首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of assembly were studied for bovine and pig microtubule protein in vitro over a range of conditions of pH, temperature, nucleotide and protein concentration. The kinetics are in general biphasic with two major processes of similar amplitude but separated in rate by one order of magnitude. Rates and amplitudes are complex functions of solution conditions. The rates of the fast phase and the slow phase attain limiting values as a function of increasing protein concentration, and are more stringently limited at pH 6.5 than pH 6.95. Such behaviour indicates that mechanisms other than the condensation polymerization of tubulin dimer become rate-limiting at higher protein concentration. The constancy of the wavelength-dependence of light-scattering and ultrastructural criteria indicate that microtubules of normal morphology are formed in both phases of the assembly process. Electrophoretic analysis of assembling microtubule protein shows that MAP- (microtubule-associated-protein-)rich microtubules are formed during the fast phase. The rate of dissociation of oligomeric species on dilution of microtubule protein closely parallels the fast-phase rate in magnitude and temperature-dependence. We propose that the rate of this process constitutes an upper limit to the rate of the fast phase of assembly. The kinetics of redistribution of MAPs from MAP-rich microtubules may be a factor limiting the slow-phase rate. A working model is derived for the self-assembly of microtubule protein incorporating the dissociation and redistribution mechanisms that impose upper limits to the rates of assembly attainable by bimolecular addition reactions. Key roles are assigned to MAP-containing fragments in both phases of microtubule elongation. Variations in kinetic behaviour with solution conditions are inferred to derive from the nature and properties of fragments formed from oligomeric species after the rapid temperature jump. The model accounts for the limiting rate behaviour and indicates experimental criteria to be applied in evaluating the relative contributions of alternative pathways.  相似文献   

2.
We describe here the continuous observations of the polymerization of individual microtubules in vitro by darkfield microscopy. In homogeneous preparations we verify that polymerization can occur onto both ends of microtubules. The assembly of microtubules is polar, with one end growing at three times the rate of the other. The differential rate of elongation can be used to determine the polarity of growth off cellular nucleating centers. We show that the microtubules grow off the proximal end of ciliary axonemes at a growth rate equal to that of the slow growing end of free microtubules, while growth off the distal end proceeds at the same rate as the fast growing end. Applying this technique to microtubule growth from metaphase chromosomes isolated from HeLa and CHO cells, we demonstrate that chromosomes initiate polymerization with the fast growing end facing away from the chromosome nucleation site. The opposite ends of free microtubules show different sensitivities to microtubule depolymerizing agents such as low temperature, Ca++ or colchicine as measured directly by darkfield microscopy. The differing rates of assembly and disassembly of each end of a microtubule suggest that a difference in polarity of growth off nucleating sites could serve as one basis for regulating the polymerization of different groups of microtubules in the same cell.  相似文献   

3.
The kinetics of microtubule assembly were investigated by monitoring changes in turbidity which result from the scattering of incident light by the polymer. These studies indicated that assembly occurred by a pathway involving a nucleation phase, followed by an elongation phase as evidenced by a lag in the polymerization kinetics, followed by a psuedo-first-order exponential increase in turbidity. Analytical ultracentrifugation of solutions polymerized to equilibrium showed that 6 S tubulin was the only species detectable in equilibrium with microtubules. Investigation of the elongation reaction in mixtures of 6 S tubulin and microtubule fragments demonstrated that: (1) the net rate of assembly was the sum of the rates of polymerization and depolymerization; (2) the rate of polymerization was proportional to the product of the microtubule number concentration and the 6 S tubulin concentration; and (3) the rate of depolymerization was proportional to the number concentration of microtubules. These results demonstrate that microtubule assembly occurs by a condensation polymerization mechanism consisting of distinct nucleation and elongation steps. Microtubules are initiated in a series of protein association reactions in a pathway that has not been fully elucidated. Elongation proceeds by the consecutive association of 6 S tubulin subunits onto the ends of existing microtubules. Similarly, depolymerization occurs by dissociation of 6 S subunits from the ends of microtubules. The rate constants measured for polymerization and depolymerization at 30 °C were 4 × 106m?1 s?1 and 7 s?1, respectively.  相似文献   

4.
Chicken erythrocyte tubulin containing a unique beta tubulin variant polymerizes with greater efficiency (lower critical concentration) but at a slower rate than chicken brain tubulin. In a previous study we demonstrated that the low net rate of assembly is partly due to the presence of large oligomers and rings which reduce the initial rate of subunit elongation on microtubule seeds (Murphy, D.B., and Wallis, K.T. (1985) J. Biol. Chem. 260, 12293-12301). In this study we show that erythrocyte tubulin oligomers also retard the rate of microtubule nucleation and the net rate of self-assembly. The inhibitory effect is most likely to be due to the increased stability of erythrocyte tubulin oligomers, including a novel polymer of coiled rings that forms during the rapid phase of microtubule polymerization. The slow rate of dissociation of rings and coils into dimers and small oligomers appears to limit both the nucleation and elongation steps in the self-assembly of erythrocyte microtubules.  相似文献   

5.
Current models of microtubule assembly from pure tubulin involve a nucleation phase followed by microtubule elongation at a constant polymer number. Both the rate of microtubule nucleation and elongation are thought to be tightly influenced by the free GTP-tubulin concentration, in a law of mass action-dependent manner. However, these basic hypotheses have remained largely untested due to a lack of data reporting actual measurements of the microtubule length and number concentration during microtubule assembly.Here, we performed simultaneous measurements of the polymeric tubulin concentration, of the free GTP-tubulin concentration, and of the microtubule length and number concentration in both polymerizing and depolymerizing conditions. In agreement with previous work we find that the microtubule nucleation rate is strongly dependent on the initial GTP-tubulin concentration. But we find that microtubule nucleation persists during microtubule elongation. At any given initial tubulin-GTP concentration, the microtubule nucleation rate remains constant during polymer assembly, despite the wide variation in free GTP-tubulin concentration. We also find a remarkable constancy of the rate of microtubule elongation during assembly. Apparently, the rate of microtubule elongation is intrinsic to the polymers, insensitive to large variations of the free GTP-tubulin concentration. Finally we observe that when, following assembly, microtubules depolymerize below the free GTP-tubulin critical concentration, the rate-limiting factor for disassembly is the frequency of microtubule catastrophe. At all time-points during disassembly, the microtubule catastrophe frequency is independent of the free GTP-tubulin concentration but, as the microtubule nucleation rate, is strongly dependent on the initial free GTP-tubulin concentration. We conclude that the dynamics of both microtubule assembly and disassembly depend largely on factors other than the free GTP-tubulin concentration. We propose that intrinsic structural factors and endogenous regulators, whose concentration varies with the initial conditions, are also major determinants of these dynamics.  相似文献   

6.
Short microtubules can be formed by shearing a sample at polymerization steady state of microtubules formed by glycerol-induced assembly of pure tubulin dimer. Such short microtubules show a rapid increase in mean length. The rate of this increase is too fast to be accounted for by statistical redistribution of subunits between microtubules. We propose that the fast length changes are a result of the end-to-end annealing of microtubules demonstrated by Rothwell et al. (Rothwell, S. W., Grasser, W. A., and Murphy, D. B. (1986) J. Cell Biol. 102, 619-627). This proposal has been tested by measuring the rate of annealing of free microtubules to Tetrahymena axonemes under conditions identical to those used for the lengthening of sheared microtubules. That free microtubules anneal to axonemal microtubules is indicated by the following observations. Axonemes elongate at both ends in the presence of steady state microtubules, as predicted for a symmetrical annealing process; under conditions where the microtubule number concentration is greater than that for axonemes, the initial rate of axoneme elongation is more rapid with a low concentration of long microtubules at steady state than with a high number concentration of short microtubules at steady state. These observations are inconsistent with the predictions of a model based on microtubule dynamic instability (Mitchison, T., and Kirschner, M. (1984) Nature 312, 237-242). The annealing rate observed with axonemes can account for the rate of elongation of sheared steady state microtubules.  相似文献   

7.
Microtubule dynamics in interphase cells   总被引:67,自引:50,他引:17       下载免费PDF全文
The sites of microtubule growth and the kinetics of elongation have been studied in vivo by microinjection of biotin-labeled tubulin and subsequent visualization with immunocytochemical probes. Immunofluorescence and immunoelectron microscopy demonstrate that injected biotin-labeled subunits are incorporated into new segments of growth which are contiguous with unlabeled microtubules. Rapid incorporation occurs by elongation of existing microtubules and new nucleation off the centrosome. The growth rate is 3.6 micron/min and is independent of the concentration of injected labeled tubulin. This rate of incorporation together with turnover of existing microtubules leads to approximately 80% exchange in 15 min. The observed kinetics and pattern of microtubule turnover allow for an evaluation of the relevance of several in vitro models for steady-state dynamics to the in vivo situation. We have also observed a substantial population of quasi-stable microtubules that does not exchange subunits as rapidly as the majority of microtubules and may have specialized functions in the cell.  相似文献   

8.
M F Carlier  D Didry  D Pantaloni 《Biochemistry》1987,26(14):4428-4437
The tubulin concentration dependence of the rates of microtubule elongation and accompanying GTP hydrolysis has been studied over a large range of tubulin concentration. GTP hydrolysis followed the elongation process closely at low tubulin concentration and became gradually uncoupled at higher concentrations, reaching a limiting rate of 35-40 s-1. The kinetic parameters for microtubule growth were different at low and high tubulin concentrations. Elongation of microtubules has also been studied in solutions containing GDP and GTP in variable proportions. Only traces of GTP present in GDP were necessary to confer a high stability (low critical concentration) to microtubules. Pure GDP-tubulin was found unable to elongate microtubules in the absence of GTP but blocked microtubule ends with an equilibrium dissociation constant of 5-6 microM. These data were accounted for by a model within which, in the presence of GTP-tubulin at high concentration, microtubules grow at a fast rate with a large GTP cap; the GTP cap may be quite short in the region of the critical concentration; microtubule stability is linked to the strong interaction between GTP and GDP subunits at the elongating site; dimeric GDP-tubulin does not have the appropriate conformation to undergo reversible polymerization. These results are discussed with regard to possible role of GDP and GTP and of GTP hydrolysis in microtubule dynamics.  相似文献   

9.
To study tubulin polymerization and microtubule sliding during spindle elongation in vitro, we developed a method of uncoupling the two processes. When isolated diatom spindles were incubated with biotinylated tubulin (biot-tb) without ATP, biot-tb was incorporated into two regions flanking the zone of microtubule overlap, but the spindles did not elongate. After biot-tb was removed, spindle elongation was initiated by addition of ATP. The incorporated biot-tb was found in the midzone between the original half-spindles. The extent and rate of elongation were increased by preincubation in biot-tb. Serial section reconstruction of spindles elongating in tubulin and ATP showed that the average length of half-spindle microtubules increased due to growth of microtubules from the ends of native microtubules. The characteristic packing pattern between antiparallel microtubules was retained even in the "new" overlap region. Our results suggest that the forces required for spindle elongation are generated by enzymes in the overlap zone that mediate the sliding apart of antiparallel microtubules, and that tubulin polymerization does not contribute to force generation. Changes in the extent of microtubule overlap during spindle elongation were affected by tubulin and ATP concentration in the incubation medium. Spindles continued to elongate even after the overlap zone was composed entirely of newly polymerized microtubules, suggesting that the enzyme responsible for microtubule translocation either is bound to a matrix in the spindle midzone, or else can move on one microtubule toward the spindle midzone and push another microtubule of opposite polarity toward the pole.  相似文献   

10.
Most, if not all, microtubules in vivo grow unidirectionally from a nucleation site such as the centrosome. This organized growth of microtubules can generate and maintain the radially symmetrical array of interphase microtubules as well as the bipolar mitotic apparatus. To investigate the regulation of polarized microtubule growth, we have prepared a cell-free extract from surf clam oocytes that exhibits unidirectional microtubule assembly. Immunofluorescence microscopy was used to visualize the net assembly of microtubules onto the fast (plus)- and slow (minus)- growing ends of isolated ciliary axonemes. All detectable microtubule growth in these cytoplasmic extracts occurred at the plus (+) ends and the extent of (+) end growth was regulated by subtle changes in pH. Microtubule assembly in these crude extracts was highly favored at pH 7.3, the pH of the post-fertilization cytoplasm. In contrast, when tubulin was purified from these oocyte extracts, integral components were lost, and microtubule growth became predominantly bidirectional and was favored at acidic pH. These results indicate that cytoplasmic factors may inhibit bidirectional growth in vivo and that temporal or local changes in cytoplasmic pH may influence microtubule assembly during the cell cycle.  相似文献   

11.
A quantitative analysis of microtubule elongation   总被引:15,自引:9,他引:6       下载免费PDF全文
Methods have been developed for differentially inhibiting microtubule nucleation and elongation in vitro. By use of polyanions, assembly- competent tubulin solutions of several milligrams/milliliter can be prepared which do not exhibit appreciable spontaneous assembly during the time-course of an experiment. Microtubule elongation can be initiated by the addition of known numbers of microtubule fragments. A detailed analysis of the resulting process demonstrates that: (a) rings are not obligatory intermediates in the nucleation sequence, and neither rings nor protofilament sheets are obligatory intermediates in the elongation reaction. (b) The end of an elongating microtubule often has a short region of open protofilament sheet or "C-microtubule" similar to that observed in vivo. (c) The development of turbidity follows a simple exponential approach to an equilibrium value. (d) The final equilibrium values are independent of the number of added nucleating fragments, while the initial growth rates and half-times to reach equilibrium are dependent on the number of added nuclei. (e) The final lengths of the microtubules at equilibrium are inversely proportional to the number of added fragments. (f) The equilibrium constants are independent of microtubule length. (g) The number of assembly and disassembly sites per microtubule is not a function of microtubule length. (h) The forward rate constants, the final polymer concentrations, and growth rates of microtubules are dependent upon the concentration of polyanion present. These results are strongly supportive of the idea that microtubule assembly is a "condensation- polymerization" and provide basic information on the kinetics and length distributions of the elongation in vitro.  相似文献   

12.
Low molar ratios of heparin inhibited in vitro assembly of bovine brain microtubule proteins and disassembled preformed microtubules. Addition of purified microtubule-associated proteins counteracted the assembly inhibition by heparin. Our results suggest that the polyanion heparin affects microtubule assembly by binding to the microtubule-associated proteins. This complex can not support nucleation or stabilize the microtubule structure although it still can associate with the tubulin polymer. In the presence of heparin, the critical concentration needed for microtubule assembly was increased. Furthermore, the absolute assembly difference induced by heparin, the delta A350, was only dependent on the concentration and the molecular weight of heparin, not of the total microtubule protein concentration, or the addition of microtubule-associated proteins. Commercial, standard heparin (Mr 6000-25 000) had an I50 of about 0.1/tubulin dimer. The heparin fraction(s) with a high molecular weight had a stronger effect than those with lower molecular weight. Substoichiometric amounts of taxol completely relieved the inhibition of assembly by heparin, although aberrant forms were present. These microtubules had a reduced amount of coassembled microtubule-associated proteins, and furthermore contained heparin.  相似文献   

13.
In order to reveal the involvement of tubulin microtubules and actin microfilaments in gravisensing reactions in the distal elongation zone of root, Arabidopsis thaliana plants stably transformed with MAP4-GFP construct were grown under slow clinorotation. Experiments have shown that stabilization of cell growth in the distal elongation zone of Arabidopsis seedling root is provided by common structural organization of microtubules and microfilaments, and interrelations between microtubules and microfilaments is highly dependent upon the type of cell differential growth. Less pronounced effect of microfilament disruption on microtubule organization has been observed under clinorotation and it suggests the existence of complex mechanism of cooperation between microtubules and microfilaments which is probably, masked on earth.  相似文献   

14.
M F Carlier  D Pantaloni 《Biochemistry》1978,17(10):1908-1915
In vitro polymerization of pig brain tubulin, highly purified and deprived of microtubule-associated proteins, was followed by turbidimetry. Treatment of the data yielded the relation existing between the observed turbidity and the amount of polymer formed. This allowed a kinetic analysis, according to Oosawa's theories, of the polymerization process, which consisted of a slow spontaneous nucleation followed by the growth process. The apparent elongation rate constant was closely related to the nucleation process and exhibited a highly cooperative variation with tubulin concentration. The cooperativity was indicative of the size of the nucleus which appears to remain the same whether sheets or microtubules are formed. Magnesium ions appear to play a role in the polymorphism of tubulin polymers, the proportion of microtubules to sheets increasing with magnesium ion concentration. From kinetic experiments evidence was provided for GDP binding in competition with GTP, with a sixfold lower affinity. The tubulin-GDP complex could participate in microtubules elongation, but was not able to form nuclei. The critical concentration of tubulin in the presence of GDP was roughly twice as high as in the presence of GTP.  相似文献   

15.
Role of tubulin-associated proteins in microtubule nucleation and elongation   总被引:29,自引:0,他引:29  
Previous experiments have shown that a fraction of microtubule-associated proteins is essential for the self-assembly of microtubules in vitro. When tubulin was titrated with increasing concentrations of these non-tubulin accessory factors, both the rate and extent of polymerization increased in a sigmoidal as opposed to a stoichiometric fashion. The non-tubulin proteins promoted the nucleation of microtubules as determined from the analysis of the kinetics of tubulin selfassembly and the examination of the microtubule length distribution following polymerization. The effect of the non-tubulin factors on microtubule elongation was determined by kinetic experiments in which purified tubulin subunits were added to microtubule seeds and the initial rate of polymerization was measured under conditions where spontaneous self-assembly was below detectable levels. In addition, microtubule growth was also observed when isolated flagellar axonemes were incubated with purified tubulin subunits indicating that the non-tubulin factors were not an absolute requirement for elongation. Analysis of the data in terms of the condensation mechanism of microtubule assembly indicated that the non-tubulin proteins stimulated the growth of microtubules not by increasing the rate of polymerization but by decreasing the rate of depolyerization. The mechanism by which these accessory factors promote tubulin assembly may be summarized as follows: under the conditions employed, they are required for tubulin initiation but not for elongation; the factors affect the extent and net rate at which polymer is formed by binding to the polymer, thereby stabilizing the formed microtubules and consequently shifting the equilibrium to favor assembly.  相似文献   

16.
Kirik A  Ehrhardt DW  Kirik V 《The Plant cell》2012,24(3):1158-1170
Organization of microtubules into ordered arrays involves spatial and temporal regulation of microtubule nucleation. Here, we show that acentrosomal microtubule nucleation in plant cells involves a previously unknown regulatory step that determines the geometry of microtubule nucleation. Dynamic imaging of interphase cortical microtubules revealed that the ratio of branching to in-bundle microtubule nucleation on cortical microtubules is regulated by the Arabidopsis thaliana B' subunit of protein phosphatase 2A, which is encoded by the TONNEAU2/FASS (TON2) gene. The probability of nucleation from γ-tubulin complexes localized at the cell cortex was not affected by a loss of TON2 function, suggesting a specific role of TON2 in regulating the nucleation geometry. Both loss of TON2 function and ectopic targeting of TON2 to the plasma membrane resulted in defects in cell shape, suggesting the importance of TON2-mediated regulation of the microtubule cytoskeleton in cell morphogenesis. Loss of TON2 function also resulted in an inability for cortical arrays to reorient in response to light stimulus, suggesting an essential role for TON2 and microtubule branching nucleation in reorganization of microtubule arrays. Our data establish TON2 as a regulator of interphase microtubule nucleation and provide experimental evidence for a novel regulatory step in the process of microtubule-dependent nucleation.  相似文献   

17.
Much interest has currently been attached to the length distribution of microtubules polymerized in vitro and the related question of their possible 'dynamic instability'. Fundamental to this question is the mechanism of microtubule nucleation, which controls the rates of assembly and disassembly of microtubule protein in vitro. These kinetics are affected by a number of factors, including both the guanine nucleotides, GTP and GDP, and magnesium ion. Mg2+ exerts complex effects, as indicated by the existence of an optimal Mg2+ concentration for the maximum assembly rate of microtubule protein, and we investigate these effects in this report. At [Mg2+] greater than 0.5 mM, the characteristic lag-phase is substantially increased and the rate of assembly is greatly reduced without affecting the critical concentration significantly. We show that increasing [Mg2+] has two effects on the assembly process: nucleation is less efficient and the intrinsic rate constant for the elongation reaction is reduced. Lowering [Mg2+] (less than 0.5 mM) also inhibits nucleation. These effects of varying [Mg2+] can be explained predominantly in terms of enhanced stability of the microtubule-associated protein-containing oligomeric species present in the microtubule protein preparation. [Mg2+] is thus found to be a further important factor in microtubule nucleation, and hence, in determining length distributions in assembling microtubules.  相似文献   

18.
Upon recovery from nocodazole treatment, microtubules from cultured epithelial cells exhibit unusual properties: they re-grow as fast as any highly dynamic microtubule, but they are also protected against disassembly when challenged with nocodazole like the stable microtubules of steady-state cells. Exploring the mechanism that underlies this protection, we found that it was sensitive to ATP treatment and that it involved conventional kinesin. Kinesin localized at the growing end or along nascent microtubules. Its inhibition using a dominant-negative construct for cargo binding, or by micro-injecting an anti-kinesin heavy chain antibody that impairs motor activity, resulted in the partial or total loss of microtubule protection. Finally, in an ex vivo elongation assay, we found that kinesin also participates in the control of microtubule re-growth. Altogether, our findings suggest that kinesin is involved in an early microtubule protection process that is linked to the control of their dynamics during their early growth phase.  相似文献   

19.
Two tubulin variants, isolated from chicken brain and erythrocytes and known to have different peptide maps and electrophoretic properties, are demonstrated to exhibit different assembly properties in vitro: 1) erythrocyte tubulin assembles with greater efficiency (lower critical concentration, greater elongation rate) but exhibits a lower nucleation rate than brain tubulin, and 2) erythrocyte tubulin readily forms oligomers whose presence significantly retards the rate of elongation, suggesting that tubulin oligomers may also be important for determining the rate of assembly and the length of microtubules in erythrocytes. Erythrocyte tubulin isolated by cycles of in vitro assembly-disassembly is also demonstrated to contain a 67-kDa tau factor that greatly enhances microtubule nucleation but has little effect on elongation rates or critical concentration. Immunofluorescence microscopy with tau antibody indicates that tau is specifically associated with marginal band microtubules, suggesting that it may be important for determining microtubule function in vivo.  相似文献   

20.
Microtubule assembly from purified tubulin preparations involves both microtubule nucleation and elongation. Whereas elongation is well documented, microtubule nucleation remains poorly understood because of difficulties in isolating molecular intermediates between tubulin dimers and microtubules. Based on kinetic studies, we have previously proposed that the basic building blocks of microtubule nuclei are persistent tubulin oligomers, present at the onset of tubulin assembly. Here we have tested this model directly by isolating nucleation-competent cross-linked tubulin oligomers. We show that such oligomers are composed of 10-15 laterally associated tubulin dimers. In the presence of added free tubulin dimers, several oligomers combine to form microtubule nuclei competent for elongation. We provide evidence that these nuclei have heterogeneous structures, indicating unexpected flexibility in nucleation pathways. Our results suggest that microtubule nucleation in purified tubulin solution is mechanistically similar to that templated by gamma-tubulin ring complexes with the exception that in the absence of gamma-tubulin complexes the production of productive microtubule seeds from tubulin oligomers involves trial and error and a selection process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号