首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytosolic and nuclear forms of the glucocorticoid receptor were characterized using immunochemical techniques. Antibodies were raised in rabbits to an Mr 58,000 fragment of the transformed (DNA-binding) glucocorticoid receptor purified from rat liver cytosol by DNA-cellulose chromatography and polyacrylamide gel electrophoresis. Antibodies reacted with the transformed receptor form in a radioimmunoassay for glucocorticoid receptor. Western blot analysis of antibody reactivity revealed a single Mr 185,000 receptor form in rat liver cytosol but a smaller Mr 85,000 form in nucleosol, indicating the Mr 85,000 form is the transformed receptor. Furthermore, western blot analysis indicates that the Mr 185,000 receptor undergoes proteolysis during receptor purification and in vitro transformation processes by generating immunochemically similar proteins of smaller molecular weights. An identical Mr 185,000 glucocorticoid receptor was detected in cytosols of four rat tissues; liver, brain, adrenal medulla, and thymus. The glucocorticoid receptor was localized to the cytoplasm and nucleus of rat adrenal medulla cells by immunohistochemistry, demonstrating the existence in vivo of the transformed receptor and translocation of the receptor from cytoplasm to nucleus.  相似文献   

2.
A monoclonal IgG 2a antibody directed against the activated rat liver glucocorticoid receptor (GR) was used to prepare an immunoaffinity matrix of high capacity. The molybdate-stabilized GR from rat liver cytosol was immunoadsorbed on this gel. A non-hormone-binding protein of Mr approximately 90,000, as determined after denaturing gel electrophoresis, was eluted from this matrix following removal of molybdate and exposure to heat (25 degrees C) and salt (0.15 M NaCl). Subsequently, the Mr approximately 90,000 protein was purified to homogeneity using high-performance ion-exchange chromatography, covalently radiolabelled, and analyzed by high-performance size-exclusion chromatography and sucrose gradient ultracentrifugation. Hydrodynamic characterization indicates that, under our experimental conditions, the molybdate-stabilized rat liver GR (Rs approximately 7.4 nm, s20,w approximately 9.1 S, calculated mol. wt Mr approximately 285,000) includes one steroid-binding unit (Rs approximately 5.5 nm, S20,w approximately 4.3 S, calculated Mr approximately 100,000) and a dimer of Mr approximately 90,000 non-hormone-binding protein (Rs approximately 6.9 nm, S20,w approximately 6.1 S, calculated native Mr approximately 180,000).  相似文献   

3.
Glucocorticoid receptors of rat kidney and liver were compared by physicochemical and immunochemical methods to investigate the role of proteolysis in the formation of corticosteroid binder IB. Kidney cytosol prepared in the presence of sodium molybdate contained receptor forms comparable to rat liver glucocorticoid receptor; [3H]triamcinolone acetonide-labeled receptors eluted from Sephacryl S-300 as a multimeric 6.1 nm component in the presence of molybdate and as a monomeric 5.7 nm component in the absence of molybdate. Both forms were recognized by the monoclonal antibody BUGR-1 which was raised against rat liver glucocorticoid receptor. When kidney cytosol was prepared in the absence of molybdate, labeled receptor complexes eluted from Sephacryl S-300 as a 5.8 nm component in the presence of molybdate. However, in the absence of molybdate, the receptor eluted as a smaller 3.4 nm component which was identical with the size of activated kidney glucocorticoid receptor chromatographed in either the presence or absence of molybdate. The 3.4 nm activated kidney glucocorticoid receptor did not bind to DEAE-cellulose under conditions where activated liver receptor was retained. These properties of the activated kidney receptor are characteristic of corticosteroid binder IB. Incubation of the activated kidney receptor complex with BUGR-1 resulted in a shift in apparent Stokes radius from 3.4 nm to 5.4 nm, indicating immunochemical similarity with rat liver receptor. Identification of the immunoreactive receptor subunit by Western blotting demonstrated that kidney cytosol prepared in the presence of molybdate contained a major 94-kDa immunoreactive component which co-migrated with rat liver glucocorticoid receptor, while cytosol prepared in the absence of molybdate contained principally a 44-kDa immunoreactive species. These results suggest that corticosteroid binder IB can be generated by in vitro proteolysis and does not represent a polymorphic form of the glucocorticoid receptor.  相似文献   

4.
Modulator is the low molecular weight heat-stable inhibitor of glucocorticoid-receptor complex activation. We have purified modulator to apparent homogeneity from heated rat liver cytosol. This was accomplished using Sephadex G-15 gel filtration, Dowex 1 anion-exchange chromatography, and preparative silica high-performance liquid chromatography. The modulator preparation was judged to be homogeneous by analytical silica high-performance liquid chromatography, two-dimensional silica thin-layer chromatography, and proton nuclear magnetic resonance spectroscopy. The apparent concentration of modulator in rat liver cytosol is 6.5 microM. The purified modulator inhibits heat activation of the rat liver glucocorticoid-receptor complex and stabilizes the steroid binding ability of the unoccupied rat liver glucocorticoid receptor in a dose-dependent manner. At a concentration of 5-6.5 microM, modulator inhibits receptor activation and stabilizes the unoccupied receptor by 50%. At a concentration of 500-630 microM, sodium molybdate also inhibits receptor activation and stabilizes the unoccupied receptor by 50%. Thus, modulator appears to be the endogenous factor that exogenous sodium molybdate mimics in vitro. Chemical analysis of the purified modulator following two-dimensional silica thin-layer chromatography indicates that modulator is an aminophospholipid. Physical analysis of the purified modulator by infrared and nuclear magnetic resonance spectroscopy, as well as mass spectrometry, demonstrates that modulator is an ether aminophosphoglyceride.  相似文献   

5.
A quantitative method for the measurement of putative glucocorticoid receptor biosynthesis in rat adipocytes is described. The method utilizes the incorporation of radioactive amino acids into newly synthesized putative receptor proteins and their subsequent separation from other labeled proteins by affinity chromatography. Dexamethasone and deoxycorticosterone-Sepharose are used as affinity adsorbants. Specific binding of radioactive putative receptors to these gels is time- and protein concentration-dependent, and is abolished by exposure of cells to cycloheximide, pretreatment of adipocyte cytosol preparations with unlabeled steroids or incubation of cytosols at 37°C for 4 h. Specifically bound radioactivity, which represents about 10% of the radioactivity initially associated with affinity adsorbants can be quantitatively eluted under rigidly defined conditions including high ionic strength. Specifically eluted material, which comprises up to 50% of total eluted radioactivity sediments at 3.8 S in sucrose gradients containing 1 M KCl, and electrophoretically migrates on 0.1% SDS gels in a single band with a molecular weight of about 50 000. The sedimentation coefficient is comparable to that of the native adipocyte cytosol receptor not subject to affinity chromatography (3.7 S). Under low ionic-strength conditions most of the native receptor sediments at 8 S. The molecular weight of 50 000 is in the range of those reported for glucocorticoid receptors of liver (45 000–66 000 for monomers). The properties of the protein or proteins measured in the present system are therefore consistent with the current state of knowledge regarding glucocorticoid receptors in adipocytes.  相似文献   

6.
The subject of the present study is the influence of mercury on association of rat liver glucocorticoid receptor (GR) with heat shock proteins Hsp90 and Hsp70. The glucocorticoid receptor heterocomplexes with Hsp90 and Hsp70 were immunopurified from the liver cytosol of rats administered with different doses of mercury. The amounts of co-immunopurified apo-receptor, Hsp90 and Hsp70 were then determined by quantitative Western blotting. The ratio between the amount of heat shock protein Hsp90 or Hsp70 and the amount of apo-receptor within immunopurified heterocomplexes was found to increase in response to mercury administration. On the other hand, the levels of Hsp90 and Hsp70 in hepatic cytosol remained unaltered. The finding that mercury stimulates association of the two heat shock proteins with the glucocorticoid receptor, rendering the cytosolic heat shock protein levels unchanged, suggests that mercury affects the mechanisms controlling the assembly of the receptor heterocomplexes.  相似文献   

7.
V Felt 《Endokrinologie》1979,74(1):52-56
Cortisol binding by cytosol and 0.4 M KCl extract of the nuclear fraction of human leukocytes were studied by gel chromatography and ion exchange filtration on DEAE cellulose. The cytoplasmic cortisol binding protein has a molecular weight 95 000 and the soluble nuclear binding protein 50 000. The absence of the uptake of radioactive cortisol by isolated nuclei and the apparent requirement of the cytosol for glucocorticoid specific binding in nuclear receptor sites was observed. The association constant characterising the binding of cortisol to cytosol was KA = 3.5 . 10(9) l/mol.  相似文献   

8.
A ubiquitous, low molecular weight, heat-stable component of cytosol stabilizes the glucocorticoid receptor in its untransformed state in association with hsp90. This heat-stable factor mimics molybdate in its effects on receptor function, and it has the heat stability, charge, and chelation properties of a metal oxyanion [Meshinchi, S., Grippo, J.F., Sanchez, E.R., Bresnick, E.H., & Pratt, W.B. (1988) J. Biol. Chem. 263, 16809-16817]. In this paper, we describe the further purification of the endogenous factor from rat liver cytosol by anion-exchange HPLC (Ion-110) after prepurification by molecular sieving, cation absorption, and charcoal absorption. Elution of the factor with an isocratic gradient of ammonium bicarbonate results in recovery of all of the bioactivity in a single peak which coelutes with inorganic phosphate and contains all of the endogenous molybdenum. The bioactivity can be separated from inorganic phosphate by chromatography of the partially purified endogenous factor on a metal-chelating column of Chelex-100. The chelating procedure results in complete loss of bioactivity with recovery of 98% of the inorganic phosphate in both the column drop-through and a subsequent 1 M NaCl wash. The factor preparation purified through the Ion-110 HPLC step inhibits temperature-mediated dissociation of the immunopurified glucocorticoid receptor-hsp90 complex, but it is considerably more effective at stabilizing the unpurified receptor-hsp90 complex in a Chelex-treated cytosol system that has been depleted of metal components. These observations support the proposal that an endogenous metal can stabilize the binding of hsp90 to the receptor but it is likely that other cytosolic components that are not present in the immunopurified complex must contribute to the stability of the soluble protein-protein complex in cytosol.  相似文献   

9.
An immunoglobulin (IgG) fraction from serum of a rabbit immunized with a highly purified preparation of glucocorticoid receptor from rat liver cytosol contained specific antibodies to glucocorticoid receptor. This was shown following incubation of the [3H]triamcinolone acetonide-glucocorticoid receptor (TA-GR) complex with the IgG fraction by (I) adsorption of the [3H]TA-GR-antibody complex to protein A linked to Sepharose, (II) an increased sedimentation rate of the [3H]TA-GR-antibody complex compared to that of the [3H]TA-GR complex, and (III) an increased molecular size of the [3H]TA-GR-antibody complex when compared to that of the [3H]TA-GR complex as judged from gel filtration. The antibody fraction was characterized with regard to titer, cross-reactivity and specificity. The antibodies cross-reacted with the glucocorticoid receptor from various rat tissues (liver, thymus and hippocampus), as well as with the glucocorticoid receptor from human normal lymphocytes, chronic lymphatic leukemia cells and human hippocampus. In the rat liver, the antibody bound to both the nuclear and the cytosolic glucocorticoid receptor (Stokes radius 6.1 nm). It did not cross-react with the proteolytic fragments of the glucocorticoid receptor, the 3.6 nm complex or the 1.9 nm complex. Binding of the antibodies was not seen to the androgen, estrogen or progestin receptors in rat to rat serum transcortin. With an indirect competitive ELISA (enzyme-linked immunosorbent assay) combined with various separation techniques, based on different physiocochemical principles, it was shown that the glucocorticoid receptor was the only detectable antibody binding protein from rat liver cytosol using this assay system. These findings also indicate an immunochemical similarity between glucocorticoid receptors in different tissues as well as in different species, but not between glucocorticoid receptors and other steroid hormone receptor proteins. The cytosolic and nuclear glucocorticoid receptors in rat liver were shown to be immunochemically similar.  相似文献   

10.
[3H]Dexamethasone-receptor complexes from rat liver cytosol preincubated at 0° bind poorly to DNA-cellulose. However, if the steroid-receptor complex is subjected to gel filtration at 0–4° separating it from the low molecular weight components of cytosol, the steroid-receptor complex becomes “activated” enabling its binding to DNA-cellulose. This activation can be prevented if the gel filtration column is first equilibrated with the low molecular weight components of cytosol. In addition, if adrenalectomized rat liver cytosol, in the absence of exogeneous steroid, is subjected to gel filtration the macromolecular fractions separated from the “small molecules” of that cytosol have much reduced binding activity towards [3H]dexamethasone. These results suggest that rat liver cytosol contains a low molecular weight component(s) which maintains the glucocorticoid receptor in a conformational state that allows the binding of dexamethasone. Furthermore, this component must be removed from the steroid-receptor complex before binding to DNA can occur.  相似文献   

11.
The glucocorticoid hormone receptor (92 kDa), purified 9000-fold from rat liver cytosol by steroid affinity chromatography and DEAE-Sephacel chromatography, was assayed for the presence of protein kinase activity by incubations with [gamma-32P]ATP and the photoaffinity label 8-azido-[gamma-32P]ATP. Control preparations isolated by affinity chromatography in the presence of excess steroid to prevent the receptor from binding to the affinity matrix were assayed for kinase activity in parallel. The receptor was not labeled by the photoaffinity label under photoactivation conditions in the presence of Ca2+ or Mg2+. A Mg2+-dependent protein kinase (48 kDa) that could be photoaffinity labeled with 8-azido-ATP copurified with the receptor. This kinase was also present in control preparations. The kinase could phosphorylate several minor contaminants present in the receptor preparation, including a protein (or proteins) of similar molecular weight to the receptor. The phosphorylation of 90-92-kDa proteins was independent of the state of transformation or steroid-binding activity of the receptor. These experiments provide direct evidence that neither the glucocorticoid receptor nor the 90-92-kDa non-steroid-binding protein associated with the molybdate-stabilized glucocorticoid receptor possesses intrinsic Ca2+- or Mg2+-dependent protein kinase activity.  相似文献   

12.
Monoclonal antibodies to the rat liver glucocorticoid receptor.   总被引:11,自引:1,他引:10       下载免费PDF全文
Monoclonal antibodies against the 90 000 mol. wt. form of the activated rat liver glucocorticoid receptor were generated from mice immunized with a partially purified receptor preparation. The screening assay was based on the precipitation of liver cytosol, labelled with [3H]triamcinolone acetonide, with monoclonal antibodies bound to immobilized rabbit anti-mouse IgG. Out of 102 hybridomas obtained, 76 produced immunoglobulin and eight of them were found to react with the receptor molecule. Only one of the positive clones secreted IgG whereas the other seven produced IgM. The complexes of receptor and antibodies were identified by sucrose density gradient centrifugation. All seven monoclonal antibodies tested reacted with the 90 000 mol. wt. form of the receptor but not with the 40 000 mol. wt. form that contains the steroid and DNA binding domains. None of the monoclonal antibodies interfered with the binding of the receptor to DNA cellulose, thus suggesting that the antigenic determinants are located in a region of the receptor that is not directly implicated in either steroid binding or DNA binding. These antigenic determinants were common to glucocorticoid receptors from several tissues of the rat, whereas glucocorticoid receptors from other species react only with some of the antibodies.  相似文献   

13.
Abstract

Male rat liver contains components in both cytosol and nucleosol which bind the synthetic testosterone derivative, mibolerone, with a high affinity, low capacity and a high specificity for androgens. Gel filtration chromatography shows two binding components. A high molecular weight component (M.Wt 230,000) present in cytosol alone and a low molecular weight component (M.Wt 60,000) present in cytosol and nucleosol. Male rat liver contains the classical androgen receptor.  相似文献   

14.
Phosphorylation of rat liver glucocorticoid receptor   总被引:3,自引:0,他引:3  
Rat liver glucocorticoid-receptor complex (GRc) was purified 2000-fold by a combination of methods including (NH4)2SO4-fractionation and phosphocellulose and DNA-cellulose chromatography. The purified glucocorticoid receptor preparation contained a major peptide of Mr = 90,000 and the GRc sedimented as 4 S in 5-20% sucrose gradients. An additional peptide of Mr = 45,000 (45K) was also observed. Some preparations yielded only the Mr = 90,000 (90K) peptide suggesting that the 45K peptide may be a proteolyzed portion of the 90K protein. The purified GRc was incubated with [gamma-32P]ATP in the presence of cAMP-dependent kinase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the above preparation revealed the presence of two 32P-containing bands with apparent Mr = 90,000 and 45,000. The 32P incorporation was dependent on the availability of divalent cation (Mg2+). GRc in cytosol labeled with [3H]dexamethasone mesylate and purified as above co-migrated with 32P-containing bands. GRc was also purified from cytosol obtained from livers of rats injected with [32P]orthophosphate. Both 32P and 3H bands were associated with 90K and 45K peptides. Our results indicate that rat liver glucocorticoid receptor is a phosphoprotein and that both the phosphorylated peptides 90K and 45K also contain the steroid and the DNA binding regions of the glucocorticoid receptor.  相似文献   

15.
Antibodies to the two dexamethasone-binding proteins from rat liver cytosol have been elicited in rabbits. These antibodies precipitate the dexamethasone binding activities from rat liver cytosol as weil as cytosol from Hepatoma Tissue Culture (HTC) cells. Antibodies to the 45 000 D protein have been used for demonstration of the intracellular dynamics of the glucocorticoid receptor complex by immunofluorescence microscopy, comparing HTC cells treated with dexamethasone at 4 and 37 °C.  相似文献   

16.
A new glucocorticoid-binding protein (Peak C) eluted with 0.14 M NaCl on DEAE-cellulose chromatography was identified previously in the rats subjected to stress or treated with glucocorticoid (100 μg/100 g body wt.), while the ‘classic’ glucocorticoid receptor (Peak B) eluted with 0.07 M NaCl was found predominantly in untreated rats. The new glucocorticoid-binding protein, Peak C, was characterized by Scatchard analysis and competition with other steroids as a glucocorticoid receptor. The saturation curve of Peak C for dexamethasone was sigmoidal, whereas that of Peak B was hyperbolic. The Hill coefficient was 1.0 for Peak B and 3.1 for Peak C. These results show that Peak C has multiple binding sites. Peak C bound specificially to only natural or synthetic glucocorticoids, whereas Peak B bound not only to glucocorticoids but also to progesterone and aldosterone. Peak C was far more labile than Peak B, its binding activity decreasing 80% when it was incubated for 30 min at 25°C. The molecular sizes of these two peaks (B and C) were similar, being about 90 000–100 000 as determined by Sepharose 6B column chromatography at high ionic strength (0.35 M KCl). The hormone-receptor complex of Peak C bound to rat liver chromatin specifically, but did not bind to calf thymus DNA. The complex of Peak B bound to not only the chromatin but also calf thymus DNA. Peak B reacted well with antiserum to the ‘classic’ glucocorticoid receptor, but Peak C did not react with this antiserum. These results indicate that Peak C is a different glucocorticoid receptor protein from Peak B, or classic glucocorticoid receptor, and plays physiologically important roles as a glucocorticoid receptor mediating the action of the hormone at a high level.  相似文献   

17.
18.
A new glucocorticoid-binding protein (Peak C) eluted with 0.14 M NaCl on DEAE-cellulose chromatography was identified previously in the rats subjected to stress or treated with glucocorticoid (100 micrograms/100 g body wt.), while the 'classic' glucocorticoid receptor (Peak B) eluted with 0.07 M NaCl was found predominantly in untreated rats. The new glucocorticoid-binding protein, Peak C, was characterized by Scatchard analysis and competition with other steroids as a glucocorticoid receptor. The saturation curve of Peak C for dexamethasone was sigmoidal, whereas that of Peak B was hyperbolic. The Hill coefficient was 1.0 for Peak B and 3.1 for Peak C. These results show that Peak C has multiple binding sites. Peak C bound specifically to only natural or synthetic glucocorticoids, whereas Peak B bound not only to glucocorticoids but also to progesterone and aldosterone. Peak C was far more labile than Peak B, its binding activity decreasing 80% when it was incubated for 30 min at 25 degrees C. The molecular sizes of these two peaks (B and C) were similar, being about 90 000-100 000 as determined by Sepharose 6B column chromatography at high ionic strength (0.34 M KCl). The hormone-receptor complex of Peak C bound to rat liver chromatin specifically, but did not bind to calf thymus DNA. The complex of Peak B bound to not only the chromatin but also calf thymus DNA. Peak B reacted well with antiserum to the 'classic' glucocorticoid receptor, but Peak C did not react with this antiserum. These results indicate that Peak C is a different glucocorticoid receptor protein from Peak B, or classic glucocorticoid receptor, and plays physiologically important roles as a glucocorticoid receptor mediating the action of the hormone at a high level.  相似文献   

19.
Glucocorticoid hormone receptors are present in the soluble fraction of target cell homogenates as large entities (Mr approximately 300,000) that are unable to interact with DNA. These large complexes contain an Mr approximately 94,000 steroid- and DNA-binding polypeptide, in association with an Mr approximately 90,000 non-ligand-binding entity, which has been identified as a heat shock protein, hsp90. This protein has been purified to near homogeneity as a component of the non-activated receptor complex. Characterization of the purified protein revealed its presence as a dimer in the large receptor form. Dissociation of the receptor-hsp90 complex can be induced by heat treatment only when ligand is bound to the receptor, as demonstrated by specific DNA-binding assay and sucrose gradient ultracentrifugation, hsp90 represents ca 1% of total proteins in rat liver cytosol, and milligram amounts were purified using a combination of high performance ion exchange and gel permeation chromatography. Monospecific antibodies were raised in rabbits. They were found to precipitate the intact non-activated glucocorticoid receptor, as well as the Mr approximately 27,000 steroid-binding fragment of the receptor generated by trypsin treatment, indicating that hsp90 interacts with the steroid-binding domain of the glucocorticoid receptor. Finally, translation of glucocorticoid receptor mRNA in reticulocyte lysate yields a protein which also interacts with hsp90 and binds to DNA only after ligand-binding and heat treatment. Thus, the glucocorticoid receptor is synthesized in a non-activated form also in vitro.  相似文献   

20.
The duration of the antagonizing activity of RU486 on tyrosine aminotransferase (TAT) induction and the glucocorticoid receptor in rat liver was studied. A single dose of RU486 (10 mg/kg) caused occupation of the cytosol glucocorticoid receptor in rat liver at 1h. During this time no nuclear binding of [3H]dexamethasone ([3H]Dex) receptor complex was recorded, and TAT induction was completely blocked. TAT inducibility recovery parallelled receptor binding in both the cytosol and the nuclei, reaching maximum at 12 h. In contrast, nuclear binding recovered in 24 h, and [3H]Dex receptor binding in cytosol 48 h after RU486 application. It is concluded that the inhibitory effect of a single dose of RU486 on TAT induction is of rather short duration. At concomitant presence of agonist and antagonist in vivo, no direct correlation between agonist receptor occupancy and TAT induction could be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号