首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction of melittin and a truncated analogue of melittin with an immobilised phosphatidylcholine monolayer has been studied using dynamic elution techniques. The melittin analogue (21Q analogue) had five amino acids omitted from the C-terminal region of melittin. The influence of temperature and methanol concentration on the binding affinity of the two peptides was determined and compared to the binding behaviour of two control molecules N-acetyltryptophanamide and diphenylalanine. Both peptides exhibited non-linear dependence of affinity on % methanol at different temperatures, while N-acetyltryptophanamide and diphenylalanine exhibited linear behaviour. In addition, both melittin and the 21Q analogue exhibited significant band broadening under a range of experimental conditions, which was not evident for N-acetyltryptophanamide and diphenylalanine. As melittin is known to adopt a significant degree of -helical conformation in the presence of lipids, the results suggest that melittin and the 21Q analogue adopt different conformations and orientations upon binding to the immobilised phosphatidylcholine surface. Overall, the results of this study demonstrate that the immobilised lipid monolayer provides a powerful system to rapidly assess the affinity of peptides for different lipid surfaces.  相似文献   

2.
The binding of melittin to zwitterionic dimyristyphosphatidylcholine (DMPC) and anionic dimyristylphosphatidylglycerol (DMPG) was analysed using two different immobilized model membrane systems. The first system used surface plasmon resonance (SPR), which monitors the real-time binding of peptides to an immobilized hybrid bilayer. SPR experiments reflected a stronger binding of melittin for DMPG than for DMPC, while kinetic analysis suggested the existence of at least two distinct binding steps. The second lipid biosensor system involved an immobilized phospholipid monolayer covalently attached to a microporous silica surface. The binding of melittin to the immobilized monolayer was then monitored using dynamic elution chromatography with varied methanol concentrations to analyse the binding of melittin to DMPC and DMPG. The nonlinear binding behaviour observed for melittin with the phosphatidylcholine (PC) and phosphatidylglycerol (PG) monolayers compared with the linear retention plots and Gaussian peak shapes observed for the control molecule demonstrated that melittin undergoes significant conformational and orientational changes upon binding to the immobilized PC and PG ligands. The dependence of log k' on per cent methanol also demonstrated a bimodal interaction whereby hydrophobic forces predominated at higher temperatures and methanol concentrations, while other forces, presumably electrostatic in nature, also made a contribution to the affinity of the peptides for the lipid monolayer, particularly at lower temperatures. The complementary use of these two lipid biosensors thus allows the role of hydrophobic and electrostatic forces in peptide-membrane interactions to be studied.  相似文献   

3.
The lipid binding behaviour of the antimicrobial peptides magainin 1, melittin and the C-terminally truncated analogue of melittin (21Q) was studied with a hybrid bilayer membrane system using surface plasmon resonance. In particular, the hydrophobic association chip was used which is composed of long chain alkanethiol molecules upon which liposomes adsorb spontaneously to create a hybrid bilayer membrane surface. Multiple sets of sensorgrams with different peptide concentrations were generated. Linearisation analysis and curve fitting using numerical integration analysis were performed to derive estimates for the association (k(a)) and dissociation (k(d)) rate constants. The results demonstrated that magainin 1 preferentially interacted with negatively charged dimyristoyl-L-alpha-phosphatidyl-DL-glycerol (DMPG), while melittin interacted with both zwitterionic dimyristoyl-L-alpha-phosphatidylcholine and anionic DMPG. In contrast, the C-terminally truncated melittin analogue, 21Q, exhibited lower binding affinity for both lipids, showing that the positively charged C-terminus of melittin greatly influences its membrane binding properties. Furthermore the results also demonstrated that these antimicrobial peptides bind to the lipids initially via electrostatic interactions which then enhances the subsequent hydrophobic binding. The biosensor results were correlated with the conformation of the peptides determined by circular dichroism analysis, which indicated that high alpha-helicity was associated with high binding affinity. Overall, the results demonstrated that biosensor technology provides a new experimental approach to the study of peptide-membrane interactions through the rapid determination of the binding affinity of bioactive peptides for phospholipids.  相似文献   

4.
The interaction of three bioactive peptides, bombesin, beta-endorphin, and glucagon with a phosphatidylcholine monolayer that was immobilized to porous silica particles and packed into a stainless steel column cartridge, has been studied using dynamic elution techniques. This immobilized lipid monolayer provides a biophysical model system with which to study the binding of peptides to a lipid membrane. In particular, the influence of temperature and methanol concentration on the affinity of each peptide for the immobilized lipid surface was assessed. For all test peptides, nonlinear retention plots were observed at all temperatures that contrasted sharply with the simple linear plots observed for the small unstructured control molecules N-acetyltryptophanamide and diphenylalanine. An analysis of the thermodynamics of the interaction of peptides with the immobilized monolayer was also carried out. The results revealed that while the peptides interacted with the monolayer predominantly through hydrophobic interactions, the relative contribution of DeltaH(assoc)(O) and DeltaS(assoc)(O) to the overall free energy of association was dependent on the temperature and methanol concentration. In particular, it was evident that under most conditions, the binding of the peptides to the immobilized lipid monolayer was enthalpy-driven, i.e., mediated by nonclassical hydrophobic interactions. Significant band-broadening and asymmetric and split peaks were also observed for bombesin, beta-endorphin, and glucagon at different temperatures and methanol concentrations. These changes in affinity and peak shape are consistent with the formation of multiple conformational species during the interaction of these peptides with the lipid monolayer. In addition, the binding behavior of the three test peptides on an n-octylsilica surface that lacked the phospho headgroups of the phospholipid was significantly different from that observed with the immobilized phosphatidylcholine surface, indicating a specificity of interaction between the peptides and the lipid surface. Overall, these experimental results demonstrate that the biomimetic phosphatidylcholine monolayer provides a stable and sensitive system with which to explore the molecular mechanism of peptide conformational changes during membrane interactions.  相似文献   

5.
The binding of melittin and the C-terminally truncated analogue of melittin (21Q) to a range of phospholipid bilayers was studied using surface plasmon resonance (SPR). The phospholipid model membranes included zwitterionic dimyristylphosphatidylcholine (DMPC) and dimyristylphosphatidylethanolamine (DMPE), together with mixtures DMPC/dimyristylphosphatidylglycerol (DMPG), DMPC/DMPG/cholesterol and DMPE/DMPG. Melittin bound rapidly to all membrane mixtures, whereas 21Q, which has a reduced charge, bound much more slowly on the DMPC and DMPC/DMPG mixtures reflecting the role of the initial electrostatic interaction. The loss of the cationic residues also significantly decreased the binding of 21Q with DMPC/DMPG/Cholesterol, DMPE and DMPE/DMPG. The role of electrostatics was also highlighted with NaCl in the buffer, which affected the way melittin bound to the different membranes, causing a more uniform, concentration dependant increase in response. The biosensor results were correlated with the conformation of the peptides determined by circular dichroism analysis, which indicated that high α-helicity was associated with high binding affinity. Overall, the results demonstrate that the positively charged residues at the C-terminus of melittin play an essential role in membrane binding, that modulation of peptide charge influences selectivity of binding to different phospholipids and that manipulation of the cationic regions of antimicrobial peptides can be used to modulate membrane selectivity.  相似文献   

6.
The membrane-binding properties of a class A amphipathic peptide (18D) were investigated using two different immobilized model membrane systems. The first system involved the use of surface plasmon resonance (SPR) to study the binding of 18D to dimyristylphosphatidylcholine (DMPC) and dimyristylphosphatidylglycerol (DMPG), which allowed peptide binding to be monitored in real time. The SPR experiments indicated stronger binding of 18D to DMPG than DMPC, which kinetic analysis revealed was due to a faster on-rate. The second model membrane system involved immobilized membrane chromatography in which the binding of 18D to either DMPC or DMPG monolayers covalently linked to silica particles was analysed by elution chromatography. Stronger binding affinity of 18D was also obtained with the negatively charged phosphatidylglycerol (PG) monolayer compared to the phosphatidylcholine (PC) monolayer, which was consistent with the SPR results. Non-linear binding behaviour of 18D to the immobilized lipid monolayers was also observed, which suggests that the peptide undergoes conformational and orientational changes upon binding to the immobilized PC and PG ligands. Significant band broadening was also observed on both monolayers, with larger bandwidths obtained on the PC surface, indicating slower binding and orientation kinetics with the zwitterionic surface. The dependence of logk' on the percentage of methanol also demonstrated a bimodal interaction whereby hydrophobic forces predominated at higher temperatures and methanol concentrations, while at lower temperatures, electrostatic and other polar forces also made a contribution to the affinity of the peptides for the lipid monolayer particularly. Overall, these results demonstrate the complementary use of these two lipid biosensors which allows the role of hydrophobic and electrostatic forces in peptide–membrane interactions to be studied and insight gained into the kinetic factors associated with these interactions.  相似文献   

7.
The membrane-disruptive capacities of melittin, derivatised melittins, alamethicin and gramicidin S have been compared for the human erythrocyte membrane and lipid vesicles of three different compositions (phosphatidylcholine, 85% phosphatidylcholine/15% phosphatidylserine, and a lipid analogue of the outer leaflet of the human erythrocyte membrane). The sensitivity to ionic strength, divalent metal ions and polylysine of release of fluorescent markers from liposomes and of haemoglobin from intact erythrocytes has been assayed. Acetyl melittin was found to he more effective than melittin in lysing phosphatidylcholine and phosphatidylcholine/phosphatidylserine vesicles, somewhat less effective in the lipid analogue and markedly less effective in lysing erythrocytes. Succinyl melittin was non-haemolytic, but was able to lyse lipid vesicles at a high concentration. Ca2+ inhibited melittin haemolysis at high ionic strength (150 mM NaCl), but produced a more complex response of stimulation followed by inhibition at low ionic strength. In lipid vesicles, Ca2+ either stimulated melittin lysis or was ineffective. Zn2+ exerted effects similar to Ca2+ with lipid vesicles at approx. 10-fold lower concentration except that a weak inhibition was observed for the erythrocyte membrane lipid analogue at high ionic strength. Polylysine strongly inhibited haemolysis by melittin at low ionic strength, but was ineffective or stimulatory in lipid vesicle lysis. High phosphate concentration also inhibited melittin haemolysis, but again no corresponding effect could he found in any of the lipid vesicle systems. These disparities between effects of melittin on erythrocytes and lipid vesicles support the proposal that melittin-protein interactions are of consequence to its haemolytic action. Similar experiments were performed with gramicidin S and alamethicin in order to compare their lytic properties with those of melittin. It was found that each lysin exhibited its own individual pattern of sensitivity to lipid composition, ionic strength and inhibition by cations. It thus appears likely that the detailed molecular interactions responsible for lysis are significantly different for each of these three agents.  相似文献   

8.
Melittin is known to self-associate as tetramers in solutions of high ionic strength. Here, an N-bromosuccinimide oxidized-Trp19 melittin is prepared. This derivative can act as an acceptor of the fluorescence of native melittin and is used in order to observe a possible self-association of melittin in phospholipid bilayers.Resonance energy transfer was shown to occur in solutions of high ionic strength, showing that oxidized melittin can associate with native melittin.In phospholipid bilayers, no association is detected in the absence of NaCl. In its presence, an equilibrium between monomeric melittin and oligomeric species is observed. These species are not dimers, but any other degree of association may account for our experimental results. Significant differences in characteristic transfer efficiency reveal differences in the structure of these oligomers according to the length or state of phospholipids (fluid or at the transition temperature). These bound complexes are also different from the soluble hetero-oligomer.Some models of bound complexes are proposed which may explain the leakage and the further disruption of vesicles or cells induced by melittin.Abbreviations NBS N-bromosuccinimide - NATA N-acetyl tryptophanamide - DMPC dimyristoyl phosphatidylcholine - DPPC dipalmitoyl phosphatidylcholine - PG phosphatidylglycerol - EPC egg phosphatidylcholine - O-melittin oxindole-melittin - RET resonance energy transfer - EDTA ethylene diamine tetracetic acid - Mel melittin  相似文献   

9.
Template-assembled proteins (TASPs) comprising 4 peptide blocks, each of either the natural melittin sequence (melittin-TASP) or of a truncated melittin sequence (amino acids 6-26, melittin6-26-TASP), C-terminally linked to a (linear or cyclic) 10-amino acid template were synthesized and characterized, structurally by CD, by fluorescence spectroscopy, and by monolayer experiments, and functionally, by electrical conductance measurements on planar bilayers and release experiments on dye-loaded vesicles. Melittin-TASP and the truncated analogue preferentially adopt alpha-helical structures in methanol (56% and 52%, respectively) as in lipid membranes. Unlike in methanol, the melittin-TASP self-aggregates in water. On an air-water interface, the differently sized molecules can be self-assembled and compressed to a compact structure with a molecular area of around 600 A2, compatible with a 4-helix bundle preferentially oriented perpendicular to the interface. The proteins reveal a strong affinity for lipid membranes. A partition coefficient of 1.5 x 10(9) M-1 was evaluated from changes of the Trp fluorescence spectra of the TASP in water and in the lipid bilayer. In planar lipid bilayers, TASP molecules are able to form defined ion channels, exhibiting a small single-channel conductance of 7 pS (in 1 M NaCl). With increasing protein concentration in the lipid bilayer, additional, larger conductance states of up to 1 nS were observed. These states are likely to be formed by aggregated TASP structures as inferred from a strongly voltage-dependent channel activity on membranes of large area. In this respect, melittin-TASP reveals channel features of the native peptide, but with a considerably lower variation in the size of the channel states. Compared to the free peptide, template-assembled melittin has a much higher membrane activity: it is about 100 times more effective in channel formation and 20 times more effective in releasing dye molecules from lipid vesicles. This demonstrates that the lytic properties are not solely related to channel formation.  相似文献   

10.
The binding of melittin to phosphatidylethanolamine model systems and its influence on the supramolecular organization of the lipid were investigated with binding assays, differential scanning calorimetry, 31P NMR, freeze-fracture electron microscopy, and small-angle X-ray scattering. The results are compared with binding to an analogous phosphatidylcholine and structural consequences thereof. Melittin binds with similar affinity to both lipid types in the liquid-crystalline state; at gel-phase temperatures, in contrast, interaction with phosphatidylethanolamine is much weaker and does not lead to the bilayer fragmentation observed for phosphatidylcholines. With regard to phosphatidylethanolamine polymorphism, it is shown that melittin acts as an inhibitor of HII-phase formation and as a stabilizer of the bilayer organization. It is demonstrated that the remarkable variety of effects of melittin on the polymorphism of different membrane phospholipids can be understood in a relatively simple concept, taking into account the relative position and the shape of the interacting components.  相似文献   

11.
Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study the molecular structures of surfaces and interfaces in different chemical environments. This review summarizes recent SFG studies on hybrid bilayer membranes and substrate-supported lipid monolayers and bilayers, the interaction between peptides/proteins and lipid monolayers/bilayers, and bilayer perturbation induced by peptides/proteins. To demonstrate the ability of SFG to determine the orientations of various secondary structures, studies on the interactions between different peptides/proteins (melittin, G proteins, alamethicin, and tachyplesin I) and lipid bilayers are discussed. Molecular level details revealed by SFG in these studies show that SFG can provide a unique understanding on the interactions between a lipid monolayer/bilayer and peptides/proteins in real time, in situ and without any exogenous labeling.  相似文献   

12.
A vascular mimetic membrane system was used to investigate the effect of cholesterol content in lipid bilayer on the dynamics of the melittin-membrane penetration reaction with real-time monitoring by a piezoelectric sensor and the assessment morphology using atomic force microscopy (AFM). In the presence of 30% cholesterol in a noncharged phosphatidylcholine (PC) phospholipid membrane, KA1 (binding affinity constant) and KA2 (insertion affinity constant) derived from a two-step model decreased significantly. This result suggests that the high dose of cholesterol in phospholipid membrane inhibits both the binding and the insertion of melittin. Next, dynamic laser scattering and AFM were used to verify the structural changes of lipid bilayers in solutions and interfaces, respectively. The superstructures in both 0 and 10% cholesterol lipid bilayers were disrupted with penetration of melittin according to these verifications. However, kinetic analysis reveals that the different mechanisms are dependent on cholesterol, particularly for the insertion step.  相似文献   

13.
Melittin, an amphiphathic peptide, affects the permeability of vesicles. This can be demonstrated using the dye release technique. Calcein, a fluorescent marker, is trapped in large unilamellar 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) vesicles and melittin-induced leakage of the dye can be monitored directly by increasing fluorescence intensity. First, we characterized the effect of increasing cholesterol content in the membrane on melittin-induced leakage and our results reveal that cholesterol inhibits the lytic activity of the peptide. Using intrinsic fluorescence of the single tryptophan of melittin and 2H-NMR of headgroup deuterated phosphatidylcholine, we demonstrated that the affinity of melittin for phosphatidylcholine vesicles is reduced in the presence of cholesterol; this is associated with the tighter lipid packing of the cholesterol-containing bilayer. This reduced binding is responsible for the reduced melittin-induced leakage from cholesterol-containing membranes. The pathway of release was determined to be an all-or-none mechanism. Finally, we investigated the possibility of achieving specific membrane targeting with melittin, when vesicles of different lipid composition are simultaneously present. Melittin incubated together with vesicles made of pure POPC and POPC containing 30(mol)% cholesterol can empty nearly all the cholesterol-free vesicles while the cholesterol-containing vesicles remain almost intact. Owing to the preferential interaction of melittin with the pure POPC vesicles, we were able to achieve controlled release of encapsulated material from a specific vesicle population. Received: 8 May 1996 / Accepted: 12 September 1996  相似文献   

14.
Rex S 《Biophysical chemistry》2000,85(2-3):209-228
Melittin, the main component of bee venom of Apis mellifera, contains a proline at position 14, which is highly conserved in related peptides of various bee venoms. To investigate the structural and functional role of Pro14 a melittin analogue was studied where proline is substituted by an alanine residue (P14A). The investigations were focussed on: (i) the secondary structure in aqueous solution and membranes; (ii) the self-association in solution; (iii) the binding to POPC membranes; and (iv) the P14A-induced leakage and pore formation in membrane vesicles. Circular dichroism and gel filtration experiments showed that P14A exists at concentrations < 12 microM in monomeric form with an alpha-helicity of 28 +/- 7%. A further increase in peptide concentration leads to the formation of large aggregates consisting of 9 +/- 1 monomers. While binding studies with POPC vesicles revealed for P14A a stronger binding affinity towards membranes than for melittin, the peptide-induced leakage of fluorescent markers from vesicles was less efficient for P14A than for melittin. Furthermore, an unexpected efflux behaviour at high values of bound P14A was observed which indicated that the pore formation kinetics for P14A is more complex than it was reported for melittin. The different features of P14A in aggregation, binding and efflux compared to melittin are mainly ascribable directly to structural changes caused by the proline --> alanine substitution. Furthermore, the results indicate an improved screening of the positively charged residues of P14A by counterions which contributes additionally to the observed differences in peptide activities. It is suggested that the presence of proline in melittin is not only of structural importance but also influences indirectly the electrostatic properties of the native peptide.  相似文献   

15.
1. Two new methods are proposed for enhancement of the binding of hydrophilic proteins by liposomes. 2. An alkylating derivative of phosphatidic acid has been obtained by its reaction with N,N,N′-tris(2-chloroethyl)-N′- (p-formylphenyl)propylene-1,3-diamine. The alkylating activity of this derivative is very low due to the electron-acceptor effect of the formyl residue. Phosphatidylcholine liposomes which contain this alkylating derivative in the lipid bilayer may be obtained. The compound residing in the outer monolayer may be reduced by NaBH4. Upon reduction, the formyl residue is transformed into a hydroxymethyl residue. Therefore, the alkylating group of the compound is activated, and proteins may be attached covalently to the outer monolayer by alkylation with such chemically reactive liposomes. 3. Reaction of alkylating liposomes with myoglobin results in covalent binding of this hydrophilic protein. Complement-mediated leakage of such myoglobin-carrying liposomes may be induced by antibodies against myoglobin. 4. Modification of hydrophilic proteins with dansyl chloride results, even at small extents of modification, in a dramatic increase of the affinity of such proteins to phosphatidylcholine liposomes.  相似文献   

16.
The interaction of melittin with multicomponent lipid mixtures composed of phosphatidylcholine, sphingomyelin and phosphatidylserine or phosphatidylglycerol was investigated by measuring the intrinsic fluorescence of the peptide, steady state fluorescence anisotropy of, and Trp-fluorescence energy transfer to fluorescent analogs of the same phospholipids bearing the anthrylvinyl fluorophore in one of the aliphatic chains at various distances from the polar head group. Based on the finding that at high lipid/peptide ratio the peptide induces unequal changes in the fluorescence parameters of phospholipid probes differing structurally only in their polar head groups, it is concluded that melittin induces lipid demixing in its nearest environment. Comparison of the fluorescence energy transfer from Trp to different lipid probes indicates that the depth of penetration of melittin into the bilayer depends on the polar head group composition of the phospholipid matrix and that certain segments of the melittin chain display a specific affinity for a given lipid head group.  相似文献   

17.
The characterization of fluorescelnphosphatidylethanolamlne (FPE) as a real-time Indicator of the electrostatic nature of a membrane surface is described. The conditions appropriate for the labelling of membranes and the implementation of FPE as a tool to monitor the interactions of various peptides with model membranes are outlined. It is shown that of the membrane-active peptides studied, Naja naja kaouthla cardiotoxin and pyrularia thionin bind to certain model membranes without insertion. Whereas the leader sequence of the nuclear encoded subunit IV of mammalian cytochrome c oxidase (E.C. 1.9.3.1), known as p-25, and melittin appear to bind and then partially insert into the membrane. It seems evident also that melittin does not adopt a fully transmembrane configuration. Melittin is known to promote membrane lysis and by employing a rapid-kinetic technique it is shown that the time-course of such lysis does not appear to correlate with peptide binding, but following binding a significant proportion of melittin must become inserted into the membrane before lysis appears to commence.  相似文献   

18.
Contribution of proline-14 to the structure and actions of melittin   总被引:3,自引:0,他引:3  
The structure and dynamic properties of bee venom melittin and a synthetic analogue, [Ala14]-melittin (melittin P14A), are compared, using high resolution 1H nuclear magnetic resonance (NMR) spectroscopy and amide exchange measurements in methanol. P14A is shown to adopt a regular, stable alpha-helical conformation in solution without the flexibility around the Pro-14 residue found in melittin. P14A has twice the hemolytic activity of melittin but is less able to induce voltage-dependent ion conductance in planar bilayers. The results indicate that helix flexibility afforded by the Pro-14 residue promotes the ability of melittin to adopt the transbilayer associates thought to underlie ion translocation.  相似文献   

19.
Unger T  Oren Z  Shai Y 《Biochemistry》2001,40(21):6388-6397
The amphipathic alpha-helical structure is a common motif found in membrane binding polypeptides including cell lytic peptides, antimicrobial peptides, hormones, and signal sequences. Numerous studies have been undertaken to understand the driving forces for partitioning of amphipathic alpha-helical peptides into membranes, many of them based on the antimicrobial peptide magainin 2 and the non-cell-selective cytolytic peptide melittin, as paradigms. These studies emphasized the role of linearity in their mode of action. Here we synthesized and compared the structure, biological function, and interaction with model membranes of linear and cyclic analogues of these peptides. Cyclization altered the binding of melittin and magainin analogues to phospholipid membranes. However, at similar bound peptide:lipid molar ratios, both linear and cyclic analogues preserved their high potency to permeate membranes. Furthermore, the cyclic analogues preserved approximately 75% of the helical structure of the linear peptides when bound to membranes. Biological activity studies revealed that the cyclic melittin analogue had increased antibacterial activity but decreased hemolytic activity, whereas the cyclic magainin 2 analogue had a marked decrease in both antibacterial and hemolytic activities. The results indicate that the linearity of the peptides is not essential for the disruption of the target phospholipid membrane, but rather provides the means to reach it. In addition, interfering with the coil-helix transition by cyclization, while maintaining the same sequence of hydrophobic and positively charged amino acids, allows a separated evaluation of the hydrophobic and electrostatic contributions to binding of peptides to membranes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号