首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The southeastern mountains of Spain represent the southernmost limit of the genus Austropotamobius and the species A. pallipes (Lereboullet). The taxonomic position of this isolated crayfish in southern Spain is not clear, being genetically close to A. italicus, but morphologically distinct. A severe decline occurred during the 1980s, especially due to expansion of the alien species Procambarus clarkii, a North American freshwater crayfish and a vector of the aphanomycosis disease. In order to design a strategy for native crayfish conservation, recent trends in native crayfish populations, influence of isolation and habitat variables on their survival and possibilities for their recovery through restocking were studied. A decline in populations was observed between 1991 and 2002 (from 26 to 14 populations), and a total extinction could be predicted within the next 13 years. Two well-defined periods of rapid extinction rates were detected, 1991–1994 (1.25 populations/year) and 1999–2002 (1.50 populations/year). Main causes of extinction for these two periods were invasion by P. clarkii and mortality by unknown causes, respectively. The isolation variables had some positive effects on survival of populations but these cannot offer a sufficient guarantee, since several cases of extinction can be affected by a large component of stochastic factors, including random catastrophes. On the other hand, survival trials and restocking experiments showed that it was possible to recover lost habitats, when P. clarkii was absent and environmental conditions were good. It is concluded that it is possible to avoid extinction of the native crayfish populations; however, the conservation strategies must be based on an urgent stocking/restocking program.  相似文献   

2.
Understanding the interspecific interactions of Procambarus clarkii with other aquatic macroinvertebrates will help to unveil the mechanisms and processes underlying biological invasiveness. The purpose of this study was to investigate predator–prey interactions of two ontogenic phases of P. clarkii with native and exotic species of aquatic macroinvertebrates at a single and multiple prey level. We performed laboratory experiments to determine the consumption and the behavioral responses of Chironomus riparius, Physa acuta and Corbicula fluminea to P. clarkii. The presence of P. clarkii significantly affected the abundance of C. riparius and P. acuta, but not of C. fluminea whether prey species were provided singly or simultaneously. The consumption of C. riparius by P. clarkii was higher than P. acuta for both crayfish sizes and situations (single/multiple prey systems) and C. fluminea was never consumed. Physa acuta was the only species that exhibited an anti-predator behavior to P. clarkii. Our results show that P. clarkii can have strong consumptive and trait effects on aquatic macroinvertebrate prey at a single and multiple prey level, resulting in differential impacts on different prey species. This study clarifies some aspects of the predator–prey interactions between P. clarkii and native as well as other exotic macroinvertebrate species that have invaded freshwater biocenosis worldwide.  相似文献   

3.
Predator‐induced phenotypic plasticity has been widely documented in response to native predators, but studies examining the extent to which prey can respond to exotic invasive predators are scarce. As native prey often do not share a long evolutionary history with invasive predators, they may lack defenses against them. This can lead to population declines and even extinctions, making exotic predators a serious threat to biodiversity. Here, in a community‐wide study, we examined the morphological and life‐history responses of anuran larvae reared with the invasive red swamp crayfish, Procambarus clarkii, feeding on conspecific tadpoles. We reared tadpoles of nine species until metamorphosis and examined responses in terms of larval morphology, growth, and development, as well as their degree of phenotypic integration. These responses were compared with the ones developed in the presence of a native predator, the larval dragonfly Aeshna sp., also feeding on tadpoles. Eight of the nine species altered their morphology or life history when reared with the fed dragonfly, but only four when reared with the fed crayfish, suggesting among‐species variation in the ability to respond to a novel predator. While morphological defenses were generally similar across species (deeper tails) and almost exclusively elicited in the presence of the fed dragonfly, life‐history responses were very variable and commonly elicited in the presence of the invasive crayfish. Phenotypes induced in the presence of dragonfly were more integrated than in crayfish presence. The lack of response to the presence of the fed crayfish in five of the study species suggests higher risk of local extinction and ultimately reduced diversity of the invaded amphibian communities. Understanding how native prey species vary in their responses to invasive predators is important in predicting the impacts caused by newly established predator–prey interactions following biological invasions.  相似文献   

4.
Based on a review and our own data, we present an overview of the ecological impacts on the trophic web of Mediterranean wetlands by an introduced Decapod Crustacean, the red swamp crayfish (Procambarus clarkii). P. clarkii lacks efficient dispersal mechanisms but is very well adapted to the ecological conditions of Mediterranean wetlands (fluctuating hydroperiods with regular intervals of drought). As an opportunistic, omnivorous species, which adapts its ecology and life history characteristics, such as timing and size at reproduction to changing environmental conditions, it became readily established in most of the Mediterranean wetland environments. High reproductive output, short development time and a flexible feeding strategy are responsible for its success as an invader. Like most crayfish, it occupies a keystone position in the trophic web of the invaded system and interacts strongly with various trophic levels. It efficiently grazes on macrophytes and is one of the main factors, besides the impact of flamingos, cattle and introduced fish, of the change of many water bodies from a macrophyte dominated, clear water equilibrium to a phytoplankton driven turbid water balance. Juveniles feed on protein rich animal food with the corresponding impact on the macroinvertebrate community in competition with other crayfish or fish species. At the same time, it serves as a prey for mammals, birds and fish. Due to its predatory and grazing activity, it efficiently canalises energy pathways reducing food web complexity and structure. Feeding also on detritus it opens, especially in marshlands, the detritic food chain to higher trophic levels which results in an increase of crayfish predators. As a vector of diseases, it has a severe impact on the preservation and reintroduction of native crayfish. P. clarkii accumulates heavy metals and other pollutants in its organs and body tissues and transmits them to higher trophic levels. Due to the long history of its presence, the complex interactions it established within the invaded ecosystems and the socio-economic benefits it provides to humans, prevention and control seem the most promising management measures to reduce the negative impact of this crayfish species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The aim of this work is to provide an account of alien species richness and composition in a remnant Mediterranean coastal wetland of Central Italy. Data were obtained from different taxa-specific methods, in 2001–2005 (terrestrial vertebrates) and in 2005 (fish, arthropoda, mollusca). Among the 353 species sampled, 17 (4.8 %) are aliens (7.1% if we consider only vertebrates).Data on abundance, introduction type and status of alien species are reported. A crustacean, Procambarus clarkii, a fish, Gambusia sp. and three rodents, Myocastor coypus, Rattus norvegicus and Mus domesticus are the naturalized invasive species that locally could constitute a threat on economic and ecological levels. Data on Agapornis nigrigenis and Quelea cardinalis represent the first records for Italy. We also report evidence of a food chain on three levels, among the most invasive species (predation of Gambusia sp. by Procambarus clarkii and of Rattus norvegicus on Procambarus clarkii).   相似文献   

6.
Red swamp crayfish Procambarus clarkii, a widespread invasive alien crayfish, represents a serious threat for several freshwater species, including amphibians, which are declining at a global scale. As a shared coevolutionary history is the main factor determining the emergence of antipredator responses, Anuran tadpoles may not be able to cope effectively with this introduced predator. We performed two experiments to assess agile frog's (Rana dalmatina) defensive responses to both P. clarkii and native dragonfly larvae (Anax imperator). First, we conditioned embryos (collected from two ponds 30 km away from each other) with predators’ chemical cues to explore possible variation in hatching time caused by predation risk. In the second experiment, to evaluate how predators’ diet affects tadpole behavior, we conditioned tadpoles for a 5‐week period with cues from tadpole‐fed and gammarid‐fed predators and recorded behavioral and morphological responses. Embryos did not alter hatching time in the presence of any predator cue, while tadpoles from both populations strongly reduced activity and visibility when raised in the presence of tadpole‐fed dragonfly larvae. Morphological changes were less straightforward and were induced only in one population, for which broader tails and a slight increase in body size of tadpoles exposed to tadpole‐fed predators were observed. The lack of defensive responses in crayfish‐exposed tadpoles suggests that the spreading of this invasive species in agricultural lowlands of northern Italy may represent a further threat to their conservation.  相似文献   

7.
Several studies have shown that prey and predator body size may affect the outcome of predator–prey interactions. However, few studies have taken in account the changes on predator–prey interactions over 24 h. In a tropical freshwater system I evaluated how predator and prey size, and their diel rhythm in activity influenced the interaction between Physalaemus pustulosus tadpoles and dragonfly larvae. Tadpoles of different size classes were exposed to two size classes of the dragonfly larvae Rhionaeschna spec. Feeding trials were conducted during day and night. Tadpole activity showed a diel rhythm and affected size-selective predation of the smallest dragonfly larvae, but not of the larger ones. Predator and prey size had a significant effect on the prey survivorship and prey size had a significant effect on the preference of the predator. The interaction between both factors was significant, indicating that they did not operate independently. I conclude that the predator–prey interactions between odonate larvae and anuran tadpoles were mainly affected by the size of the prey and the predator, and less by the diel activity pattern of the prey.  相似文献   

8.
This study explores the effect of the length of learning period on capture rate of a previously unfamiliar prey by an invasive freshwater crayfish (Procambarus clarkii). Juvenile crayfish were subjected to different periods of contact (learning period) with a larvae prey (Chaoborus sp.). The length of the learning period significantly affected the number of prey consumed by the predator. Our results indicate that the naive crayfish require less than 12 h to learn to maximize capture rate of this prey. The learning coefficient, adopted in the present study, may be useful in exploring predation capabilities of alien species in newly invaded habitats.  相似文献   

9.
The introduction of some crustacean species has produced alterations of freshwater environments and declines of native species worldwide. The red swamp crayfish, Procambarus clarkii Girard, was introduced in the Southwest Iberian Peninsula in the 1970’s, producing severe impacts on rice agriculture and on native biota such as macrophytes, gastropods, native crayfish and amphibians. We studied the distribution of P. clarkii in two areas of SW Iberian Peninsula: the Sado River basin (SW Portugal), an area colonized by this species around 1990, and the Parque Natural del Entorno de Doñana (SW Spain), colonized soon after its introduction in the Iberian Peninsula, in the 1970’s. Our main goal was to determine which factors limit crayfish distribution, which could help to identify the most effective management practices to contain its spread. Procambarus clarkii was found in most types of water bodies, including small and shallow ones. Distance to a crayfish source was the single predictor variable explaining crayfish occurrence in most types of habitats and in both areas. The only exception was for the Sado permanent stream points, where crayfish presence was negatively affected by an interaction between elevation and flow velocity. Other habitat characteristics have apparently little or no importance for its successful colonization. Moreover, this study indicated that overland dispersal is apparently a frequent phenomenon in this species. Our findings can be used to determine which habitats are most likely to be colonized by the crayfish and to develop practical measures which may limit its spread and minimize its impacts.  相似文献   

10.
The responses of invasive and native species of crayfish to conspecific and heterospecific alarm odors were recorded in the laboratory. Individuals of the North American invasive Procambarus clarkii responded just as strongly to odors from crushed Austropotomobius pallipes as they did to crushed conspecifics. The North American invasive Orconectes limosus also responded as strongly to P. clarkii odor as to conspecific odor. The native Italian species A. pallipes responded more strongly to conspecific alarm than to heterospecific alarm from P. clarkii. The pattern of invasive species of crayfish using a broader range of danger signals than displaced native species appears to be robust.  相似文献   

11.
The introduction of non-indigenous plants, animals and pathogens is one of today’s most pressing environmental challenges. Freshwater ecologists are challenged to predict the potential consequences of species invasions because many ecosystems increasingly support novel assemblages of native and non-native species that are likely to interact in complex ways. In this study we evaluated how native signal crayfish (Pacifastacus leniusculus) and non-native red swamp crayfish (Procambarus clarkii) and northern crayfish (Orconectes virilis) utilize a novel prey resource: the non-native Chinese mystery snail (Bellamya chinensis). All species are widespread in the United States, as well as globally, and recent surveys have discovered them co-occurring in lakes of Washington State. A series of mesocosm experiments revealed that crayfish are able to consume B. chinensis, despite the snail’s large size, thick outer shell and trapdoor defense behaviour. Crayfish exhibited size-selective predation whereby consumption levels decreased with increasing snail size; a common pattern among decapod predators. Comparison of prey profitability curves—defined as the yield of food (weight of snail tissue) per second of feeding time (the time taken to crack the shell and consume the contents)—suggests that small and very large snails may represent the most profitable prey choice. By contrast, previous studies have reported the opposite pattern for crayfish consumption on thin-shelled snails. For all snail size classes, we found that native P. leniusculus and invasive O. virilis consumed greater numbers of snails than invasive P. clarkii. Moreover, P. leniusculus consistently handled and consumed snails at a faster pace compared to both invasive crayfishes across the range of snail sizes examined in our study. These results suggest not only that B. chinensis is a suitable food source for crayfish, but also that native P. leniusculus may ultimately out-consume invasive crayfishes for this new prey resource.  相似文献   

12.
Antipredator behaviour is an important fitness component in most animals. A co-evolutionary history between predator and prey is important for prey to respond adaptively to predation threats. When non-native predator species invade new areas, native prey may not recognise them or may lack effective antipredator defences. However, responses to novel predators can be facilitated by chemical cues from the predators’ diet. The red swamp crayfish Procambarus clarkii is a widespread invasive predator in the Southwest of the Iberian Peninsula, where it preys upon native anuran tadpoles. In a laboratory experiment we studied behavioural antipredator defences (alterations in activity level and spatial avoidance of predator) of nine anurans in response to P. clarkii chemical cues, and compared them with the defences towards a native predator, the larval dragonfly Aeshna sp. To investigate how chemical cues from consumed conspecifics shape the responses, we raised tadpoles with either a tadpole-fed or starved crayfish, or dragonfly larva, or in the absence of a predator. Five species significantly altered their behaviour in the presence of crayfish, and this was largely mediated by chemical cues from consumed conspecifics. In the presence of dragonflies, most species exhibited behavioural defences and often these did not require the presence of cues from predation events. Responding to cues from consumed conspecifics seems to be a critical factor in facilitating certain behavioural responses to novel exotic predators. This finding can be useful for predicting antipredator responses to invasive predators and help directing conservation efforts to the species at highest risk.  相似文献   

13.
The rusty crayfish, Orconectes rusticus, is one of America’s best-known non-indigenous crayfishes, having been identified as extirpating native crayfishes and disrupting local aquatic ecosystems. Over the past 40–50 years, rusty crayfish have spread from its historical range in the Ohio River drainage (U.S.A.), to waters throughout much of Illinois, Michigan, Wisconsin, and Minnesota and parts of 11 other states, Ontario (Canada) and the Laurentian Great Lakes. Using a comprehensive dataset based on all known historical records and extensive present-day surveys (n = 2775) this study reports on the invasion history of rusty crayfish, with observations on concomitant declines of native crayfishes in Wisconsin over the past 130 years (1870–2004). We found that rusty crayfish occurrences have increased from 7% of all crayfish records collected during the first 20 years of their invasion (1965–1984) to 36% of all records during the last 20 years, and that rusty crayfish have replaced the northern clearwater crayfish (O. propinquus) and virile crayfish (O. virilis) as the most dominant member of the contemporary crayfish fauna. In light of our results we discuss the introduction, establishment and integration phases of the rusty crayfish invasion and provide preliminary predictions of the potential distribution of rusty crayfish in Wisconsin lakes based on critical environmental requirements.  相似文献   

14.
15.
The role of omnivorous crayfish in littoral communities   总被引:5,自引:0,他引:5  
Dorn NJ  Wojdak JM 《Oecologia》2004,140(1):150-159
Large omnivorous predators may play particularly important roles determining the structure of communities because of their broad diets and simultaneous effects on multiple trophic levels. From June 2001 to June 2002 we quantified community structure and ecosystem attributes of six newly establishing freshwater ponds (660 m2 each) after populations of omnivorous crayfish (Orconectes virilis) were introduced to three of the ponds. Crayfish preyed heavily on fish eggs in this experiment, which reduced recruitment of young-of-year fish. This effect indirectly enhanced zooplankton biomass in crayfish ponds. Phytoplankton abundance exhibited a more complex pattern and was probably influenced by non-trophic (e.g., bioturbation) effects of crayfish. Peak dissolved oxygen levels were lower in the crayfish ponds indicating that they had lower primary production: respiration ratios. Metaphytic algae were strongly affected by crayfish presence; filamentous greens quickly disappeared and the blue-green Gleotrichia (a less preferred food item) eventually dominated the composition in crayfish ponds. Chara vulgaris and vascular macrophytes established 34% cover in control ponds by June 2002, but were not able to establish in crayfish ponds. Two important periphyton herbivores (tadpoles and gastropods) were absent or significantly reduced in the crayfish ponds, but periphyton differences were temporally variable and not easily explained by a simple trophic cascade (i.e., crayfish—snails and tadpoles—periphyton). Our results indicate that crayfish can have dramatic direct and indirect impacts on littoral pond communities via feeding links with multiple trophic levels (i.e., fish, invertebrates, and plants) and non-trophic activities (bioturbation). Although the effects of omnivorous crayfish on littoral communities can be large, their complex effects do not fit neatly into current theories about trophic interactions or freshwater community structure.  相似文献   

16.
A range of African and alien macro-invertebrates has been reported preying on freshwater pulmonate snails, including those that serve as intermediate hosts for bloodflukes of the genus Schistosoma. Predation by five molluscivorous taxa is reviewed here: indigenous leeches (Glossiphoniidae), marsh fly larvae (Sciomyzidae), waterbugs (Belostomatidae), crabs (Potamonautidae) and invasive crayfish (Astacidae). Common features are a lack of prey specificity but clear prey-size specificity. Attention is drawn to the ability of invasive snail species (Physidae and Lymnaeidae) to avoid predation by several of these taxa. Evidence suggests that only the alien invasive crayfish Procambarus clarkii has potential as a snail biocontrol agent, but that its use should not be encouraged.  相似文献   

17.
To investigate the effects of Procambarus clarkii on macroinvertebrate diversity, we conducted a mesocosm experiment simulating small pools in rice field pads after the rice season. We hypothesized that crayfish predation would negatively impact macroinvertebrate diversity, and the magnitude of this impact should vary with the size of P. clarkii. We conducted a short-term mesocosm experiment to determine macroinvertebrate diversity in the presence of three size classes and in the absence of crayfish, as well as the diet composition of crayfish from the three size classes. At the end of the experiments, the diet of crayfish was composed of the most available taxa (Culicidae, Chironomus, Tanytarsini and Orthocladinae). These results also show evidence that, in confined areas, crayfish are important predators of major rice pests such as rice Chironominae larvae. Macroinvertebrate diversity was negatively affected by crayfish presence, but the effect was inversely proportional to crayfish size. The highest diversity index was obtained in the absence of P. clarkii, and juvenile crayfish significantly reduced macroinvertebrate diversity. Thus, the impact of P. clarkii on aquatic macroinvertebrates is size dependent and may be relevant in small pools formed in rice field pads from early autumn to late winter. Overall, our findings suggest that the negative effects of P. clarkii on macroinvertebrate diversity may be particularly strong in local natural assemblages confined to puddles of water or small ponds in wetland areas.  相似文献   

18.
19.
The red crayfish Procambarus clarkii, which is native to southcentral USA and northeastern Mexico, has been successfully introduced into several countries around the world. This study documents the geographic expansion of the exotic red crayfish in Mexico and discusses the consequence of a greater propagation of this species in Mexican inland waters. New state records of this crayfish in the Baja California peninsula and in the states of Durango and Sinaloa indicate its progressive dispersion. The propagation of P. clarkii in Mexico has been caused mainly by human introduction, but it is also facilitated because of the species’ tolerance to an ample range of environmental conditions. Because of the invasive capability of P. clarkii, we suspect that this exotic species is competing for habitat and food with native freshwater shrimp of the genus Macrobrachium in many sites of northern Mexico.  相似文献   

20.
Aphanomyces astaci (Saprolegniales, Oomycetes) is classified among the 100 world’s worst invasive species. This species is endemic to North America and has been introduced into Europe by imports of their hosts, the North American crayfish species. As a consequence, extensive mass mortalities involved several populations of the European crayfish. Here, we checked its occurrence in four Italian populations of Procambarus clarkii, the most widespread alien crayfish in Italy. Digital image analyses and image processing techniques were used to select micro-melanized areas in the subabdominal cuticle of 2–10 crayfish per population. All the selected areas tested positive for A. astaci ITS nrDNA specific primers; moreover, the obtained sequences clearly corresponded to A. astaci, thus revealing that P. clarkii is an active carrier of this oomycete in Italy. Decisions are to be urgently made to control the spread of both P. clarkii and A. astaci for the conservation of the indigenous crayfish biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号