首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The validity of 5′-nucleotidase as a plasma membrane marker enzyme in beef thyroid has been tested by comparing the subcellular distribution of its activity to that of (Na+K+)-activated ATPase and adenyl cyclase. The specific activity and total activity of (Na+K+)-ATPase and adenyl cyclase were greatest in the 1000 × g (“nuclear”) and 33 000 × g (“mitochondrial and lysosomal”) fractions. In contrast, 5′-nucleotidase activity was concentrated in the 165 000 × g (“microsomal”) pellet and supernatant. Partially purified plasma membranes were separated from the 1000 (N2), 30 000 (M2) and 165 000 × g (P2) pellets by discontinuous sucrose gradient centrifugation. Again a discordant distribution of these enzyme activities was observed. (Na+K+)-ATPase specific activity was increased approximately 30-fold over the homogenate in Fractions N2 and M2. Basal, thyroid-stimulating hormone-and fluoride-stimulated adenyl cyclase activities were concentrated in the same fractions. 5′-Nucleotidase activity was preferentially located in M2 and P2. These differences in distribution pattern suggest that 5′-nucleotidase activity is not uniquely located in the plasma membrane in the thyroid.  相似文献   

2.
Highly purified rough endoplasmic reticulum and three subfractions of golgi were prepared from 105,000g pellet of the homogenate by centrifugation in floatation and sedimentation discontinuous sucrose gradients. Highly purified plasma membranes were also prepared from 9,000g pellet of the same homogenates for assessment under the same experimental conditions. Although 5′-nucleotidase, a marker for plasma membranes, was markedly enriched in plasma membranes, very little or none of this enzyme activity was found in other fractions. Very little or no NADH cytochrome c reductase activity, a marker for rough endoplasmic reticulum, was found in fractions other than rough endoplasmic reticulum. Galactosyl transferase, a marker for golgi, was found and enriched in all the fractions; however, enrichment in golgi fractions was higher than in other fractions. Very little or no lysosomal marker activity, i.e., acid phosphatase, was found in rough endoplasmic reticulum or golgi fractions as compared to lysosomes. These marker enzyme data suggested that rough endoplasmic reticulum and golgi fractions were relatively pure with little or no cross contamination with other organelles. The [125I]human choriogonadotropin ([125I]hCG), [3H]prostaglandin (PG)E1, and [3H]PGF2a specifically bound to rough endoplasmic reticulum and golgi fractions in addition to plasma membranes. The enrichments of binding in the former two fractions, in some cases, were as high as plasma membranes itself. The specific binding of some of the ligands was found to be partially latent in rough endoplasmic reticulum and golgi fractions but not in plasma membranes. Marker enzyme data, ratio between bindings and marker enzyme activities (an index of organelle contamination), and partial latency of binding suggest that rough endoplasmic reticulum and golgi fractions intrinsically contain gonadotropin and PGs binding sites.  相似文献   

3.
We have purified the plasma membranes and membranes of endoplasmic reticulum from calf and rabbit thymocytes and from calf mediastinal lymph node lymphocytes. We disrupted the cells by the “nitrogen cavitation method” and prepared a microsomal isolate by differential centrifugation. We fractionated this by isopycnic ultracentrifugation in dextran gradients into membrane vesicles, PM1 and PM2, most likely derived from plasma membrane and a fraction, ER, most likely originating from endoplasmic reticulum. More than 80% of the microsomal 5′-nucleotidase and acid p-nitrophenylphosphatase concentrates in the PM1 and PM2 fractions; alkaline p-nitrophenylphosphatase, another presumptive PM marker, is concentrated in the PM1 fraction. These data are confirmed by the lacroperoxidase radioiodination of intact rabbit thymocytes followed by subcellular fractionation. The specific content of phospholipids (822 nmoles/mg protein) and cholesterol (1032 nmoles/mg protein) is highest in PM1 and PM2 plasma membrane fractions. NADH-oxidoreductase, our endoplasmic reticulum marker, is clearly enriched in gradient pellet.The membrane proteins were separated by electrophoretic molecular sieving in sodium dodecylsulfate-polyacrylamide gel electrophoresis, containing dithiothreitol (sodium dodecylsulfate-polyacrylamide gel electrophoresis). We numbered the 10 major protein components of the “microsomal fraction” (apparent molecular weights between 280000 and 15000) from 1–10 according to their decreasing molecular weights. Of these proteins, those with higher molecular weight, predominantly glycoproteins, appear in the PM1 fraction, while the endoplasmic reticulum fraction contains mainly low molecular weight components.  相似文献   

4.
Microsomes isolated by differential centrifugation from a rat liver homogenate in 0.88 M sucrose solution have been studied from the biochemical and morphological point of view. 1. Under these experimental conditions, the "total microsome" fraction was obtained by centrifuging the cytoplasmic extract free of nuclei and mitochondria, for 3 hours at 145,000 g. Morphologically, the total microsomes consist mainly of "rough-surfaced membranes" and "smooth" ones. 2. The total microsomes have been divided into 2 subfractions so that the 1st microsomal fraction contains the "rough" vesicles (2 hours centrifugation at 40,000 g) while the 2nd microsomal fraction consists essentially of smooth vesicles, free particles, and ferritin (centrifugation of the supernatant at 145,000 g for 3 hours). 3. By the action of 0.4 per cent sodium deoxycholate in 0.88 M sucrose, it was possible to obtain a pellet for each of the 2 fractions which consisted of dense particles, rich in RNA, poor in lipids, and which represented about 50 to 60 percent of the RNA and 10 to 15 per cent of the proteins. The results have been discussed taking into consideration the hypothesis of the presence of RNA in the membranes of microsomal vesicles.  相似文献   

5.
Cell surface and endoplasmic reticulum membranes were isolated from mouse plasmocytoma cells in culture. The distributions of membrane-bound enzyme activities over sucrose gradient fractions differed for epithelioid and fibroblastic cells.It is shown that microsomal enzymes are present in plasma membranes when isolated from contact-inhibition sensitive cells. When epithelioid cells reach confluence, a reduction in the enzyme activities of the plasma membrane fractions was found.  相似文献   

6.
Microsomal fractions, both homogeneous in appearance and functionally operative, were isolated from a homogenate of rat cerebral cortex by fractionation in water. The preparations thus obtained contain the membranous elements of the endoplasmic reticulum, synaptic vesicles, and ribosomes. Esterase, ATPase, and glutamine synthetase were found to be present and fully functional in the microsomal fractions isolated in water. The contamination of the water-isolated microsomal fractions by mitochondria and lysosomes was found to be considerably lower than in microsomal pellets isolated in sucrose. The contamination by nerve ending particles, as judged by electron microscopy and by the levels of soluble lactic dehydrogenase entrapped in the cytoplasm of the particles, was also low. Most of the contamination by mitochondria and nerve ending particles could be removed by treatment of the microsomal pellet with 150 mM NaCl. Resistant to elution by this treatment is the lysosomal contamination as well as microsomal esterase and ATPase. Glutamine synthetase, on the other hand, was almost totally solubilized. Microsomal preparations isolated in water are also shown to contain amounts of protein, RNA, phospholipid, and ganglioside comparable to those found in microsomal preparations isolated in sucrose.  相似文献   

7.
Sidedness of Phospholipid Synthesis on Brain Membranes   总被引:4,自引:2,他引:2  
Abstract: We have investigated the localization of the site of incorporation and the subsequent equilibration of newly synthesized phospholipids in brain membranes. Rats were injected intracranially with [3H]glycerol; the animals were killed at varying times afterwards, and microsomal fractions were isolated from the brains. In some cases, microsomes were subfractionated on sucrose gradients. Initially, most of the radioactive phosphatidylethanolamine appeared in a pool that reacted with the impermeable reagent trinitrobenzene sulfonic acid (TNBS). This probe presumably modified only the lipid on the outer face of microsomal vesicles (which may, in large part, consist of pinched-off endoplasmic reticulum). At 5 min after injection, the specific radioactivity of the TNBS-modified phosphatidylethanolamine (cytoplasmic face) was four times that of the unmodified (luminal or inner face) phosphatidylethanolamine. With time, the ratio of the specific activities in the modified and unmodified pools of phosphatidylethanolamine approached 1.0, with kinetics that suggested a half-time on the order of 30 min form vivo conversion of the TNBS-accessible to the -inaccessible pool. This equilibration in specific activities could be the result of either translocation of phospholipids across endoplasmic reticulum membranes or conversion with time of initially labeled endoplasmic reticulum to other membranous organelles which form randomly oriented vesicles upon homogenization. A similar experimental design, using phospholipase C to hydrolyze outer face phospholipids preferentially, verified this conclusion for phosphatidylethanolamine and yielded similar results for phosphatidylcholine. Control studies measuring radioactive sucrose permeability indicated that neither TNBS nor phospholipase C treatment significantly disrupted microsomal vesicles under the conditions used.  相似文献   

8.
Microsomes from ventral prostate of 24-h castrated rats contain a single set of tissue-specific high-affinity, low-capacity androgen binding sites. These sites are indigenous to the endoplasmic reticulum, as shown by purification procedures associated with marker enzymes and electron microscopic analyses. When prostatic microsomal membranes are separated from plasma membranes using the nuclear or the mitochondrial pellets as the source of fractionation in sucrose gradients, the androgen binding activity is selectively associated with fractions rich in rough endoplasmic reticulum and ribosomes. Eighty-four percent of the total content of Na+/K+ adenosine triphosphatase (ATPase) and only 27% of the total binding capacity were concentrated in fractions rich in smooth-surfaced vesicular membranes, when nuclear suspensions constituted the membrane source. In contrast, the region of the same gradient when enriched in rough endoplasmic reticulum and deficient in plasma membrane content contained 73% of the androgen-binding capacity and only 14% of the ATPase. For fractions collected using mitochondrial suspensions as starting material, the ratio (total glucose-6-phosphatase/total binding capacity) was closer to 1.0 than similar ratios of ATPase/binding capacity, indicating co-sedimentation of binding sites with microsomal membranes and not with plasma membranes. Na+/K+ ATPase, but not 5' nucleotidase, is a valid plasma membrane marker for ventral prostate. Microsomal androgen receptors may constitute a new level of regulation of androgen action in target cells.  相似文献   

9.
The iodothyronine-deiodinating enzymes (iodothyronine-5- and 5′-deiodinase) of rat liver were found to be located in the parenchymal cells. Differential centrifugation of rat liver homogenate revealed that the deiodinases resided mainly in the microsomal fraction. The subcellular distribution pattern of these enzymes correlated best with glucose-6-phosphatase, a marker enzyme of the endoplasmic reticulum. Plasma membranes, prepared by discontinuous sucrose gradient centrifugation, were found to contain very little deiodinating activity. Analysis of fractions obtained during the course of plasma membrane isolation showed that the deiodinases correlated positively with glucose-6-phosphates (r >/ 0.98) and negatively with the plasma membrane marker 5′-nucleotidase (r ranging between ?0.88 and ?0.97). It is concluded that the iodothyronine-deiodinating enzymes of rat liver are associated with the endoplasmic reticulum.  相似文献   

10.
Chicken liver plasma membranes, minimally contaminated with Golgi apparatus-derived vesicles, were prepared from a low-speed (400 g) pellet by means of flotation in isotonic Percoll solution, followed by a hypotonic wash and flotation in a discontinuous sucrose gradient. Based on the analysis of suitable marker enzymes, alkaline phosphatase and alkaline phosphodiesterase, two plasma membrane fractions were isolated with enrichments, depending on the equilibrium density and marker of 28-97 and with a total yield of 4-5%. Golgi apparatus fractions were prepared by flotation of microsomes, obtained from the same homogenate as the low-speed pellet, in a discontinuous sucrose gradient. The trans-Golgi marker galactosyltransferase was 27-fold enriched in a fraction of intermediate density (d=1.077-1.116 g/ml). Approximately 12% of galactosyltransferase was recovered in the membranes equilibrating d=1.031-1.148 g/ml. Contamination with plasma membrane fragments was low in the light (d=1.031-1.077 g/ml) and intermediate density Golgi vesicles. The isolation of purified plasma membranes and Golgi vesicles from one liver homogenate will enable future studies on receptor cycling between these cell organelles.  相似文献   

11.
We have separated and Isolated the plasma membranes and mesosomal vesicles of Staphylococcus aureus ATCC 6538P. Cells were grown aerobically in Difco synthetic AOAC broth, washed and resuspended in hypertonic buffer (3.45 M NaC1) containing 0.02 M MgSO4. Cell wall was removed by treatment with lytic enzyme from S. aureus, strain LS. The protoplasts were collected by centrifugation at 10,000 × g for 1 hour, resuspended in hypotonic buffer containing 0.02 M MgSO4 and lysed. The resultant plasma membranes were washed and centrifuged on a 60tr>75Z sucrose density gradient at 55,000 × g for 15 hours. Gradient patterns showed two bands of membranes. Crude mesosomes were obtained from the 10,000 × g supernatant fractions by centrifugation at 100,000 × g for 2 hours. The reddish-brown gelatinous pellet, which consisted of mesosomal vesicles and a few ribosomes, was washed and centrifuged on a 60 to 85% sucrose density gradient at 100,000 × g for 15 hours. Gradient patterns produced two bands of mesosomal vesicles. The homogeneity of the plasma membranes and mesosomal vesicles was determined by electron microscopy and chemical analyses.  相似文献   

12.
Human granulocytes were disrupted by nitrogen cavitation and the lysates fractionated by sucrose density gradient centrifugation at 83 000 × g for 20 min (rate zonal) or 3.5 h (isopycnic). The distribution of marker enzymes allowed the identification of the following subcellular components: plasma membrane, Golgi, endoplasmic reticulum, azurophil granules, specific granules, mitochondria and cytosol. Examination of the gradient fractions by electron microscopy confirmed the biochemical marker analysis. The protocol permitted isolation of vesicles highly enriched in either plasma membrane or Golgi (galactosyl transferase) activities. Absolute plasma membrane yields of 40–60% were achieved with a 20–70-fold increase in specific activity of surface marker over the cells. Plasma membrane sedimented to an average density of 1.14 g·cm?3. Galactosyl transferase activity was bimodal in distribution. The denser peak cosedimanted with specific granules (g9 = 1.19). The lighter peak sedimented to unique position at an average density of 1.11, was enriched 18-fold over the low speed supernatant, and contained structures resembling Golgi. N-Formyl-Met-Leu-Phe binding and Mg2+ -ATPase activities cosedimented with the plasma membrane as well as specific granule and/or high density galactosyl transferase fractions. These findings suggest that Mg2+ -ATPase and N-formyl chemotactic peptide receptor activities may be localized in an internal pool of membranes as well as in the plasma membrane and that Golgi may have been a contaminant of previous granulocyte plasma membrane or specific granule preparations.  相似文献   

13.
Microsomal membranes are postulated to contain either a homogeneous arrangement of individual enzymes or groupings of functionally related enzymes. In the present study we attempt to distinguish between these hypotheses in subfractions of rough microsomes from rat liver. After sonication, the individual vesicles that make up the rough-membrane fraction average less than 1/100 of their previous mass. The vesicles in the sonicated suspension are fractionated roughly according to size on a continuous sucrose gradient. Enzyme activity or concentration in fractions of the gradient is expressed on a phospholipid basis. Fractions containing primarily small vesicles differ from those containing larger vesicles in a manner suggesting a certain degree of separation of NADH-linked from NADPH-linked enzymes. NADH-ferricyanide reductase, NADH-cytochrome c reductase and cytochrome b5 are most concentrated within the large vesicles in the lowest third of the gradient. In contrast, NADPH-cytochrome c reductase and cytochrome P-450 are found in highest concentration in the small vesicles that make up the upper third of the gradient. The results suggest a nonrandom distribution of these two enzyme groups in the membranes of the endoplasmic reticulum.  相似文献   

14.
We have investigated the intracellular distribution of several enzymes on homogenates of late foetal, early postnatal and adult rat livers. Homogenates were subjected to differential centrifugations in 0.25 M sucrose and four fractions were isolated which corresponded to the N (nuclear) ML (total mitochondrial) P (microsomal) and S (soluble) fractions of de Duve et al. (1955). In general the age of the animal did not significantly affect the distribution pattern. Reference enzymes of mitochondria, lysosomes and peroxisomes were mainly recovered in the total mitochondrial fraction (ML). Glucose-6-phosphatase and esterase, both located in the endoplasmic reticulum, were chiefly associated with the microsomal fraction P together with galactosyltransferase (a reference enzyme of the Golgi apparatus). 5'-Nucleotidase, (a plasma membrane enzyme) exhibits a bimodal distribution and is mainly recovered in the N and the P fractions. Such results indicate that the membrane composition of the fractions isolated by the fractionation scheme was used, does not appreciably differ for the late foetal, early postnatal and adult rat livers. An analytical fractionation of the mitochondrial (ML) fraction of livers at different stages of development was performed by isopycnic centrifugation in sucrose gradients and in glycogen gradients using sucrose solutions of various concentrations as the solvents. The distribution of mitochondria, lysosomes and peroxisomes were assessed by establishing the distribution of their reference enzymes. Some physical characteristics of the particles were deduced from the manner in which the distributions were influenced by the sucrose concentration of the centrifugation medium. The distribution of liver mitochondrial enzymes one day prenatal differs strikingly from that of enzymes one day postnatal; foetal mitochondria seem characterized by a high osmotic space and a high hydrated matrix density; neonatal mitochondria seem devoid of an osmotic space and the density of their hydrated matrix is markedly lower than that of the foetal mitochondria. As ascertained by the distribution of mitochondrial enzymes in a sucrose 2H2O gradient, the high density of a foetal mitochondria matrix does not mainly originate from a lower amount of hydration water. The behavior of lysosomal enzymes in media with increasing concentrations of sucrose suggests that lysosomes originating from late foetal rat liver are endowed with a very small osmotic space. As for the peroxisomes, our results do not display significant behavior differences in centrifugations that would indicate physicochemical changes of these particles during the perinatal period.  相似文献   

15.
A method for the simultaneous preparation of microvillous and basal membrane vesicles from human placental syncytiotrophoblast is described. Mg2(+)-aggregated basal membranes are separated from microvillous membranes by low-speed centrifugation after initial homogenization and centrifugation steps. Microvillous membranes (MVM) are obtained from the low speed supernatant while basal membranes (BM) contained in the Mg2(+)-aggregated material are resuspended and further purified on a sucrose step gradient. MVM and BM prepared by this method were enriched 20-fold and 11-fold as determined by the membrane marker enzymes, alkaline phosphatase (MVM) and adenylate cyclase (BM). There was minimal cross-contamination of the two isolated plasma membrane fractions and the yields obtained were 26% (MVM) and 21% (BM) compared to the initial homogenate. The MVM and BM fractions were free from contamination by mitochondrial or lysosomal membranes and showed only minor contamination by microsomal membranes. The two membrane fractions were also tested for the presence of non-syncytial plasma membranes by electrophoretic immunoblotting. Contamination of both MVM and BM by fibroblast, endothelial, macrophage and cytotrophoblast plasma membranes amounted to less than 15% of the total membrane protein as determined by immunoblotting. Vesicle orientation, determined from the latency of specific concanavalin A binding, was 88 +/- 4% right-side out for MVM and 73 +/- 12% right-side out for BM. This simple preparative procedure produces a high yield of both MVM and BM from human placenta. The analytical data demonstrates that 'paired' MVM and BM fractions derived from the same placental tissue have a high purity in terms not only of contamination by intracellular membranes, but also in terms of contamination by non-syncytial plasma membranes.  相似文献   

16.
Subfractionation of preparations of rat liver microsomes with a suitable concentration of sodium deoxycholate has resulted in the isolation of a membrane fraction consisting of smooth surfaced vesicles virtually free of ribonucleoprotein particles. The membrane fraction is rich in phospholipids, and contains the microsomal NADH-cytochrome c reductase, NADH diaphorase, glucose-6-phosphatase, and ATPase in a concentrated form. The NADPH-cytochrome c reductase, a NADPH (or pyridine nucleotide unspecific) diaphorase, and cytochrome b5 are recovered in the clear supernatant fraction. The ribonucleoprotein particles are devoid of, or relatively poor in, the enzyme activities mentioned. Those enzymes which are bound to the membranes vary in activity according to the structural state of the microsomes, whereas those which appear in the soluble fraction are stable. From these findings the conclusion is reached that certain enzymes of the endoplasmic reticulum are tightly bound to the membranes, whereas others either are loosely bound or are present in a soluble form within the lumina of the system. Some implications of these results as to the enzymic organization of the endoplasmic reticulum are discussed.  相似文献   

17.
We have found means of isolating pinocytotic vesicles and attached plasma membrane from the low speed (200 × g) supernatant of homogenates of lung. In lung, 5′-nucleotidase is restricted to pinocytotic vesicles and areas of incipient vesicle formation along the plasma membrane. In our method, Pi released from AMP is precipitated as lead phosphate at the subcellular site of 5′-nucleotidase. The resulting increase in density allows collection of pinocytotic vesicles and attached plasma membrane as a pellet after centrifugation through sucrose (d = 1.18) at 250 × g. The final pellet contains long strands of plasma membrane, and the vesicles retain their characteristic morphology including the delicate diaphragm covering their stomata. The entire procedure can be performed in less than 90 min.  相似文献   

18.
Optimal conditions for the preparation of relatively pure microsomes and microsomal subfractions from rat lung have been determined. The most important of these conditions is homogenization of a 20% (w/v) suspension of lung tissue in 0.44 M sucrose/1% (w/v) bovine serum albumin with four up-and-down strokes at 440 rev./min in a Potter-Elvehjem homogenizer. The 10 000 × g supernatant prepared from this homogenate can be centrifuged at 105 000 × g to obtain total microsomes or subfractionated into rough and smooth microsomes on a Cs+-containing discontinuous sucrose gradient. The total, rough and smooth microsomes have been characterized in terms of their chemical composition, enzymatic activity, and morphology. These preparations should prove useful in studies of various enzymes in lung (e.g. benzpyrene monooxygenase, epoxide hydrase, enzymes of phospholipid and ascorbic acid synthesis) and in subfractionations designed to reveal heterogeneites in the lateral plane of the lung endoplasmic reticulum.  相似文献   

19.
Plasma-membrane as well as smooth-, rough- and degranulated-endoplasmic-reticulum-membrane fractions were isolated from the microsomal pellet of rat liver. The purity of these fractions, as determined by marker-enzyme activities, electron microscopy, cholesterol content and RNA content, was found to be adequate for a comparative structural study. Major differences in lipid and protein composition were found to exist between the plasma membrane and the endoplasmic reticulum, but not between the smooth and the rough fractions of the endoplasmic reticulum. Differences in the location of membrane protein thiol groups and the mobility of the membrane phospholipids were observed between the plasma membranes and the endoplasmic reticulum, and these could be explained by differences in protein and lipid composition. However, by employing fluorescence and spin-labelling techniques structural changes were also observed between the smooth and the rough endoplasmic-reticulum fractions. These results suggest that the structural heterogeneity existing between the two latter membrane fractions occurs near or on their membrane surfaces and is not due to the greater number of ribosomes bound to the rough endoplasmic-reticulum fraction.  相似文献   

20.
S-Adenosylhomocysteine (AdoHcy) binding to various membrane fractions of rat liver was determined at pH 7.4, using an oil centrifugation technique. The highest binding activity was found in the heavy microsomal (M-H) fraction enriched in endoplasmic reticulum, but high binding activity was also observed in the light microsomal fractions enriched in blood sinusoidal membranes (M-L fraction), and the heavy nuclear fraction (N-H fraction) containing the contiguous area. A substantial portion of AdoHcy binding activity in the M-L fraction may be ascribed to contamination of this fraction with endoplasmic reticulum, as indicated by the distribution of NADPH cytochrome c reductase activity. Binding activity was low in the light nuclear (N-L) fraction corresponding to the bile canaliculi. Phospholipid methyltransferase activity was determined in the same membrane fractions under similar conditions (pH 7.4), and in the absence and presence of added phospholipids. The distribution of the enzyme activity was dependent on the presence of exogenous phospholipids, and grossly similar to AdoHcy binding, the highest activities being observed in the M-H and the M-L fractions. The N-H fraction, rich in AdoHcy-binding activity, demonstrated, however, a very low phospholipid methyltransferase activity. It is concluded that AdoHcy-binding activity is not confined to the plasma membranes, and a major fraction of the binding activity resides on membranes derived from the endoplasmic reticulum. Also, the present results add to previous data suggesting that phospholipid methyltransferase does not totally account for the AdoHcy-binding sites on rat liver membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号