首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M1 family metallo-aminopeptidases fulfill a wide range of critical and in some cases medically relevant roles in humans and human pathogens. The specificity of M1-aminopeptidases is dominated by the interaction of the well defined S1 subsite with the side chain of the first (P1) residue of the substrate and can vary widely. Extensive natural variation occurs at one of the residues that contributes to formation of the cylindrical S1 subsite. We investigated whether this natural variation contributes to diversity in S1 subsite specificity. Effects of 11 substitutions of the S1 subsite residue valine 459 in the Plasmodium falciparum aminopeptidase PfA-M1 and of three substitutions of the homologous residue methionine 260 in Escherichia coli aminopeptidase N were characterized. Many of these substitutions altered steady-state kinetic parameters for dipeptide hydrolysis and remodeled S1 subsite specificity. The most dramatic change in specificity resulted from substitution with proline, which collapsed S1 subsite specificity such that only substrates with P1-Arg, -Lys, or -Met were appreciably hydrolyzed. The structure of PfA-M1 V459P revealed that the proline substitution induced a local conformational change in the polypeptide backbone that resulted in a narrowed S1 subsite. The restricted specificity and active site backbone conformation of PfA-M1 V459P mirrored those of endoplasmic reticulum aminopeptidase 2, a human enzyme with proline in the variable S1 subsite position. Our results provide compelling evidence that changes in the variable residue in the S1 subsite of M1-aminopeptidases have facilitated the evolution of new specificities and ultimately novel functions for this important class of enzymes.  相似文献   

2.
Aminopeptidases catalyze N-terminal peptide bond hydrolysis and occupy many diverse roles across all domains of life. Here we present evidence that an M1-family aminopeptidase, PfA-M1, has been recruited to specialized roles in the human malaria parasite Plasmodium falciparum. PfA-M1 is abundant in two subcellular compartments in asexual intraerythrocytic parasites; that is, the food vacuole, where the catabolism of host hemoglobin takes place, and the nucleus. A unique N-terminal extension contributes to the observed dual targeting by providing a signal peptide and putative alternate translation initiation sites. PfA-M1 exists as two major isoforms, a nuclear 120-kDa species and a processed species consisting of a complex of 68- and 35-kDa fragments. PfA-M1 is both stable and active at the acidic pH of the food vacuole lumen. Determination of steady-state kinetic parameters for both aminoacyl-β-naphthylamide and unmodified dipeptide substrates over the pH range 5.0-8.5 reveals that k(cat) is relatively insensitive to pH, whereas K(m) increases at pH values below 6.5. At the pH of the food vacuole lumen (5.0-5.5), the catalytic efficiency of PfA-M1 remains high. Consistent with the kinetic data, the affinity of peptidic competitive inhibitors is diminished at acidic pH. Together, these results support a catalytic role for PfA-M1 in the food vacuole and indicate the importance of evaluating the potency of peptidic inhibitors at physiologically relevant pH values. They also suggest a second, distinct function for this enzyme in the parasite nucleus.  相似文献   

3.
Aminopeptidases N are metalloproteases of the M1 family that have been reported in numerous apicomplexan parasites, including Plasmodium, Toxoplasma, Cryptosporidium, and Eimeria. While investigating the potency of aminopeptidases as therapeutic targets against coccidiosis, one of the most important avian diseases caused by the genus Eimeria, we identified and characterized Eimeria tenella aminopeptidase N1 (EtAPN1). Its inhibition by bestatin and amastatin, as well as its reactivation by divalent ions, is typical of zinc-dependent metalloproteases. EtAPN1 shared a similar sequence, three-dimensional structure, and substrate specificity and similar kinetic parameters with A-M1 from Plasmodium falciparum (PfA-M1), a validated target in the treatment of malaria. EtAPN1 is synthesized as a 120-kDa precursor and cleaved into 96-, 68-, and 38-kDa forms during sporulation. Further, immunolocalization assays revealed that, similar to PfA-M1, EtAPN1 is present during the intracellular life cycle stages in both the parasite cytoplasm and the parasite nucleus. The present results support the hypothesis of a conserved role between the two aminopeptidases, and we suggest that EtAPN1 might be a valuable target for anticoccidiosis drugs.  相似文献   

4.
Metabolic diseases affect various organs including the brain. Accumulation or depletion of substrates frequently leads to brain injury and dysfunction. Deficiency of aminopeptidase P1, a cytosolic proline‐specific peptidase encoded by the Xpnpep1 gene, causes an inborn error of metabolism (IEM) characterized by peptiduria in humans. We previously reported that knockout of aminopeptidase P1 in mice causes neurodevelopmental disorders and peptiduria. However, little is known about the pathophysiological role of aminopeptidase P1 in the brain. Here, we show that loss of aminopeptidase P1 causes behavioral and neurological deficits in mice. Mice deficient in aminopeptidase P1 (Xpnpep1?/?) display abnormally enhanced locomotor activities in both the home cage and open‐field box. The aminopeptidase P1 deficiency in mice also resulted in severe impairments in novel‐object recognition, the Morris water maze task, and contextual, but not cued, fear memory. These behavioral dysfunctions were accompanied by epileptiform electroencephalogram activity and neurodegeneration in the hippocampus. However, mice with a heterozygous mutation for aminopeptidase P1 (Xpnpep1+/?) exhibited normal behaviors and brain structure. These results suggest that loss of aminopeptidase P1 leads to behavioral, cognitive and neurological deficits. This study may provide insight into new pathogenic mechanisms for brain dysfunction related to IEMs.  相似文献   

5.
6.
The slow, tight binding of bestatin and amastatin to aminopeptidases   总被引:5,自引:0,他引:5  
Bestatin reversibly inhibits Aeromonas aminopeptidase (EC 3.4.11.10) in a process that is remarkable for its unusual degree of time dependence. The binding of bestatin by both Aeromonas aminopeptidase and cytosolic leucine aminopeptidase (EC 3.4.11.1) is slow and tight, with Ki values (determined from rate constants) of 1.8 X 10(-8) and 5.8 X 10(-10) M, respectively. In contrast, microsomal aminopeptidase (EC 3.4.11.2) binds bestatin in a rapidly reversible process with a Ki value of 1.4 X 10(-6) M. Kinetic analysis of the slow inhibition observed is facilitated by the use of a variety of experimental treatments, primarily measurements made during pre-equilibrium; however, careful selection of conditions permits use also of steady state observations. When titrated with bestatin, 1 mol of cytosolic leucine aminopeptidase (containing 6 g atoms each of zinc and manganese) is rendered 80% inactive by 1 mol of inhibitor, thus suggesting that enzymatic activity depends on one active site/hexamer; titration of Aeromonas aminopeptidase by bestatin reveals a 1:1 stoichiometry. Amastatin inhibits all three aminopeptidases through the mechanism of slow, tight binding with Ki values ranging from 3.0 X 10(-8) to 2.5 X 10(-10) M. This behavior of microsomal aminopeptidase contrasts sharply with its rapidly reversible inhibition by bestatin. The slow, tight binding observed with five of the six aminopeptidase-inhibitor pairs investigated suggests the formation of a transition state analog complex between the enzyme and inhibitor. Physical evidence consistent with this possibility was provided by the observation that both bestatin and amastatin perturb the absorption spectrum of cobalt Aeromonas aminopeptidase.  相似文献   

7.
1. The membrane anchor of aminopeptidase N associated with larval midgut cell membranes of the silkworm, Bombyx mori, was investigated by using phosphatidylinositol-specific phospholipase C (PIPLC) and proteases. 2. Aminopeptidase N, which was virtually all localized in the brush border membrane, was solubilized by PIPLC but not by papain or trypsin. 3. Detergent-solubilized amphiphilic aminopeptidase N was converted into a hydrophilic form by PIPLC but not by papain. 4. Either of these effects of PIPLC on aminopeptidase N was maximally 40%. 5. These results suggest that in larval midgut cells of the silkworm, B. mori, at least 40% aminopeptidase N is anchored in the brush border membrane via glycosyl-phosphatidylinositol.  相似文献   

8.
The degradation of thyroliberin (less than Glu-His-Pro-NH2) to its component amino acids by the soluble fraction of guinea pig brain is catalysed by four enzymes namely a pyroglutamate aminopeptidase, a post-proline cleaving enzyme, a post-proline dipeptidyl aminopeptidase and a proline dipeptidase. 1. The pyroglutamate aminopeptidase was purified to over 90% homogeneity with a purification factor of 2868-fold and a yield of 5.7%. In addition to catalysing the hydrolysis of thyroliberin, acid thyroliberin and pyroglutamate-7-amido-4-methylcoumarin the pyroglutamate aminopeptidase catalysed the hydrolysis of the peptide bond adjacent to the pyroglutamic acid residue in luliberin, neurotensin bombesin, bradykinin-potentiating peptide B, the anorexogenic peptide and the dipeptides pyroglutamyl alanine and pyroglutamyl valine. Pyroglutamyl proline and eledoisin were not hydrolysed. 2. The post-proline cleaving enzyme was purified to apparent electrophoretic homogeneity with a purification factor of 2298-fold and a yield of 10.6%. The post-proline cleaving enzyme catalysed the hydrolysis of thyroliberin and N-benzyloxycarbonyl-glycylproline-7-amido-4-methylcoumarin. It did not catalyse the hydrolysis of glycylproline-7-amido-4-methylcoumarin or His-Pro-NH2. 3. The post-proline dipeptidyl aminopeptidase was partially purified with a purification factor of 301-fold and a yield of 8.9%. The post-proline dipeptidyl aminopeptidase catalysed the hydrolysis of His-Pro-NH2 and glycylproline-7-amido-4-methylcoumarin but did not exhibit any post-proline cleaving endopeptidase activity against thyroliberin or N-benzyloxycarbonyl-glycylproline-7-amido-4-methylcoumarin. 4. Studies with various functional reagents indicated that the pyroglutamate aminopeptidase could be specifically inhibited by 2-iodoacetamide (100% inhibition at an inhibitor concentration of 5 microM), the post-proline cleaving enzyme by bacitracin (IC50 = 42 microM) and the post-proline dipeptidyl aminopeptidase by puromycin (IC50 = 46 microM). Because of their specific inhibitory effects these three reagents were key elements in the elucidation of the overall pathway for the metabolism of thyroliberin by guinea pig brain tissue enzymes.  相似文献   

9.
A cell envelope 57-kDa proteinase, a cytoplasmic 65-kDa dipeptidase, and a 75-kDa aminopeptidase were purified from Lactobacillus sanfrancisco CB1 sourdough lactic acid bacterium by sequential fast protein liquid chromatography steps. All of the enzymes are monomers. The proteinase was most active at pH 7.0 and 40 degrees C, while aminopeptidase and dipeptidase had optima at pH 7.5 and 30 to 35 degrees C. Relatively high activities were observed at the pH and temperature of the sourdough fermentation. The proteinase is a serine enzyme. Urea-polyacrylamide gel electrophoresis of digest of alpha s1- and beta-caseins showed differences in the pattern of peptides released by the purified proteinase and those produced by crude preparations of the cell envelope proteinases of Lactobacillus delbrueckii subsp. bulgaricus B397 and Lactococcus lactis subsp. lactis SK11. Reversed-phase fast protein liquid chromatography of gliadin digests showed a more-complex peptide pattern produced by the proteinase of Lactobacillus sanfrancisco CB1. The dipeptidase is a metalloenzyme with high affinity for dipeptides containing hydrophobic amino acids but had no activity on tripeptides or larger peptides. The aminopeptidase was also inhibited by metal-chelating agents, and showed a broad N-terminal hydrolytic activity including di- and tripeptides. Km values of 0.70 and 0.44 mM were determined for the dipeptidase on Leu-Leu and the aminopeptidase on Leu-p-nitroanilide, respectively.  相似文献   

10.
Aminopeptidase A is a zinc metalloenzyme involved in the formation of brain angiotensin III, which exerts a tonic stimulatory action on the central control of blood pressure. Thus, central inhibitors of aminopeptidase A constitute putative central antihypertensive agents. Mutagenic studies have been performed to investigate organization of the aminopeptidase A active site, with a view to designing such inhibitors. The structure of one monozinc aminopeptidase (leukotriene A(4) hydrolase) was recently resolved and used to construct a three-dimensional model of the aminopeptidase A ectodomain. This new model, highly consistent with the results of mutagenic studies, showed a critical structural interaction between two conserved residues, Arg-220 and Asp-227. Mutagenic replacement of either of these two residues disrupted maturation and subcellular localization and abolished the enzymatic activity of aminopeptidase A, confirming the critical structural role of these residues. In this study, we generated the first three-dimensional model of a strict aminopeptidase, aminopeptidase A. This model constitutes a new tool to probe further the active site of aminopeptidase A and to design new inhibitors of this enzyme.  相似文献   

11.
Methionine aminopeptidase, known to be encoded by single genes in prokaryotes, is a cobalt-dependent enzyme that catalyzes the removal of N-terminal methionine residues from nascent polypeptides. Three ORFs encoding putative methionine aminopeptidases from the genome of cyanobacterium Synechocystis sp. strain PCC6803, designated as slr0786 (map-1), slr0918 (map-2) and sll0555 (map-3) were cloned and expressed in Escherichia coli. The purified recombinant proteins encoded by map-1 and map-3 had much higher methionine aminopeptidase activity than the recombinant protein encoded by map-2. Comparative analysis revealed that the three recombinant enzymes differed in their substrate specificity, divalent ion requirement, pH, and temperature optima. The broad activities of the iso-enzymes are discussed in light of the structural similarities with other peptidase families and their levels of specificity in the cell. Potential application of cyanobacterial MetAPs in the production of recombinant proteins used in medicine is proposed. This is the first report of a prokaryote harboring multiple methionine aminopeptidases.Abbreviations map Gene encoding methionine aminopeptidase - MetAP Methionine aminopeptidase - eMetAP-Ia Escherichia coli methionine aminopeptidase type Ia - yMetAP-Ib Yeast methionine aminopeptidase type Ib - yMetAP-IIa Yeast methionine aminopeptidase type IIa - hMetAP-IIb Human methionine aminopeptidase type IIb - pfMetAP–IIa Pyrococcus furiosis methionine aminopeptidase type Ia - bst MetAP-Ia Bacillus stearothermophilus methionine aminopeptidase type Ia - c1MetAP-Ia Cyanobacterial methionine aminopeptidase type Ia encoded by map-1 - c2MetAP-Ia Cyanobacterial methionine aminopeptidase type Ia encoded by map-2 - c3MetAP-Ib Cyanobacterial methionine aminopeptidase type Ib, ncoded by map-3  相似文献   

12.
The subcellular localization of the bradykinin-inactivating activity was studied using guinea-pig neutrophils and the following results were obtained. The bradykinin-inactivating activities were found to be present in the cytosol and membrane fractions but not in the granular and nuclear fractions. The bradykinin-inactivating activity of the cytosol fraction was inhibited by N-carbobenzoxy-Gly-Pro, an inhibitor of prolyl endopeptidase, whereas that of the membrane fraction was inhibited by bestatin, an inhibitor of aminopeptidase. Prolyl endopeptidase and aminopeptidase activities were located predominantly in the cytosol and membrane fractions, respectively, and their activities were inhibited by their respective inhibitors. Prolyl endopeptidase and aminopeptidase activities measured with synthetic substrates were competitively inhibited by bradykinin, suggesting that bradykinin is a possible substrate for prolyl endopeptidase and aminopeptidase. Intact neutrophils inactivated bradykinin rapidly. However, when neutrophils were modified chemically by diazotized sulfanilic acid, a poorly permeant reagent which inactivates ecto-enzymes selectively, both the bradykinin-inactivating activity and aminopeptidase activity of neutrophils decreased significantly without any inhibition of cytosol prolyl endopeptidase. The possibility that aminopeptidase, an ecto-enzyme, would be responsible for the inactivation of bradykinin by intact neutrophils was deduced from the results above, although both cytosol prolyl endopeptidase and membrane aminopeptidase could inactivate bradykinin.  相似文献   

13.
The heritable stability of ColE1 is dependent on a site-specific recombination system which acts to resolve plasmid multimers into monomers. This plasmid stabilizing recombination system requires the presence in cis of the ColE1 cer region, plus at least two trans-acting factors encoded by the xerA and xerB genes of Escherichia coli. The xerB gene has been cloned and sequenced and found to encode a polypeptide with a calculated mol. wt of 55.3 kd. The predicted amino acid sequence of this protein exhibits striking similarity to that of bovine lens leucine aminopeptidase (53 kd). The biological significance of this similarity is corroborated by genetic and biochemical evidence which suggests that xerB is identical to the E.coli and S.typhimurium pepA genes that encode aminopeptidase A.  相似文献   

14.
Using leucine-p-nitroanilide (Leu-pNA) as a substrate, we demonstrated aminopeptidase activity in the culture filtrates of several Pseudomonas aeruginosa strains. The aminopeptidase was partially purified by DEAE-cellulose chromatography and found to be heat stable. The apparent molecular mass of the enzyme was approximately 56 kDa; hence, it was designated AP(56). Heating (70 degrees C) of the partially purified aminopeptidase preparations led to the conversion of AP(56) to a approximately 28-kDa protein (AP(28)) that retained enzyme activity, a reaction that depended on elastase (LasB). The pH optimum for Leu-pNA hydrolysis by AP(28) was 8.5. This activity was inhibited by Zn chelators but not by inhibitors of serine- or thiol-proteases, suggesting that AP(28) is a Zn-dependent enzyme. Of several amino acid p-nitroanilide derivatives examined, Leu-pNA was the preferred substrate. The sequences of the first 20 residues of AP(56) and AP(28) were determined. A search of the P. aeruginosa genomic data base revealed a perfect match of these sequences with positions 39-58 and 273-291, respectively, in a 536-amino acid residue open reading frame predicted to encode an aminopeptidase. A search for sequence similarities with other proteins revealed 52% identity with Streptomyces griseus aminopeptidase, approximately 35% identity with Saccharomyces cerevisiae aminopeptidase Y and a hypothetical aminopeptidase from Bacillus subtilis, and 29-32% with Aeromonas caviae, Vibrio proteolyticus, and Vibrio cholerae aminopeptidases. The residues potentially involved in zinc coordination were conserved in all these proteins. Thus, P. aeruginosa aminopeptidase may belong to the same family (M28) of metalloproteases.  相似文献   

15.
Aminopeptidase P was solubilized from bovine lung by sodium deoxycholate extraction of salt-washed, delipidated lung acetone powders. Hydrolysis of the standard aminopeptidase P substrate, Gly-Pro-Hyp, as well as cleavage of Arg-Pro-Pro and the Arg1-Pro2 bond of bradykinin, co-eluted from a Mono Q anion exchange column and demonstrated identical inhibitory profiles suggesting that all activities were functions of the same enzyme. The metal chelator, 1,10-phenanthroline, completely inhibited activity suggesting that aminopeptidase P is a metallopeptidase. 2-Mercaptoethanol was both a potent and specific inhibitor of the enzyme (at 4 mM). A variety of other peptidase inhibitors showed either no effect or failed to completely inhibit even at high concentrations. The inhibitory profile and substrate specificity differ considerably from previous reports claiming to study the properties of this enzyme. Evidence is provided that aminopeptidase P may have an important role in the pulmonary degradation of the potent vasoactive peptide, bradykinin.Abbreviations X--NA aminoacyl--naphthylamide - DFP diisopropylphosphofluoridate - HPLC high performance liquid chromatography - APP aminopeptidase P - APM aminopeptidase M - DAP IV dipeptidyl-aminopeptidase IV  相似文献   

16.
Aminopeptidases are metalloproteinases that degrade N-terminal residues from protein and play important roles in cell growth and development by controlling cell homeostasis and protein maturation. We determined the crystal structure of XoLAP, a leucyl aminopeptidase, at 2.6 Å resolution from Xanthomonas oryzae pv. oryzae, causing the destructive rice disease of bacterial blight. It is the first crystal structure of aminopeptidase from phytopathogens as a drug target. XoLAP existed as a hexamer and the monomer structure consisted of an N-terminal cap domain and a C-terminal peptidase domain with two divalent zinc ions. XoLAP structure was compared with BlLAP and EcLAP (EcPepA) structures. Based on the structural comparison, the molecular model of XoLAP in complex with the natural aminopeptidase inhibitor of microginin FR1 was proposed. The model structure will be useful to develop a novel antibacterial drug against Xoo.  相似文献   

17.
In this study we report the cloning and characterization of a novel human aminopeptidase, which we designate leukocyte-derived arginine aminopeptidase (L-RAP). The sequence encodes a 960-amino acid protein with significant homology to placental leucine aminopeptidase and adipocyte-derived leucine aminopeptidase. The predicted L-RAP contains the HEXXH(X)18E zinc-binding motif, which is characteristic of the M1 family of zinc metallopeptidases. Phylogenetic analysis indicates that L-RAP forms a distinct subfamily with placental leucine aminopeptidase and adipocyte-derived leucine aminopeptidase in the M1 family. Immunocytochemical analysis indicates that L-RAP is located in the lumenal side of the endoplasmic reticulum. Among various synthetic substrates tested, L-RAP revealed a preference for arginine, establishing that the enzyme is a novel arginine aminopeptidase with restricted substrate specificity. In addition to natural hormones such as angiotensin III and kallidin, L-RAP cleaved various N-terminal extended precursors to major histocompatibility complex class I-presented antigenic peptides. Like other proteins involved in antigen presentation, L-RAP is induced by interferon-gamma. These results indicate that L-RAP is a novel aminopeptidase that can trim the N-terminal extended precursors to antigenic peptides in the endoplasmic reticulum.  相似文献   

18.
Bacillus thuringiensis Cry1Ac toxin bound to a 120-kDa protein isolated from the brush border membranes of both susceptible and resistant larvae of Plutella xylostella, the diamondback moth. The 120-kDa protein was purified by Cry1Ac toxin affinity chromatography. Like Cry1Ac-binding aminopeptidase N (EC 3.4.11.2) from other insects, this protein was eluted from the affinity column with 200 mM N-acetylgalactosamine. The purified protein had aminopeptidase activity and bound Cry1Ac toxin on ligand blots. Purified aminopeptidase was recognized by antibodies to the cross-reacting determinant found on phosphatidylinositol-specific phospholipase C-solubilized proteins. The results show that the presence of Cry1Ac-binding aminopeptidase in the brush border membrane is not sufficient to confer susceptibility to Cry1Ac. Furthermore, the results do not support the hypothesis that resistance to Cry1Ac was caused by lack of a Cry1Ac-binding aminopeptidase.  相似文献   

19.
K S Hui  Y J Wang  A Lajtha 《Biochemistry》1983,22(5):1062-1067
A membrane-bound aminopeptidase was purified from rat brain, and its activity was assayed by high-pressure liquid chromatography with Met-enkephalin as the substrate. The enzyme was extracted with 1% Triton X-100 and purified by chromatography, successively on DEAE-Sepharose CL-6B, Bio-Gel HTP, and Sephadex G-200 columns. The overall purification was about 1200-fold, with 25% yield. The purified enzyme showed one band on disc gel electrophoresis and two bands on sodium dodecyl sulfate electrophoresis with molecular weights of 62 000 and 66 000. The aminopeptidase has a pH optimum of 7.0, a Km of 0.28 mM, and a Vmax of 45 mumol (mg of protein)-1 min-1 for Met-enkephalin. It releases tyrosine from Met-enkephalin, but it does not split the byproduct. It does not hydrolyze gamma- or beta-endorphin, or dynorphin, but it does hydrolyze neutral and basic aminoacyl beta-naphthylamides. The enzyme is inhibited by the aminopeptidase inhibitors amastatin, bestatin, and bestatin-Gly. Its properties, such as its subcellular localization, substrate specificity, pH optimum, and molecular weight, distinguish it from leucine aminopeptidase, aminopeptidase A, aminopeptidase B, aminopeptidase M, and the soluble aminopeptidase for enkephalin degradation.  相似文献   

20.
Two major aminopeptidases, an aminopeptidase B and an aminopeptidase M-like enzyme, were purified from human skeletal muscle by DEAE-cellulose, HPLC gel filtration, and hydroxyapatite column chromatographies. The purified aminopeptidase B exhibits a molecular weight of 76,000 under both native and denaturing conditions. The activity of the aminopeptidase B is regulated by C1 ions and other anions in vitro. On the other hand, the aminopeptidase M-like enzyme is a monomeric protein having a molecular weight of 96,000. It is capable of significantly cleaving Phe-, Leu-, Arg-, and Ala-aminoacyl bonds in the presence of 2-mercaptoethanol. The pH optima for both enzymes are around 7.0, and bestatin is an effective inhibitor of both enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号