首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A fluorescent, high-molecular-weight, lipid-protein aggregate was partially isolated from the cytosol fraction of rat liver by gel filtration on columns of Sepharose 4B or 6B. This aggregate was composed of approximately equal parts of protein and of lipid (mainly triglycerides), and was found to contain approximately 19% of the total liver vitamin A (predominantly as retinyl esters). Most of the liver cellular retinol-binding protein (CRBP) was found associated with the fluorescent, lipid-protein aggregate, along with much of the retinyl palmitate hydrolase activity present in the liver cytosol. The lipid-protein aggregate, and its several vitamin A-related components, all displayed an apparent hydrated density between 1.052 and 1.090 in the ultracentrifuge. CRBP in association with the lipid-protein aggregate was not immunoreactive in the CRBP radioimmunoassay. CRBP was, however, released from this aggregate and rendered immunoreactive by addition of detergents (e.g., Triton X-100). Three other lipid hydrolytic activities were also found in association with the lipid-protein aggregate, namely, triolein, cholesteryl oleate, and dipalmitoyl phosphatidylcholine hydrolase activities. These several hydrolytic activities were all found to be stimulated optimally by the addition of either sodium cholate or bovine serum albumin. With the information available, it is not clear whether this lipid-protein aggregate is formed in vitro, during liver homogenization, or whether it represents a specific lipoprotein with a significant functional role that exists in vivo in the liver cell.  相似文献   

2.
When adult rat hepatocytes were co-cultured with another liver epithelial cell type in a medium supplemented or not with fetal calf serum (FCS), it was found that 1. They survived for more than 2 months 2. Albumin secretion levels remained high over the whole culture period 3. Decreased secretion might be reversed 4. This protein secretion activity appeared to be dependent upon both the presence of cell-cell contacts and the production of an extracellular material. The results demonstrate for the first time long-term stabilization and reversibility of a specific function (albumin secretion) at high levels by adult hepatocytes cultured in serum-free medium and suggest that both the presence of other liver cell type(s) and the production of an extracellular matrix are needed for the maintenance of specific functions in cultured hepatocytes.  相似文献   

3.
There are two 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) in rat liver, one in mitochondria (type I enzyme), and another in peroxisomes (type II enzyme). In a series of the studies on the properties and the physiological roles of fatty acid oxidation systems in both organelles, the two enzymes were purified and compared for their properties. The final preparations obtained were judged to be homogeneous based on the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and sedimentation velocity analysis. Type I enzyme was composed of two identical subunits of molecular weight of 32,000, whereas type II enzyme was a monomeric enzyme having a molecular weight of 70,000–77,000. These subunit structures were confirmed by the results of fluorescence studies. Both enzymes were different in amino acid compositions, especially in the contents of tryptophan and half-cystine. Antibodies against them formed single precipitin lines for the corresponding enzymes, but not for the others when subjected to an Ouchterlony double-diffusion test. The Km values of type II enzyme for various substrates were lower than those of type I enzyme except those for acetoacetyl-CoA. As for 3-hydroxyacyl-CoA substrates, both enzymes had lower Km's for longer-chain substrates. The V for the substrates of C4C10 were similar for each enzyme, though the value of type II enzyme for C10 substrate was rather lower. The results of fluorescence studies suggested that their dissociation constants for NADH were lower and those for NAD+ were higher at lower pH. Both enzymes were specific to l-form of 3-hydroxyacyl-CoA substrate. The optimal pH of the forward reaction of type I and type II enzymes was 9.6 and 9.8, and of the reverse reaction, 4.5 and 6.2, respectively. From these results they were concluded to be completely different enzymes.  相似文献   

4.
The metabolism of some purine compounds to urate and their effects on de novo urate synthesis in chicken hepatocytes were investigated. The purines, listed in descending order of rates of catabolism to urate, were hypoxanthine, xanthine, inosine, guanosine, guanine, IMP, GMP, adenosine, AMP, and adenine. During a 1-h incubation period, conversion to urate accounted for more than 80% of the total quantities of guanine, guanosine, and inosine metabolized, but only 42% of the adenosine and 23% of the adenine metabolism. Adenine, adenosine, and AMP inhibited de novo urate synthesis [( 14C]formate incorporation into urate), whereas the other purines, especially guanine, guanosine, and GMP, stimulated de novo urate synthesis. When hepatocytes were incubated with glutamine and adenosine, AMP, guanine, guanosine, or GMP, the rates of de novo urate synthesis were lower than the additive effects of glutamine and the purine in separate incubations. Increasing phosphate concentrations had no effect on urate synthesis in the absence of added purines but, in combination with adenosine, AMP, guanosine, or GMP, increased urate synthesis. These results indicate that the ratio of adenine to guanine nucleotides and the interaction between substrates and purine nucleotides are involved in the regulation of urate biosynthesis in chicken liver.  相似文献   

5.
Myelin from developing rat brains was separated on a discontinuous sucrose gradient into subfractions of two different densities, i.e. light and heavy myelin. Electron photomicrographs showed that heavy myelin consisted primarily of large compacted multilamellar structures with a distinct intraperiod line characteristic of myelin in situ. Light myelin, on the other hand, was composed of small vesicles having a unilamellar structure. Similar to whole myelin, both membrane subfractions were highly enriched in 2′,3′-cyclic nucleotide-3′-phosphohydrolase. The specific activity of the enzyme, however, showed no developmental trend. Both subfractions contained all of the four major proteins characteristic of the whole myelin membrane. There were, however, quantitative differences in the relative distribution of these proteins between light and heavy myelin. Basic protein accounted for 55 % and proteolipid protein for 46 % of the total myelin proteins of light and heavy myelin, respectively. DM-20 (Agrawal, H. C., Burton, R. M., Fishman, M. A., Mitchell, R. F. and Prensky, A. L. (1972) J. Neurochem. 19, 2083–2089) exhibited a developmental “switch” between light and heavy myelin. Light myelin appeared to contain more DM-20 in 15- to 20-day-old rat brain, whereas the concentration of this protein was higher in heavy myelin at subsequent ages studied.  相似文献   

6.
7.
When rat liver mitochondria were suspended in 0.15 m KCl, the cytochrome c appeared to be solubilized from the binding site on the outside of the inner membrane and trapped in the intermembrane space. When the outer membrane of these mitochondria was disrupted with digitonin at a digitonin concentration of 0.15 mg/mg of protein, the solubilized cytochrome c could be released from mitochondria along with adenylate kinase. When mitochondria were suspended in 0.15 m KCl instead of 0.33 m sucrose, the ADPO ratio observed with succinate, β-hydroxybutyrate, malate + pyruvate or glutamate as substrates was little affected. A number of cycles of State 4-State 3-State 4 with ADP was observed. The respiratory control ratios, however, were decreased, particularly when glutamate was used as the substrate. Cytochrome c oxidase activity was also decreased to 55% when assayed using ascorbate + N,N,N′,N′-tetramethyl-p-phenylene-diamine (TMPD) as substrates. Suspension of mitochondria in 0.15 m KCl resulted in an enhancement of the very low NADH oxidation by intact mitochondria and a twofold enhancement of sulfite oxidation. Trapped cytochrome c in outer membrane vesicles prepared from untreated and trypsin-treated intact mitochondria was found to be readily reduced by NADH and suggests that some cytochrome b5 is located on the inner surface of the outer membrane. The enhanced NADH oxidase could therefore reflect the ability of cytochrome c to mediate intermembrane electron transport. The enhanced sulfite oxidase activity was sensitive to cyanide inhibition and coupled to oxidative phosphorylation (ADPO < 1) unlike the activity of mitochondria in sucrose medium. These results suggest that free cytochrome c in the intermembrane space can mediate electron transfer between the sulfite oxidase and the inner membrane.  相似文献   

8.
Oxytocin has both insulin-like and insulin antagonistic actions in fat cells in vitro. The anti-insulin-like effects of oxytocin in dispersed rat fat cells have been studied. The magnitude of the anti-insulin-like activity varies with the metabolic pathway of glucose utilization; oxidation [14CO2 production], 32%; glycogen synthesis (D-[U-14C] glucose incorporation into glycogen), 77%. In addition, direct inhibition of the activation of fat cell glycogen synthase has been shown. These inhibitory effects depend upon an intact disulfide ring, since the ability of N-ethylmaleimide-reacted oxytocin to inhibit insulin-stimulated processes was reduced by more than 90% when compared to the intact molecule.  相似文献   

9.
Beating heart cells were isolated from the adult rat and the biosynthesis of ubiquinone was studied. These cells were able to incorporate p-hydroxy[U-14C]benzoate into ubiquinone and some unidentified compounds, presumably intermediates in the biosynthesis of ubiquinone. The unidentified compounds were labile to alkali and were also labeled by [5-3H]-mevalonate and [methyl-3H]methionine, but not by p-hydroxy[carboxy-14C]benzoate. They appear to be chromatographically different from 5-demethoxy ubiquinone and 5-desmethyl ubiquinone. Addition of unlabeled mevalonate stimulated the incorporation of p-hydroxy [U-14C]benzoate into ubiquinone and the other compounds. The addition of dimethylsulfoxide to the isolated cells or the isolation medium caused inhibition of ubiquinone biosynthesis. Adriamycin was not inhibitory to the biosynthesis of ubiquinone in the cells. The advantages of these cells are the rapidity and ease in studying the biosynthesis of ubiquinone from various precursors and its regulation.  相似文献   

10.
The subcellular distribution of the mannan-binding protein from rat liver, a lectin specific for mannose and N-acetylglucosamine, was studied. Approximately 75% of the binding activity of the homogenate was recovered in microsomes, approximately 76% of which was accounted for by rough microsomes. Rough microsomes had the highest specific activity of binding, followed by the Golgi apparatus and smooth microsomes, whereas plasma membranes, lysosomes, mitochondria, and the soluble fraction had little or no binding activity. A topographical survey indicated that the binding protein was localized exclusively on the cisternal surface of microsomal vesicles. Thus, the binding protein of microsomal vesicles was protected from protease digestion and was released from the vesicles by mild detergent treatment. Competitive inhibitors, which presumably represent endogenous ligands of the binding protein, were found among subcellular fractions. More than 50% of the inhibitory activity of the homogenate was recovered in rough microsomes, while the highest specific activity of inhibition was found in lysosomes. The Ki values estimated for rough microsomes and lysosomes were 25.9 and 8.67 μg/ml, respectively. The distribution profiles of inhibitors were correlated roughly with those of the binding protein, resulting in masking of the binding activity in organelles up to the level of 86%. On the basis of the known localization and topology of the binding protein and endogenous inhibitors (ligands), possible physiological functions of the binding protein relevant to the transport of biosynthetic intermediates of glycoproteins from the rough endoplasmic reticulum to the Golgi apparatus and from the Golgi apparatus to lysosomes were discussed.  相似文献   

11.
An electron microscopic, morphometric analysis of isolated rat hepatocytes revealed a 70% decrease in the early forms of autophagic vacuoles after administration of leucine. The lysosomal degradation of protein was reduced by only about 30% under the same conditions. These observations suggest that leucine is a major regulator of the bulk autophagy observable in the electron microscope, but that this type of autophagy contributes only about one-half of the total amount of protein degraded in lysosomes. Asparagine inhibited lysosomal protein degradation more strongly than did leucine, but had no significant effect on the amount of autophagic vacuoles. Leucine and asparagine would therefore seem to exert their effects on lysosomal protein degradation through different mechanisms.  相似文献   

12.
Squalene epoxidase was purified from rat liver microsomes by DEAE-cellulose, alumina Cν gel, hydroxylapatite, CM-Sephadex C-50 and Cibacron Blue Sepharose 4B in the presence of Triton X-100. The specific activity was increased 50 fold with a yield of about 10%. On SDS-polyacrylamide gel electrophoresis, the preparation gave one major band and one minor band with apparent molecular weights of 47,000 and 27,000 daltons, respectively. The protein of 47,000 was the most probable candidate for squalene epoxidase. Squalene epoxidase activity could be reconstituted in the squalene epoxidase preparation with the addition of NADPH-cytochrome P-450 reductase, FAD, and Triton X-100.  相似文献   

13.
A proteoglycan isolated from plasma membranes of an ascites hepatoma, AH 66, was characterized structurally. The glycosaminoglycan was obtained by alkali treatment and was identified as heparan sulfate. It was essentially the only type of carbohydrate chain attached to the core protein. The identification was based on chemical analysis, electrophoresis, and digestibility with heparitinase from Flavobacterium heparinum. Analysis of neutral sugars of the proteoglycan by mass fragmentography indicated the presence of xylose and galactose which should be involved in the linkage region between a heparan sulfate chain and the core protein. The weight-average molecular weights of the proteoglycan and its heparan sulfate chain were determined to be 71,000 and 21,000, respectively, by meniscus depletion equilibrium centrifugation. The latter value was in good agreement with those obtained by chemical analysis and by gel filtration. From these values for molecular weight and the protein content of the proteoglycan (10.6%), the molecular weight of the core protein was estimated to be 7500. On the basis of these molecular parameters, it was proposed that three heparan sulfate chains on average are linked to the core protein.  相似文献   

14.
The effects of menadione (2-methyl-1,4-naphthoquinone) metabolism on intracellular soluble and protein-bound thiols were investigated in freshly isolated rat hepatocytes. Menadione was found to cause a dose-dependent decrease in intracellular glutathione (GSH) level by three different mechanisms: (a) Oxidation of GSH to glutathione disulfide (GSSG) accounted for 75% of the total GSH loss; (b) About 15% of the cellular GSH reacted directly with menadione to produce a GSH-menadione conjugate which, once formed, was excreted by the cells into the medium; (c) A small amount of GSH (approximately 10%) was recovered by reductive treatment of cell protein with NaBH4, indicating that GSH-protein mixed disulfides were also formed as a result of menadione metabolism. Incubation of hepatocytes with high concentrations of menadione (greater than 200 microM) also induced a marked decrease in protein sulfhydryl groups; this was due to arylation as well as oxidation. Binding of menadione represented, however, a relatively small fraction of the total loss of cellular sulfhydryl groups, since it was possible to recover about 80% of the protein thiols by reductive treatments which did not affect protein binding. This suggests that the loss of protein sulfhydryl groups, like that of GSH, was mainly a result of oxidative processes occurring within the cell during the metabolism of menadione.  相似文献   

15.
Serine palmitoyltransferase [palmitoyl-CoA:L-serine C-palmitoyltransferase (decarboxylating) EC 2.3.1.50] catalyzes the initial and committed step in the biosynthesis of the long-chain bases of sphingolipids. A simple assay, based upon the incorporation of [3H]serine into the chloroform-soluble product 3-ketosphinganine, has been developed and demonstrated to be valid for analyzing this enzyme in rat liver microsomes. More than 75% of the serine palmitoyltransferase of rat liver was associated with the microsomal subfraction. The dependencies of activity on the incubation time, pH, temperature, other assay components (e.g., dithiothreitol, EDTA, and pyridoxal 5'-phosphate), and the concentrations of microsomal protein, L-serine, and palmitoyl-CoA were investigated. The requirement of pyridoxal 5'-phosphate for activity was established by formation of the apoenzyme by dialysis against cysteine, and recovery of full activity upon reconstitution with the coenzyme. Activities with fatty acyl-CoA's of varying alkyl chain length were distributed nearly symmetrically around a maximum at 16 carbons (palmitoyl-CoA) for the fully saturated substrates. Less activity was obtained with the CoA thioesters of cis-unsaturated fatty acids, but trans-9-hexadecenoyl-CoA yielded essentially the same activity as palmitoyl-CoA. Hence, this enzyme is capable of initiating the synthesis of the major long-chain bases, as well as compounds that may constitute the unidentified bases reported in analyses of mammalian sphingolipids.  相似文献   

16.
An analytical study was performed for the mass transfer processes which occurs during a typical CPA introduction protocol in a biological organ. In such a protocol the concentration of CPA in the perfusate changes linearly with time to a maximal value and is then kept at that value for an additional period of time. Numerical solutions to the Kedem-Katchalsky equations for mass transfer processes in an organ modeled by a large number of typical Krogh tissue units were found. The solutions indicate that several phenomena possibly harmful to the organ occur in the tissue as a function of H, the rate of increase in the CPA concentration.  相似文献   

17.
18.
Treatment of rats with N-nitrosomorpholine (NNM) for 7 weeks led to a focal increase in liver microsomal epoxide hydrolase (EH) as early as 2 weeks after withdrawal of the carcinogen. This treatment also leads to hyperplastic nodules and liver tumors, but much later. At the same early time point, ATPase activity was decreased in the same islands. Most of these areas already had increased γ-glutamyltranspeptidase activity. The increase in EH at this early time point was more distinct than the decrease in ATPase which has thus far been considered a suitable marker of the earliest stages in hepatocarcinogenesis. The focal increase in EH was also observed in all benign hepatomas, but not in any of the hepatocellular carcinomas investigated so far.  相似文献   

19.
The V of horse liver aldehyde dehydrogenase is enhanced twofold in the presence of 0.5 mm Mg2+ ions when assayed in the dehydrogenase reaction. The mechanism of this activation appears to be related to the fact the enzyme changes from functioning with half-of-the-sites reactivity to functioning with all-of-the-sites reactivity. That is, the presteady-state burst magnitude increases from 2 mol NADH formed per mole of tetrameric enzyme to 4 mol formed per mole (K. Takahashi and H. Weiner, J. Biol. Chem., 1980, 255, 8206–8209). Whether this twofold enhancement correlates, in fact, to a change from half-of-the-sites to all-of-the-sites reactivity of the enzyme by Mg2+ ions was investigated by determining the Stoichiometry of coenzyme binding by fluorescence quenching and enhancement methods in the absence and presence of the metal ions. The biphasic Scatchard plots for NAD binding to the enzyme were similar in the absence and presence of Mg2+ ions, while that of NADH binding was monophasic (-Mg2+) and biphasic (+Mg2+). In the presence of p-methoxyacetophenone, a competitive inhibitor for substrate, the stoichiometric titration of coenzyme binding to the ternary complexes (enzyme-NAD(H)-inhibitor) revealed that only 2 mol of NAD or NADH bind in the absence of Mg2+ ions but 4 bind per mole of tetrameric enzyme in the presence of added metal. The fluorescence intensity of NAD's fluorescent derivative, 1,N6-ethenoadenine dinucleotide, bound to the enzyme was also doubled by the addition of Mg2+ ions.The combined binding data show that the stoichiometry of coenzyme binding to aldehyde dehydrogenase in the ternary complex increases from 2 to 4 mol binding per mole of tetrameric enzyme with the addition of Mg2+ ions. This increase in stoichiometry corresponds to the observed changes of burst magnitude obtained from the presteady-state and V in the steady-state kinetics assays. From both results of the kinetics and stoichiometry, we show that horse liver aldehyde dehydrogenase exhibits half-of-the-sites reactivity when in the tetrameric state in the absence of Mg2+ ions, and all-of-the-sites reactivity in the dimeric state in the presence of the metal.  相似文献   

20.
Human ceruloplasmin, which is usually cleaved by limited proteolysis into three major fragments during preparation (Mr ? 18,650, 50,000, and 70,000) was isolated in good yield as an undegraded single-chain protein (Mr ? 135,00). The cryosupernatant from fresh frozen plasma (100 liters) was fractionated with polyethylene glycol (PEG 4000) at + 5°C yielding a ceruloplasmin-enriched fraction in the 20% PEG supernatant. Three steps of chromatography on DEAE-Sephacel, hydroxyapatite, and Sephadex G-200 produced a homogeneous protein with maximal enzymatic activity and the A610A280 ratio of 0.046 corresponding to 98–100% purity. Two forms of ceruloplasmin having this absorbance ratio were obtained; Form I was predominant and was studied further. The procedure separated both forms from apoceruloplasmin and degraded ceruloplasmin. The single-chain ceruloplasmin (Form I) had an NH2-terminal sequence of Lys-Glu-Lys-His-Tyr-Tyr-Ile-, the same as for the 70,000 fragment, and is suitable for structural study by sequence analysis and physicochemical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号