首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perrine-Walker  Francine  Le  Khoa 《Protoplasma》2021,258(2):279-287
Protoplasma - Live imaging allows observations of cell structures and processes in real time, to monitor dynamic changes within living organisms compared to fixed organisms. Fluorescence microscopy...  相似文献   

2.
Computer simulations are rapidly becoming a standard tool to study the structure and dynamics of lipids and membrane proteins. Increasing computer capacity allows unbiased simulations of lipid and membrane-active peptides. With the increasing number of high-resolution structures of membrane proteins, which also enables homology modelling of more structures, a wide range of membrane proteins can now be simulated over time spans that capture essential biological processes. Longer time scales are accessible by special computational methods. We review recent progress in simulations of membrane proteins.  相似文献   

3.
Results are presented from the numerical study of the processes accompanying the formation of chain structures in systems with an anisotropic pairwise interaction similar to the interaction caused by ion focusing. The simulations were performed for extended and bounded chain structures in a wide range of parameters corresponding to conditions of experiments with laboratory dusty plasma. The development of various instabilities in such systems is analyzed in detail for the first time.  相似文献   

4.
The art of cellular communication: tunneling nanotubes bridge the divide   总被引:1,自引:0,他引:1  
The ability of cells to receive, process, and respond to information is essential for a variety of biological processes. This is true for the simplest single cell entity as it is for the highly specialized cells of multicellular organisms. In the latter, most cells do not exist as independent units, but are organized into specialized tissues. Within these functional assemblies, cells communicate with each other in different ways to coordinate physiological processes. Recently, a new type of cell-to-cell communication was discovered, based on de novo formation of membranous nanotubes between cells. These F-actin-rich structures, referred to as tunneling nanotubes (TNT), were shown to mediate membrane continuity between connected cells and facilitate the intercellular transport of various cellular components. The subsequent identification of TNT-like structures in numerous cell types revealed some structural diversity. At the same time it emerged that the direct transfer of cargo between cells is a common functional property, suggesting a general role of TNT-like structures in selective, long-range cell-to-cell communication. Due to the growing number of documented thin and long cell protrusions in tissue implicated in cell-to-cell signaling, it is intriguing to speculate that TNT-like structures also exist in vivo and participate in important physiological processes.  相似文献   

5.
Results are presented from experimental and theoretical investigations of the behavior of dust grains in a track plasma produced by a beam of accelerated protons. The dynamic ordered dust structures in a proton-beam-produced plasma are obtained for the first time. The processes leading to the formation of such structures are simulated numerically. The experimentally obtained dynamic vortex dust structures in a track plasma of a proton beam are explained theoretically, and the theoretical model developed to describe such a plasma is verified experimentally. Numerical investigations carried out by the method of Brownian dynamics made it possible to qualitatively explain the characteristic features of the formation of vortex dust structures.  相似文献   

6.
Even partial hippocampal lesions in rats resulted in a disturbance of time interval determination over the course of several months (1200-1500 presentations) other complex conditioned reactions being preserved. As distinct from the control animals, the long period of failure of time interval counting was absent in rats receiving Mexidol. Continuous time conditioning took place in these animals. Due to substantial improvement of autonomic processes and emotional reactions, it was possible to present a higher number of conditioned stimuli in experiments. Mexidol seems to improve the compensatory and recovery processes after brain injuries: the impaired functions recover faster, the rate of the retrograde degeneration in the lesioned brain structures decreases, phenomena like Monakov's diaschis are not observed etc.  相似文献   

7.
Relations between characteristic scales of time and space are analyzed for the hierarchical systems of a various nature. The available data fit well to the power relation: [T] = a[L]b, where [T] and [L] are characteristic ranges of time and space, b--scaling exponent, a--conversion coefficient. The spatio-temporal scales of ocean physical and biological (pelagic) processes are closely overlapped. Contrastingly, the scale for terrestrial and benthic ecosystems and their environments differ noticeably. For terrestrial and benthic ecological systems, and also for atmospheric phenomena, the b values significantly less than 1, that indicates a significant coherence of structure-generating processes integrating lower-level hierarchical units to a higher-level entity. For geomorphological structures, both terrestrial and oceanic, the scaling parameters has appeared close to 1 (a "direct transfer" type of generating processes). For plankton systems, which are related with water masses, the b values vary from 1 (processes of direct transfer) up to 2 (random dispersal or diffusion processes). The author attributes this difference to the principle distinctions in dynamic properties of the physical environments for terrestrial (and probably, benthic) and plankton organisms. Finally, for the units (structures or processes) of one and the same organization level, scaling exponents are significantly higher and close to 2 (diffusive dynamics) or more (rigid spatial limitation). Thus, the development of many ecological structures looks dynamically like diffusion or gradual growth, but their putting in the higher-level order (integrity) is a qualitative leap forward and demands appropriate cooperative organizational processes.  相似文献   

8.
The review summarizes data on the age-related transformations of energy metabolism observed in the human ontogeny from birth to maturity. It is shown that elevated level of basal energy consumptions of a child is not associated with the activity of growth processes. Upon maturing the body structures, qualitative changes of metabolic processes are observed, which generally lead to economizing and expanding the functional range. At the same time, the specialized structures (brown adipose tissue) that ensure energy dissipation and are thereby involved in maintaining homeostasis are usually retained even in adults. It is assumed that the increased metabolic rate in childhood forms the body’s resistance due to the “gyroscopic effect” and thus allows safely overcoming the most strained and important stages of ontogeny.  相似文献   

9.
An  Shaokun  Ma  Liang  Wan  Lin 《BMC genomics》2019,20(2):77-92
Background

Time series single-cell RNA sequencing (scRNA-seq) data are emerging. However, the analysis of time series scRNA-seq data could be compromised by 1) distortion created by assorted sources of data collection and generation across time samples and 2) inheritance of cell-to-cell variations by stochastic dynamic patterns of gene expression. This calls for the development of an algorithm able to visualize time series scRNA-seq data in order to reveal latent structures and uncover dynamic transition processes.

Results

In this study, we propose an algorithm, termed time series elastic embedding (TSEE), by incorporating experimental temporal information into the elastic embedding (EE) method, in order to visualize time series scRNA-seq data. TSEE extends the EE algorithm by penalizing the proximal placement of latent points that correspond to data points otherwise separated by experimental time intervals. TSEE is herein used to visualize time series scRNA-seq datasets of embryonic developmental processed in human and zebrafish. We demonstrate that TSEE outperforms existing methods (e.g. PCA, tSNE and EE) in preserving local and global structures as well as enhancing the temporal resolution of samples. Meanwhile, TSEE reveals the dynamic oscillation patterns of gene expression waves during zebrafish embryogenesis.

Conclusions

TSEE can efficiently visualize time series scRNA-seq data by diluting the distortions of assorted sources of data variation across time stages and achieve the temporal resolution enhancement by preserving temporal order and structure. TSEE uncovers the subtle dynamic structures of gene expression patterns, facilitating further downstream dynamic modeling and analysis of gene expression processes. The computational framework of TSEE is generalizable by allowing the incorporation of other sources of information.

  相似文献   

10.
Visualization of subcellular structures and their temporal evolution is of utmost importance to understand a vast range of biological processes. Optical microscopy is the method of choice for imaging live cells and tissues; it is minimally invasive, so processes can be observed over extended periods of time without generating artifacts due to intense light irradiation. The use of fluorescence microscopy is advantageous because biomolecules or supramolecular structures of interest can be labeled specifically with fluorophores, so the images reveal information on processes involving only the labeled molecules. The key restriction of optical microscopy is its moderate resolution, which is limited to about half the wavelength of light (~200 nm) due to fundamental physical laws governing wave optics. Consequently, molecular processes taking place at spatial scales between 1 and 100 nm cannot be studied by regular optical microscopy. In recent years, however, a variety of super-resolution fluorescence microscopy techniques have been developed that circumvent the resolution limitation. Here, we present a brief overview of these techniques and their application to cellular biophysics.  相似文献   

11.
Amyloid fibrils play a crucial role in many human diseases and are found to function in a range of physiological processes from bacteria to human. They have also been gaining importance in nanotechnology applications. Understanding the mechanisms behind amyloid formation can help develop strategies towards the prevention of fibrillation processes or create new technological applications. It is thus essential to observe the structures of amyloids and their self-assembly processes at the nanometer-scale resolution under physiological conditions. In this work, we used highly force-sensitive frequency-modulation atomic force microscopy (FM-AFM) to characterize the fibril structures formed by the N-terminal domain of a bacterial division protein MinE in solution. The approach enables us to investigate the fibril morphology and protofibril organization over time progression and in response to changes in ionic strength, molecular crowding, and upon association with different substrate surfaces. In addition to comparison of the fibril structure and behavior of MinE1-31 under varying conditions, the study also broadens our understanding of the versatile behavior of amyloid-substrate surface interactions.  相似文献   

12.
Fully understanding the structure of water is a crucial point in biophysics because this liquid is essential in the operation of the engines of life. Many of its amazing anomalies seem to be tailored to support biological processes and, during about a century, several models have been developed to describe the water structuring. In particular, a theory assumes that water is a mixture of domains constituted by two distinct and inter-converting structural species, the low-density water (LDW) and the high-density water (HDW). According to this theory, by using some particular solutes or changing the water temperature, it should be possible to modify the equilibrium between the two species, changing in this way the water behavior in specific biological processes, as in governing the shape and stability of the structures of proteins. In this work, we assess the possibility of obtaining information on the structures induced in water by specific salts or by temperature by measuring the delayed luminescence (DL) of some salt solutions and of water in the super-cooled regime. Previous works have demonstrated that the delayed luminescence of a system is correlated with its dynamic ordered structures. The results show significant DL signals only when the formation of LDW domains is expected. The measurement reveals a similar activation energy for the domains both in aqueous salt solutions and super-cooled water. It is worth noting that the time trend of DL signals suggests the existence of structures unusually long-lasting in time, up to the microsecond range.  相似文献   

13.
Ecological systems may occur in alternative states that differ in ecological structures, functions and processes. Resilience is the measure of disturbance an ecological system can absorb before changing states. However, how the intrinsic structures and processes of systems that characterize their states affects their resilience remains unclear. We analyzed time series of phytoplankton communities at three sites in a floodplain in central Spain to assess the dominant frequencies or “temporal scales” in community dynamics and compared the patterns between a wet and a dry alternative state. The identified frequencies and cross-scale structures are expected to arise from positive feedbacks that are thought to reinforce processes in alternative states of ecological systems and regulate emergent phenomena such as resilience. Our analyses show a higher species richness and diversity but lower evenness in the dry state. Time series modeling revealed a decrease in the importance of short-term variability in the communities, suggesting that community dynamics slowed down in the dry relative to the wet state. The number of temporal scales at which community dynamics manifested, and the explanatory power of time series models, was lower in the dry state. The higher diversity, reduced number of temporal scales and the lower explanatory power of time series models suggest that species dynamics tended to be more stochastic in the dry state. From a resilience perspective our results highlight a paradox: increasing species richness may not necessarily enhance resilience. The loss of cross-scale structure (i.e. the lower number of temporal scales) in community dynamics across sites suggests that resilience erodes during drought. Phytoplankton communities in the dry state are therefore likely less resilient than in the wet state. Our case study demonstrates the potential of time series modeling to assess attributes that mediate resilience. The approach is useful for assessing resilience of alternative states across ecological and other complex systems.  相似文献   

14.
15.
Neurochemical mechanisms and structural-functional relations of conditioned reflex to time, temporal prognosing, and trace processes were studied in freely behaving intact cats and cats with lesions of the frontal cortex and the head of the caudate nucleus. It has been found that reactions to time are controlled mainly by cholinergic brain structures, temporal prognosing is controlled by dopaminergic mediation, and the trace phenomena--by GABA-ergic system. The data obtained and the methods applied may be used in analysis of some psychopathological symptoms such as desorientation in time, confabulatory confusion, mnestic disorders.  相似文献   

16.
Despite spectacular advances in structural biology over the past half-century, only approximately 2% of the structures in the Protein Data Bank are from eukaryotic parasites and less than 0.5% are from multicellular parasites. Even when only major human pathogens are considered, 3D structures of parasites are vastly underrepresented. Yet approximately one-third of the global burden of human disease comes from parasites. It is time to divert greater effort and resources in structural biology to benefit the fight against parasitic diseases. Using as leverage recent technological and methodological advances, a concerted effort to determine macromolecular structures from parasite pathogens would provide invaluable mechanistic insights on vital processes of the parasites and would suggest novel strategies for inhibiting infection.  相似文献   

17.
Chromatin has highly organized structures in the nucleus, and these higher-order structures are proposed to regulate gene activities and cellular processes. Sequencing-based techniques, such as Hi-C, and fluorescent in situ hybridization (FISH) have revealed a spatial segregation of active and inactive compartments of chromatin, as well as the non-random positioning of chromosomes in the nucleus, respectively. However, regardless of their efficiency in capturing target genomic sites, these techniques are limited to fixed cells. Since chromatin has dynamic structures, live cell imaging techniques are highlighted for their ability to detect conformational changes in chromatin at a specific time point, or to track various arrangements of chromatin through long-term imaging. Given that the imaging approaches to study live cells are dramatically advanced, we recapitulate methods that are widely used to visualize the dynamics of higher-order chromatin structures.  相似文献   

18.
Marzinelli EM 《Biofouling》2012,28(3):339-349
The addition of artificial structures along urbanised shorelines is a global phenomenon. Such modifications of habitats have important consequences to the abundance of fouling organisms on primary substrata, but the influence on fouling of habitat-formers living on these structures is poorly understood. Fouling of habitat-forming kelps Ecklonia radiata on pier-pilings was compared to that on rocky reefs at three locations in Sydney Harbour. Kelps on pilings supported different assemblages of bryozoans from those on reefs. The abundances of bryozoans on kelps, in particular of the non-indigenous species Membranipora membranacea, were significantly greater on pilings. Differences were consistent in time and space. This indicates that the addition of artificial structures also affects fouling on secondary biogenic substrata, altering biodiversity and potentially facilitating the introduction and dispersal of non-indigenous epibiota. Understanding the processes that cause these patterns is necessary to allow sensible predictions about ecological effects of built structures.  相似文献   

19.
We apply a mathematical algorithm which processes discrete time series data to generate a complete list of Petri net structures containing the minimal number of nodes required to reproduce the data set. The completeness of the list as guaranteed by a mathematical proof allows to define a minimal set of experiments required to discriminate between alternative network structures. This in principle allows to prove all possible minimal network structures by disproving all alternative candidate structures. The dynamic behaviour of the networks in terms of a switching rule for the transitions of the Petri net is part of the result. In addition to network reconstruction, the algorithm can be used to determine how many yet undetected components at least must be involved in a certain process. The algorithm also reveals all alternative structural modifications of a network that are required to generate a predefined behaviour.  相似文献   

20.
The dynamics of changes in intercentral relations of electrical activity of the sensorimotor and premotor zones of both hemispheres and the ventroposterolateral (VPL) nucleus of the left and right thalamus at formation of motor dominant under the action of the DC anode in the rabbit sensorimotor cortex was studied by the method of spectral-correlation analysis. It is shown that in the much less than dominant much greater than motor analyzer (the sensorimotor cortex and VPL) highly coherent connections of electrical processes are formed in the delta-range with conjugated lowering of biopotential connections between the structures of the motor analyzer of the much less than nondominant much greater than part of the brain. At the same time differently directed connections of electrical processes are formed between the structures of the motor analyzer, and between the premotor cortex and focus area. Thus, during formation of the much less than polarization much greater than dominant, a new structure of the intercentral relations of electrical processes is established not only in the much less than dominant much greater than but also in the other half of the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号