amino acid sequences in common with the 170-kilodalton polypeptide, demonstrating that they were virus coded as well. The results indicated that cowpea mosaic virus bottom component RNA was translated in vivo into a single 200-kilodalton polyprotein from which probably all bottom-component-specific proteins arose by three successive cleavages. 相似文献
2.
The coat protein (CP) of Johnson grass mosaic virus (JGMV) auto-assembles to form virus-like particles (VLPs) and hence could be useful for presenting small peptides to the immune system. We are therefore attempting to synthesize JGMV CP in large amounts in Escherichia coli. The JGMV CP-encoding DNA, cloned under the bacteriophage T7 promoter, showed only low levels of CP synthesis in E. coli. The predicted secondary structure of the CP mRNA showed that its translational initiation codon was part of a stable hairpin-loop structure. The initiation codon could be relieved of the hairpin-loop structure by substitution of three neighboring nucleotides. This resulted in a single amino acid change at the N-terminus of the protein. The modified RNA translated very efficiently, resulting in at least 16-fold higher CP accumulation in E. coli. The N-terminal amino acid substitution did not affect CP folding, as it auto-assembled in E. coli to form VLPs. 相似文献
3.
4.
The complete sequence of the bottom component RNA (B RNA) of cowpea mosaic virus (CPMV) has been determined. Restriction enzyme fragments of double-stranded cDNA were cloned in M13 and the sequence of the inserts was determined by a combination of enzymatic and chemical sequencing techniques. Additional sequence information was obtained by primed synthesis on first strand cDNA. The complete sequence deduced is 5889 nucleotides long excluding the 3' poly(A), and contains an open reading frame sufficient to code for a polypeptide of mol. wt. 207 760. The coding region is flanked by a 5' leader sequence of 206 nucleotides and a 3' non-coding region of 82 residues which does not contain a polyadenylation signal. 相似文献
5.
Studies on the synthesis of RNA polymerase in E. coli rif mutants containing both sensitive and resistant RNA polymerase molecules show that the synthesis of E. coli RNA polymerase is under a specific and active control system. 相似文献
6.
7.
Summary The and subunit of RNA polymerase are thought to be controlled by a translational feedback mechanism regulated by the concentration of RNA polymerase holoenzyme. To study this regulation in vivo, an inducible RNA polymerase overproduction system was developed. This system utilizes plasmids from two incompatibility groups that carry RNA polymerase subunit genes under lac promoter/operator control. When the structural genes encoding the components of core RNA polymerase (, and ) or holoenzyme (, , and 70) are present on the plasmids, induction of the lac promoter results in a two fold increase in the concentration of functional RNA polymerase. The induction of RNA polymerase overproduction is characterized by an initial large burst of synthesis followed by a gradual decrease as the concentration of RNA polymerase increases. Overproduction of RNA polymerase in a strain carrying an electrophoretic mobility mutation in the rpoB gene results in the specific repression of synthesis off the chromosome. These results indicate that RNA polymerase feedback regulation controls synthesis in vivo. 相似文献
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
S H Rangwala R F Finn C E Smith S A Berberich W J Salsgiver W C Stallings G I Glover P O Olins 《Gene》1992,122(2):263-269
High levels of active HIV-1 protease (PR) were produced in Escherichia coli, amounting to 8-10% of total cell protein. High production levels were achieved by altering the following parameters: (1) codon preference of the coding region, (2) A+T-richness at the 5' end of the coding region, and (3) promoter. To circumvent the toxicity of HIV-1 PR in E. coli, the gene was expressed as a fusion protein with two different proteolytic autocleavage sequences. In both the cases, the fusion protein could be cleaved in vivo to give an active molecule with the native sequence at the N terminus. 相似文献
19.
The approximately 150 nt tRNA-like structure present at the 3' end of each of the brome mosaic virus (BMV) genomic RNAs is sufficient to direct minus-strand RNA synthesis. RNAs containing mutations in the tRNA-like structure that decrease minus-strand synthesis were tested for their ability to interact with RdRp (RNA-dependent RNA polymerase) using a template competition assay. Mutations that are predicted to disrupt the pseudoknot and stem B1 do not affect the ability of the tRNA-like structure to interact with RdRp. Similarly, the +1 and +2 nucleotides are not required for stable template-RdRp interaction. Mutations in the bulge and hairpin loops of stem C decreased the ability of the tRNA-like structure to interact with RdRp. Furthermore, in the absence of the rest of the BMV tRNA, stem C is able to interact with RdRp. The addition of an accessible initiation sequence containing ACCA3' to stem C created an RNA capable of directing RNA synthesis. Synthesis from this minimal minus-strand template is dependent on sequences in the hairpin and bulged loops. 相似文献
20.
Relaxed mutants of Escherichia coli RNA polymerase 总被引:9,自引:0,他引:9
When Escherichia coli cells are treated with either polymixin or gramicidin at concentrations that block protein and RNA synthesis, they accumulate a significant amount of guanosine tetraphosphate ppGpp. Such accumulation occurs in stringent (relA+) as well as in relaxed (relA) strains and no guanosine pentaphosphate pppGpp is then detected within the cells. These observations suggest that polypeptide antibiotics elicit ppGpp formation through a mechanism different from the stringent control system triggered by amino acid starvation of bacteria. Experiments based on tetracycline action indicate, moreover, that the accumulation of ppGpp under polymixin or gramicidin treatment is connected with a strong restriction of the degradation rate of this nucleotide. 相似文献