首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Native methionyl-tRNA synthetase from Escherichia coli (a dimer of molecular weight 172,000) can be converted by mild proteolysis into a well-defined monomeric fragment of molecular weight 64,000. This fragment retains full specificity towards methionine and tRNAMet, and has unimpaired activity in both the activation and aminoacylation reactions.This paper describes the structure of the active fragment, as determined by an X-ray crystallographic study at 2.5 Å resolution using five heavy-atom derivatives. The elongated molecule (90 Å × 52 Å × 44 Å) contains several α-helices, which account for 43% of the residues. Three domains can be distinguished in the structure: (1) a central core beginning at the N-terminus, consisting of a five-stranded parallel pleated sheet with α-helices connecting the β-strands; (2) a second domain with less-ordered structure, inserted between the third and fourth strand of the central sheet; (3) a C-terminal domain, beginning after the fifth parallel strand, very rich in α-helices.These three domains are organized in a biglobular structure; one globule contains the first and the second domain (N-terminal globule), the other the third domain. The two globules, linked together by a single chain, are separated by a large cleft.The most salient feature of the structure is the presence, in the N-terminal domain, of a “nucleotide binding fold” similar to that first observed in dehydrogenases. This makes methionyl-tRNA synthetase, and possibly all aminoacyl-tRNA synthetases, a new member of this family of nucleotide binding proteins possessing the characteristic “Rossmann fold”.  相似文献   

2.
The three-dimensional structure of ferric myoglobin from the mollusc Aplysia limacina has been refined at 2 X 0 A resolution. The crystallographic R factor, calculated at this stage, is 0 X 194. Despite its high content of apolar residues (both aromatic and aliphatic), Aplysia limacina myoglobin, which contains only one histidine residue (at the proximal position), has a structure that conforms to the common eight-helices globin fold observed in other phyla.  相似文献   

3.
4.
A number of dominant homoeotic mutations are localized to the proximal right arm of chromosome 3 of Drosophila melanogaster and are thought to represent members of a gene complex that controls normal determinative decisions in the head and thorax. We have designated this complex the Antennapedia gene complex (ANT-C). Developmental studies were done to investigate the nature of the lethality associated with members of two of the complementation groups within ANT-C. The first complementation group, represented by the mutant Multiple Sex Combs (Msc) is characterized by embryonic lethality when heterozygous with a deletion of the ANT-C. The second complementation group consists of Antennapedia (Antp), Antennapedia-Extra Sex Combs (AntpScx), and the lethals recovered as revertants of AntpNs. When heterozygous for a deletion of the ANT-C or in heterozygous condition with each other, the members of this group show effective lethal phases spanning from embryo-larval boundary to late larval stages. Wakimoto and Kaufman (1981) show that the Antp+ gene acts to establish normal determinative states in the thorax. In the present work, transplantation of eye-antennal disks from lethal individuals heterozygous for two different AntpNs revertant chromosomes into wild-type hosts allowed the assessment of the function of the Antp+ allele in the antenna. Since these transplants formed only antennal structures and showed no evidence of the antennal → leg transformation seen in AntpNs controls, we conclude that the wild-type function of the Antp locus is not necessary for the establishment and/or maintenance of the antennal determined state. We suggest that regulatory mechanisms associated with the Antp+ structural gene normally function both to allow its expression in the thorax and to repress it in the antenna.  相似文献   

5.
The COOH-terminal cyanogen bromide fragment 206-316 of thermolysin has been shown to possess protein domain characteristics that are able to refold into a stable native-like structure (Fontana et al., 1982). We now report the results of limited proteolysis of this fragment with the aim of identifying the minimum size of a COOH-terminal fragment of thermolysin that is able to fold by itself. Proteolysis with subtilisin, chymotrypsin, thermolysin and trypsin allowed us to isolate to homogeneity eight different subfragments, which can be grouped in two sets of peptides, i.e. (218-222)-316 and (252-255)-316. These subfragments are able to acquire a stable conformation of native-like characteristics, as judged by quantitative analysis of secondary structure from far-ultraviolet circular dichroism spectra and immunochemical properties using rabbit anti-thermolysin antibodies. In addition, even the smallest fragment isolated (sequence 255-316) shows co-operative and reversible unfolding transitions mediated by heat (tm 65 degrees C) and guanidine hydrochloride (midpoint transition at 2.5 M denaturant), as often observed with globular proteins. From the kinetics of the proteolytic digestion and analysis of the isolated subfragments, it is concluded that proteases lead to a stepwise degradation of fragment 206-316 from its NH2-terminal region, leading to the highly helical fragment (252-255)-316, quite resistant to further proteolytic digestion. The results of this study provide evidence that it is possible to isolate stable supersecondary structures of globular proteins and correlate well with predictions of subdomains of the COOH-terminal structural domain of thermolysin.  相似文献   

6.
Embryogenesis in individuals with mutations or deficiencies of the genes in the polytene interval 84A-84B1,2 of Drosophila melanogaster was examined using scanning electron microscopy (SEM). The developmental function of this region of chromosome 3 is of particular interest since it contains the Antennapedia Gene Complex (ANT-C), a gene cluster that includes the homoeotic proboscipedia (pb), Sex combs reduced (Scr), and Antennapedia (Antp) loci. The results of SEM studies, clonal analyses, and temperature-shift experiments show that the fushi tarazu (ftz) and zerknullt (zen) genes, which map between pb and Scr, are involved in processes initiated during embryogenesis. The activity of ftz+ appears to be required within the first 4 hr of development for the establishment of the proper number of segments in the embryonic germ band. Individuals with ftz mutations or deficiencies produce only half the normal number of segments. Each of the segments is twice the normal width and is apparently comprised of cells that would normally form two separate metameres. The zen allele is required from about 2-4 hr of embryogenesis. Mutations of this gene result in disturbances of morphogenetic movements during gastrulation. The mutant phenotype is characterized by the absence of the optic lobe, defects in involution of the head segments, and in some cases, failure of germ band elongation. A requirement during embryogenesis for the activities of other genes residing in the 84A-84B1,2 polytene interval is suggested by the phenotypes of individuals heterozygous or homozygous for chromosomal deficiencies. Using the deficiencies Df(3R)AntpNs+R17, Df(3R)Scr, and Df(3R)ScxW+RX2, we examined the effects of deleting the distal portions or all of the 84A-84B1,2 interval. The defects in deletion heterozygotes suggest that the wild-type activity of some gene(s) other than zen, within or just adjacent to the 84B1,2 doublet, is required to complete normal head involution. The deletion of all the loci in the 84A5-84B1,2 interval results in grossly abnormal morphology and morphogenesis of the gnathocephalic appendages of the embryo. From these studies we conclude that mutations and deficiencies of genes associated with the ANT-C have profound effects on embryogenesis. The mutant phenotypes suggest, in addition to ensuring proper segment identity, the wild-type alleles of the 84A-84B1,2 genes are necessary for normal segmentation and elongation of the germ band and normal head involution.  相似文献   

7.
A factor that specifically inhibited δ-aminolevulinate dehydratase was found in rat bone marrow cells. The inhibitor, which was located in the supernatant fraction of the bone marrow hemolysate, was purified about 12-fold by ammonium sulfate fractionation and column chromatography on Sephadex G-75. The partially purified inhibitor was heat labile and sensitive to trypsin and was denatured by urea. It had a pH optimum of 7.5–8.0, and a molecular weight of 28,000. It inhibited the activity of δ-aminolevulinate dehydratase noncompetitively.  相似文献   

8.
The structure of alkaline phosphatase from Escherichia coli has been determined to 2.8 A resolution. The multiple isomorphous replacement electron density map of the dimer at 3.4 A was substantially improved by molecular symmetry averaging and solvent flattening. From these maps, polypeptide chains of the dimer were built using the published amino acid sequence. Stereochemically restrained least-squares refinement of this model against native data, starting with 3.4 A data and extending in steps to 2.8 A resolution, proceeded to a final overall crystallographic R factor of 0.256. Alkaline phosphatase-phosphomonoester hydrolase (EC 3.1.3.1) is a metalloenzyme that forms an isologous dimer with two reactive centers 32 A apart. The topology of the polypeptide fold of the subunit is of the alpha/beta class of proteins. Despite the similarities in the overall alpha/beta fold with other proteins, alkaline phosphatase does not have a characteristic binding cleft formed at the carboxyl end of the parallel sheet, but rather an active pocket that contains a cluster of three functional metal sites located off the plane of the central ten-stranded sheet. This active pocket is located near the carboxyl ends of four strands and the amino end of the antiparallel strand, between the plane of the sheet and two helices on the same side. Alkaline phosphatase is a non-specific phosphomonoesterase that hydrolyzes small phosphomonoesters as well as the phosphate termini of DNA. The accessibility calculations based on the refined co-ordinates of the enzyme show that the active pocket barely accommodates inorganic phosphate. Thus, the alcoholic or phenolic portion of the substrate would have to be exposed on the surface of the enzyme. Two metal sites, M1 and M2, 3.9 A apart, are occupied by zinc. The third site, M3, 5 A from site M2 and 7 A from site M1, is occupied by magnesium or, in the absence of magnesium, by zinc. As with other zinc-containing enzymes, histidine residues are ligands to zinc site M1 (three) and to zinc site M2 (one). Ligand assignment and metal preference indicate that the crystallographically found metal sites M1, M2 and M3 correspond to the spectroscopically deduced metal sites A, B and C, respectively. Arsenate, a product analog and enzyme inhibitor, binds between Ser102 and zinc sites M1 and M2. The position of the guanidinium group of Arg 166 is within hydrogen-bonding distance from the arsenate site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
A Mg2+-induced decrease of the rate of photosystem I (PS I) electron transport (DCIPH2 → methyl viologen) in thylakoids under saturated light intensities has been reported earlier (S. Bose, J. E. Mullet, G. E. Hoch, and C. J. Arntzen, 1981, Photobiochem. Photobiophys.2, 45–52). A similar effect is observed with Na+, although the concentration required for half-maximal inhibition was higher by about two orders of magnitude. The cation effect was gradually abolished as the thylakoids were aged by incubation at 30 °C for 6 h. The loss of cation effect on PS I electron transport rate during aging was parallel to the corresponding loss of cation effect on thylakoid stacking. The cation concentration required for thylakoid stacking and the degree of inhibition as a function of cation concentration correlated strongly with the degree of thylakoid stacking. These observations indicated that the inhibition of the rate of PS I electron transport by cations is a consequence of cation-induced stacking of thylakoid membranes. The observed inhibition of the rate of PS I electron transport is discussed in terms of two hypotheses: (i) a fraction (20–30%) of the PS I complexes is trapped in the appressed region of grana and becomes unavailable to the electron donor (DCIPH2) and (ii) the membrane structure is altered by the cations in such a manner that the rate constant of electron donation by the donor to the electron transport chain in the thylakoid is decreased.  相似文献   

10.
The interaction of alkylguanidines and decahydrohistrionicotoxin with the membrane-bound and solubilized muscarinic acetylcholine receptor (mAcChR) from porcine atria was described. Alkylguanidines with alkyl chain lengths from one to ten carbons displaced l-[3H]quinuclidinyl benzilate (l-[3H]QNB) competitively from a single class of sites for the membrane-bound mAcChR. From a plot of ?ln Ki versus alkyl carbon chain number, a value of ?(473 ± 30) cal/mol was estimated as the energetic contribution per methylene group to the total binding energy. The binding of alkylguanidines to the digitonin/cholate solubilized mAcChR was complex in nature resulting in titration curves that did not obey the law of mass action for simple competitive inhibition at higher alkyl carbon numbers and a sigmoidal plot of ?ln Ki versus carbon number. Decahydrohistrionicotoxin bound in a competitive manner versus l-[3H]QNB to both the membrane-bound (Ki = (6.9 ± 1.4) × 10?6 M) and the solubilized (Ki = (1.5 ± 0.3) × 10?5 M) preparations.  相似文献   

11.
The interaction of phospholipids with pure, catalytically inactive rat liver 3-d-(—)-CoA hydroxybutyrate apodehydrogenase (apoHBD) was examined, (a) A relationship could be established between density of packing of phospholipid molecules at the interface and apoHBD activation, namely, the larger the area per polar head, the higher the lipid molar efficiency. In this context, codispersion of lecithins with phospholipids that were inactive or scarcely active per se, such as phosphatidylethanolamine and lysophosphatidylcholine (miristoyl; Iysod14) increased the activating efficiency of lecithins, (b) ApoHBD formed tightly bound, catalytically active complexes with lecithin liposomes and micelles (diC10 + lysoC14; cetylphosphorylcholine), but a phospholipid-water interface was not essential for HBD activity since a molecular dispersion of diheptanoyl lecithin (diC7) activated apoHBD to a limited extent. ApoHBD formed loosely bound, catalytically inactive complexes with multilayer vesicles, but HBD activity could be restored by sonication or by adding liposome to those complexes. Unlike liposomes and micelles, apoHBD interaction with multilayer vesicles did not involve a hydrophobic contribution, which was apparently necessary for apoHBD activation, (c) LysoC14, did10 + lysoC14, and cetylphosphorylcholine micelles activated apoHBD but diC7 micelles inhibited the HBD activity of the apoHBD-diC7 (monomer) complex. The inhibition decreased when the medium ionic strength was increased. Liposomes and diCi10 + lysoC14 micelles activated and stabilized apoHBD much more efficiently than pure lysoC14 or cetylphosphorylcholine micelles, (d) The mode of aggregation of the activating phospholipid strongly affected the kinetics of the HBD reaction. With liposomes the reaction showed an initial lag (or induction) period whose duration varied over a range of 3 to 15 min, depending on the activating phospholipid; with diC7 monomers and micelles the kinetics was linear throughout, while with multilayer vesicles the lag was virtually infinite since HBD activity was insignificant, (e) Energies of activation for apoHBD-diC14 complexes, either below or above the lecithin gel-to-liquid crystalline transition temperature were not significantly different, in accordance with apoHBD interaction with the proximal end of the hydrocarbon chains, that is, the less subject to phase transitions. With a diC14-substituted mitochondrial preparation, however, no HBD activity was detected below 24 °C (near the gel-to-liquid crystalline transition temperature of diC14), thus indicating that, in the inner membrane, apoHBD interacts with the whole length of the fatty acyl chain and, consequently, is sensitive to phase transition.  相似文献   

12.
Lymphocytes from healthy donors and from patients with chronic lymphocytic leukemia (CLL) were stimulated to divide with sodium periodate. The time of maximal response of normal lymphocytes to sodium periodate (NaIO4) was earlier than that observed to phytohemagglutinin (PHA), but the magnitude was lower. In comparison, CLL lymphocytes responded to NaIO4 more extensively and earlier than to PHA.  相似文献   

13.
An affinity column for the purification of thymidine kinase is described. The ligand in this column is a glycoprotein isolated from rat kidney. This glycoprotein inhibits phosphorylation of thymidine in cultured cells and in a cell-free assay system. With an affinity column containing the glycoprotein as a ligand, a 24-fold purification of thymidine kinase from an ammonium sulfate fraction of a crude tissue extract can be obtained. Thymidine kinase eluted from the affinity column migrates as one major band on polyacrylamide and as one diffuse major band on sodium dodecyl sulfate-polyacrylamide. The affinity column, with thymidine kinase bound to the inhibitor, can also be used as an assay system. When the glycoprotein is covalently attached to Sepharose, it retains its binding capacity for thymidine kinase but has apparently lost its ability to inhibit the enzyme. Thymidine kinase eluted from the affinity column is again sensitive to the glycoprotein. It seems to be a carbohydrate moiety of the glycoprotein that is responsible for the inhibition.  相似文献   

14.
Crystals of the fibre protein of adenovirus type 2 have been grown and studied by electron microscopy and X-ray powder diffraction. The molecular packing and density of the crystals suggest that the fibre is dimeric.  相似文献   

15.
Chemically synthesized selenobiotin is, like sulfur biotin, able to bind to avidin. This observation was used to help identify biologically synthesized selenobiotin as an excretion product of Phycomyces blakesleeanus. The identification of [75Se]selenobiotin was based on the highly specific binding of biotin to avidin used as an affinity ligand to Sepharose, on its release from the complex by proteolytic treatment, and its chromatographic behavior relative to [14C]biotin standards. These results represent the first evidence of a biological synthesis of a heterocyclic ring that contains selenium in place of sulfur.  相似文献   

16.
Two proteins (A and B) from Escherichia, coli are required for in, vitro synthesis of the NAD+ precursor, quinolinate, from L-aspartate and dihydroxyacetone phosphate. The requirement for B protein and L-aspartate in this system can be replaced by millimolar concentrations of oxaloacetate and ammonia if they are added together. This finding supports the concept that the B protein (L-aspartate oxidase) functions to form iminoaspartate which is condensed with dihydroxyacetone phosphate by the A protein to form quinolinate.  相似文献   

17.
The multiphasic kinetics of the protein folding and unfolding processes are examined for a “cluster model” with only two thermodynamically stable macroscopic states, native (N) and denatured (D), which are essentially distributions of microscopic states. The simplest kinetic schemes consistent with the model are: N-(fast) → I-(slow) → D for unfolding and N ← (fast)-D2 ← (slow)-D1 for refolding. The fast phase during the unfolding process can be visualized as the redistribution of the native population N to I within its free energy valley. Then, this population crosses over the free energy barrier to the denatured state D in the slow phase. Therefore, the macrostate I is a kinetic intermediate which is not stable at equilibrium. For the refolding process, the initial equilibrium distribution of the denatured state D appears to be separated into D1 and D2 in the final condition because of the change in position of the free energy barrier. The fast refolding species D2 is due to the “leak” from the broadly distributed D state, while the rest is the slow refolding species D1, which must overpass the free energy barrier to reach N. At an early stage of the folding process the amino acid chain is considered to be composed of several locally ordered regions, which we call clusters, connected by random coil chain parts. Thus, the denatured state contains different sizes and distributions of clusters depending on the external condition. A later stage of the folding process is the association of smaller clusters. The native state is expressed by a maximum-size cluster with possible fluctuation sites reflecting this association. A general discussion is given of the correlation between the kinetics and thermodynamics of proteins from the overall shape of the free energy function. The cluster model provides a conceptual link between the folding kinetics and the structural patterns of globular proteins derived from the X-ray crystallographic data.  相似文献   

18.
Commercial DL-[1-14C] glutamic acid contains an impurity from which 14CO2 is released during incubation with brain mitochondrial glutamate decarboxylase and the inhibitor aminooxyacetic acid. This results in an apparent stimulation of brain mitochondrial glutamate decarboxylase by aminooxyacetic acid when low levels of the enzyme are used. Both aminooxyacetic acid and chloride ion inhibited both the supernatant and mitochondrial glutamate decarboxylase activities when purified DL-[1-14C] glutamic acid was used as substrate.  相似文献   

19.
The minimal requirements and characteristics of epididymal sperm binding to the zona pellucida of the mouse egg were investigated using a new stop-fix centrifugation technique. This assay provided a precise physical definition of the association between the spermatozoon and the zona and permitted quantitation of the binding reaction at short time intervals. The results demonstrated that Ca2+ is an essential physiological component required for binding to occur. Sperm preincubated for 60 min in a simplified medium lacking Ca2+ did not acquire the ability to bind to eggs. In contrast, if sperm preincubation occurred in this medium supplemented with 1.7 mM Ca2+, binding was identical to that observed following sperm preincubation in the complete culture medium which supports both capacitation and fertilization in vitro. The Ca2+-dependent binding reaction was rapid, reversed by EGTA, specific for Ca2+, and did not require the transport of Ca2+ into the cell. Sperm bound to the zona surface following preincubation with Ca2+ were capable of fertilization in vitro when the eggs were subsequently transferred to the culture medium. It is proposed that this binding reaction represents a part of capacitation and not the acrosome reaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号