首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blend times and power consumptions were determined for different arrangements of two equal diameter impellers, a high efficiency A310 and a “Dumbo Ear” impeller with three large, “elephant ear” blades designed for low shear agitation. A 9 l round-bottomed, unbaffled bioreactor was used in these studies. Blend times were taken as the time for the disappearance of the pink color of a basic solution of phenolphthalein on neutralization by excess acid, and the power consumption was obtained from torque measurements. The mixing results show that the Dumbo Ear impeller gives shorter blend times than the A310?at equal rotational speeds for most of the conditions studied. As expected, the Dumbo Ear impeller consumes more power than the A310?at the same rotational speed, due to its large area blades. However, the Dumbo Ear impeller also gives shorter blend times than the A310?at equal power consumptions.  相似文献   

2.
The use of internal rotating sieves for perfused hybridoma culture offers unique advantages but has been up to now largely empirical. Calculations have been performed on a 15 l spinfilter stirred tank in order to have an idea of hydrodynamic conditions inside and outside the rotating sieve. The large peripheral velocity value, resulting from sieve rotation (compared to axial and radial velocities) is expected to affect strongly sieve surface colonization by cells; this is confirmed by lab scale experiments, showing that cell colonization is prevented providing sieve rotation exceeds a defined value (around 0.6 m.s.1 tip speed); the fluid removal force calculated under these conditions appears to be in the range of 10 pN, similar to the adhesion force already reported for mammalian cells attached to inorganic substrata.  相似文献   

3.
The effects of the impeller configuration, aeration rate, and agitation speed on oxygen transfer coefficient K(L)a were studied in a newly designed centrifugal impeller bioreactor (5-L). The oxygen transfer rates in the novel bioreactor were also compared with those in a cell-lift bioreactor with comparable dimensions. The cell-lift impeller produced much higher surface oxygen transfer rates than the centrifugal one at an agitation speed over 200 rpm. This result was in good agreement with our observation that the cell-lift impeller produced much higher unfavorable turbulence. In addition, the experiments using granulated agar particles as pseudo plant cells indicated that the K(L)a value decreased steadily with an increase in agar particle concentration, and the centrifugal impeller still demonstrated a larger K(L)a than the cell lift up to a high pseudo cell concentration of 19.5 g dry weight (DW)/L (under 150 rpm and 0.20 vvm) or 22.3 g DW/L (under 200 rpm and 0.20 vvm). Furthermore, the correlation between power number and impeller Reynolds number for both the centrifugal and the cell-lift impellers was successfully obtained, which could be used for predicting the power input required by each impeller. From the results obtained, the centrifugal impeller bioreactor is expected to have great potential in its application to shear-sensitive biological systems.  相似文献   

4.
The influence of the agitation conditions on the growth, morphology, vacuolation, and productivity of Penicillium chrysogenum has been examined in 6 L fed-batch fermentations. A standard Rushton turbine, a four-bladed paddle, and a six-bladed pitched blade impeller were compared. Power inputs per unit volume of liquid, P/VL, ranged from 0.35 to 7.4 kW/m3. The same fermentation protocol was used in each fermentation, including holding the dissolved oxygen concentration above 40% air saturation by gas blending. The mean projected area (for all dispersed types, including clumps) and the clump roughness were used to characterize the morphology. Consideration of clumps was vital as these were the predominant morphological form. For a given impeller, the batch-phase specific growth rates and the overall biomass concentrations increased with agitation intensity. Higher fragmentation at higher speeds was assumed to have promoted growth through increased formation of new growing tips. The mean projected area increased during the rapid growth phase followed by a sharp decrease to a relatively constant value dependent on the agitation conditions. The higher the speed, the lower the projected area for a given impeller type. The proportion by volume of hyphal vacuoles and empty regions decreased with speed, possibly due to fragmentation in the vacuolated regions. The specific penicillin production rate was generally higher with lower impeller speed for a given impeller type. The highest value of penicillin production as well as its rate was obtained using the Rushton turbine impeller at the lowest speed. At given P/VL, changes in morphology, specific growth rate, and specific penicillin production rate depended on impeller geometry. The morphological data could be correlated with either tip speed or the "energy dissipation/circulation function," but a reasonable correlation of the specific growth rate and specific production rate was only possible with the latter. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

5.
Summary The effect of impeller speed on citric acid production and selected enzyme activities of the TCA cycle was studied. The highest yield of citric acid (28 g/l) was obtained in culture agitated at lower speed (300 rpm). The activity of citrate synthase decreased with the increase of speed of agitation, while the activity of aconitase and isocitrate dehydrogenase increased with the increase in agitation speed.  相似文献   

6.
The efficiency of O transfer by a novel centrifugal impeller was higher than that of a conventional flat-bladed turbine impeller at an agitation speed lower than 300 rpm. In addition, at the same agitation speed (200 and 300 rpm), the centrifugal impeller possessed smaller shear stress than the flat-bladed turbine impeller as evaluated by the changes in size distribution of granulated agar particles which were sheared with those two types of impeller.  相似文献   

7.
A recirculation loop added to a large-scale roller bottle reactor resulted in high cell densities as compared to standard roller bottles. Four different mammalian cell lines reached an average maximum density equal to 5.4 x 10(6) cells /mL (sigma = 0.263), which was between 2.13 and 2.95 times greater than the densities in roller bottles without recirculation using the same cell lines. The high densities were maintained over long durations (>25 days) while the reactor operated with continuous perfusion. The increased densities are attributed to enhanced liquid mixing and oxygen transfer that occur as a result of the recirculation loop. Models were developed that describe axial liquid flow and oxygen transfer in both the sample loop and the reactor growth chamber. Axial dispersion and oxygen transfer coefficients are presented for a variety of operating conditions. The increased oxygen transfer characteristics of the reactor allow for easy scale-up of roller bottle cultures by operating at larger volumes with greater liquid depths than conventional roller bottles permit. The surface-area-to-volume ratio in the tests performed was 0.206 versus 1.16 cm(-1) in a standard roller bottle.  相似文献   

8.
Mass transfer for kerosene-water system with benzoic acid and n-butyric acid as solutes has been studied in a reciprocating plate column at different operating conditions including the agitation rate of the plate stack, the plate geometry, the flow rates of the phases and the direction of mass transfer. Apparent and true concentration profiles for the dispersed and the continuous phase along the length of the column were generated, taking axial mixing of the phase into consideration. It is noticed that high agitation rate for the plate stack and low free area for the plate give rise to large difference between the apparent and true values. These observations also agree with the data obtained for carbon dioxide — water system studied in a reciprocating plate column.  相似文献   

9.
Cultivation of plant cells in a stirred vessel: effect of impeller design   总被引:2,自引:0,他引:2  
Suspension cultures of Nicotiana tabacum were grown in a batch fermentor using different agitation systems. The effects of the impeller type, size, and agitation speed on the productivity of cell mass and secondary metabolites (phenolics) have been investigated. The use of a large, flat-bladed impeller (diameter 7.6 cm; width 14.0 cm) improved culture growth significantly over systems using a regular, flat-bladed impeller (diameter 5.6 cm; width 1.5 cm). An impeller of the same dimensions as the 14.0-cm-wide, large, flat-bladed impeller with sail cloth blades yielded a higher maximum growth rate in the exponential phase but resulted in a longer lag phase. Overall (intracellular and extracellular) phenolics concentration showed a direct relationship to culture growth rate whereas extracellular concentrations were a function of agitation conditions. Power consumption and flow pattern studies were also completed to further characterize the different impellers tested.  相似文献   

10.
Thirteen agitator configurations were investigated at low speed in stirred-tank reactors (STRs) to determine if improved crude bacterial nanocellulose (BNC) productivity can be achieved from glucose-based media while maintaining high BNC quality using Komagataeibacter xylinus ATCC 23770 as a model organism. A comparison of five single impellers showed the pitched blade (large) was the optimal impeller at 300 rpm. The BNC production was further increased by maintaining the pH at 5.0. Among the single helical ribbon and frame impellers and the combined impellers, the twin pitched blade provided the best results. The combined impellers at 150 rpm performed better than the single impellers, and after optimizing the agitation conditions, the twin pitched blade (large) and helical ribbon impellers performed the best at 100 rpm. The performances of different agitators at low speed during BNC production were related to how efficiently the agitators improved the oxygen mass transfer coefficient. The twin pitched blade (large) was verified as providing the optimum performance by an observed crude BNC production of 1.97 g (L×d)−1 and a BNC crude yield of consumed glucose of 0.41 g g−1, which were 2.25 and 2.37 times higher than the initial values observed using the single impeller respectively. Further characterization indicated that the BNC obtained at 100 rpm from the STR equipped with the optimal agitator maintained high degree of polymerization and crystallinity.  相似文献   

11.
Brewing fermentations have traditionally been undertaken without the use of mechanical agitation, with mixing being provided only by the fluid motion induced by the CO2 evolved during the batch process. This approach has largely been maintained because of the belief in industry that rotating agitators would damage the yeast. Recent studies have questioned this view. At the bench scale, brewer’s yeast is very robust and withstands intense mechanical agitation under aerobic conditions without observable damage as measured by flow cytometry and other parameters. Much less intense mechanical agitation also decreases batch fermentation time for anaerobic beer production by about 25% compared to mixing by CO2 evolution alone with a small change in the concentration of the different flavour compounds. These changes probably arise for two reasons. Firstly, the agitation increases the relative velocity and the area of contact between the cells and the wort, thereby enhancing the rate of mass transfer to and from the cells. Secondly, the agitation eliminates spatial variations in both yeast concentration and temperature, thus ensuring that the cells are maintained close to the optimum temperature profile during the whole of the fermentation time. These bench scale studies have recently been supported by results at the commercial scale from mixing by an impeller or by a rotary jet head, giving more consistent production without changes in final flavour. It is suggested that this reluctance of the brewing industry to use (adequate) mechanical agitation is another example where the myth of shear damage has had a detrimental effect on the optimal operation of commercial bioprocessing.  相似文献   

12.
The effects on mass-transfer and overall mixing rates of varying impeller geometry and operating speed have been studied for flat-bladed turbines in laboratory fermentors, in aerated aqueous solutions, and in unaerated and aerated suspensions (1.6% w/v) of paper pulp. In the absence of suspended solid, oxygen absorption rates could be correlated directly with power input. In the pulp suspension, oxygen absorption at a given power input was influenced by impeller geometry and operating speed. The data for the three-phase system can be correlated by a dimensionless equation relating oxygen-transfer rates and mixing times to the geometrical and operating parameters of the impellers.  相似文献   

13.
Biotin production by fermentation of recombinant Sphingomonas sp./pSP304 was investigated. A complex medium containing 60g/l of glycerol and 30g/l of yeast extract was suitable for biotin production. Biotin was produced in the late logarithmic or stationary phase after glycerol starvation. The optimum pH value for biotin production was 7.0. When the dissolved oxygen concentration (DO) was controlled at a constant level, the biotin concentration produced after 120h was significantly lower than that obtained in a test tube culture. Therefore, a batchwise jar-fermentor culture with a constant agitation speed and without DO control was conducted for investigating the effect of agitation conditions on biotin production. Six types of impeller were tested: turbine-blade type, turbo-lift type, rotating mesh type (EGSTAR((R))), screw with draft tube type, Maxblend((R))type, and anchor type. With some impellers, agitation speed was also changed. Both the maximum cell concentration and biotin production varied depending on agitation conditions. Relatively high cell concentrations were attained with four of the impeller types, turbine-blade type, rotating mesh type, Maxblend((R)) type, and anchor type. Among these impellers, the turbine-blade impeller with sintered sparger was suitable for biotin production. After 120h, the cell concentration reached an OD(660) of 43 and a biotin concentration of 66mg/l was obtained, which was comparable with the results from the test tube culture. Morphological variation was also observed depending on the agitation conditions: oval-shaped, rod-shaped, and elongated-shaped cells. Biotin production was relatively high in slightly long rod-shape cells but low in elongated cells. The difference in morphology appeared to depend on the shear stress. It was found that biotin production was strongly correlated with cell length and the oxygen transfer coefficient (k(L)a); cell lengths in the range 4-7μm and k(L)a values in the range 1.5-2.0/min were found to be suitable for biotin production in jar-fermentor culture.  相似文献   

14.
The effect of gas on solid-liquid hydrodynamics in mixing vessels was studied to determine the agitation speed required to just completely suspend all the particles under gassed conditions, N jsg and by measurement of the power consumption associated with this agitation speed. The solid particles have a mean diameter between 15–1000 μm. For their mixing are used standard and modified Rushton turbine agitators positioned singly or doubly on the same shaft. The modified turbine with a surface fraction of the perforations equal to 0.353 (TP3) was obtained through increase in the blade height of the Rushton turbine simultaneously with the perforation of the blade surface. The filled surface of the modified blade is equal to the blade surface of the standard Rushton turbine.  相似文献   

15.
Fenge  Christel  Klein  Cornelia  Heuer  Carsten  Siegel  Ursula  Fraune  Elisabeth 《Cytotechnology》1993,11(3):233-244
For an optimized bioreactor design which is adapted to the cultivation of sensitive animal cells different modular bioreactor components for gentle agitation, sufficient aeration and long-term perfusion were developed and investigated with respect to their suitability from laboratory to production scale. Aeration systems have been designed for both shear sensitive cells and cells which tolerate bubbles. The systems are based on either membranes for bubble-free aeration or stainless steel sparger systems. They were characterized by determination of their oxygen transfer capacity and optimized in cultivation processes of different cell lines under process conditions such as batch and perfusion mode.Different impellers for suspension cells and cells grown on carriers were investigated for their suitability to ensure homogeneous gentle mixing. A large pitch blade impeller as well as a novel 3-blade segment impeller are appropriate for homogeneous mixing at low shear rates. Especially with the 3-blade segment impeller fluid mechanical stress can be reduced at a given stirrer speed which is advantageous for the cultivation of cells attached to microcarriers or extremely shear sensitive suspension cells. However, our results indicate that shear sensitivity of animal cells has been generally overestimated.Continuous perfusion of both suspension cell cultures and cells cultivated on microcarriers could be successfully performed over extended periods of time using stainless steel spinfilters with appropriate pore sizes and systems based on microporous hydrophilic membranes. Spinfilters are suitable cell retention systems for technical scale bioreactors allowing continuous perfusion cultures of suspension cells (pore size 10 to 20 m) as well as anchorage dependent cells grown on microcarriers (pore size 75 m) over six weeks to 3 months.Applying the developed modules for agitation, aeration and perfusion process adapted bioreactor set-ups can be realized which ensure optimum growth and product formation conditions in order to maximize cell and product yields.  相似文献   

16.
Summary Escherichia coli was continuously cultivated in a disc turbine agitated laboratory fermenter at constant dilution rate under conditions of carbon limitation. Agitation rate (impeller speed) was varied over the range 600 to 1500 rev. min-1. As previously reported, the mean cell volume was found to increase linearly with increase in agitation rate, whereas total cell counts and dry cell weights remained constant. Measurements of intracellular sodium and potassium concentration showed that these both increased as the cell volume increased: the potassium content was about twenty times the sodium content and the intracellular content of each ion doubled over the range of agitation rates tested.  相似文献   

17.
The effects of the impeller diameter and width on the volumes of the micromixing and macromixing regions, and on the circulation time distribution were investigated at various agitation speeds to formulate the relationships of them in emperical equations. A fermentor was a 10-l capacity, which was equipped with a turbine impeller with six flat balades and aerated at 1 vvm. It was found that the volumes of the micromixing and macromixing regions depended on the tip speed of the impeller, ND, and the discharging performance of the impeller, ND2W, respectively, in the xabthan gum solution with concentrations of 0.9, 1.8, 2.7, and 3.9%. Empirical equations were derived to estimate the volume of each mixing region from the impeller diameter, D, impeller width, W, agitation speed, N, and consistency coefficient of the xanthan gum solution. On the other hand, the circulation time distribution could be estimated empirically from only the impeller diameter and agitation speed, regardless of variation in the impeller width and consistency coefficient of the xanthan gum solution tested.  相似文献   

18.
The higher ethanol titer inevitably requires higher solids loading during the simultaneous enzymatic saccharification and fermentation (SSF) using lignocellulose as the feedstock. The mixing between the solid lignocellulose and the liquid enzyme is crucially important. In this study, a bioreactor with a novel helical impeller was designed and applied to the SSF operation of the steam explosion pretreated corn stover under different solids loadings and different enzyme dosages. The performances using the helical impeller and the common Rushton impeller were compared and analyzed by measuring rheological properties and the mixing energy consumption. The results showed that the new designed stirring system had better performances in the saccharification yield, ethanol titer, and energy cost than those of the Rushton impeller stirring. The mixing energy consumption under different solids loadings and enzyme dosages during SSF operation were analyzed and compared to the thermal energy in the ethanol produced. A balance for achieving the optimal energy cost between the increased mixing energy cost and the reduced distillation energy cost at the high solids loading should be made. The potentials of the new bioreactor were tested under various SSF conditions for obtaining optimal ethanol yield and titer. Biotechnol. Bioeng. 2010. 105: 718–728. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
This study aims to investigate the mixing characteristics of a transparent sludge simulant in a mechanically agitated model digester using flow visualisation technique. Video images of the flow patterns were obtained by recording the progress of an acid–base reaction and analysed to determine the active and inactive volumes as a function of time. The doughnut-shaped inactive region formed above and below the impeller in low concentration simulant decreases in size with time and disappears finally. The ‘cavern’ shaped active mixing region formed around the impeller in simulant solutions with higher concentrations increases with increasing agitation time and reaches a steady state equilibrium size, which is a function of specific power input. These results indicate that the active volume is jointly determined by simulant rheology and specific power input. A mathematical correlation is proposed to estimate the active volume as a function of simulant concentration in terms of yield Reynolds number.  相似文献   

20.
The effects of agitation on fragmentation of a recombinant strain of Aspergillus oryzae and its consequential effects on protein production have been investigated. Constant mass, 5.3-L chemostat cultures at a dilution rate of 0.05 h-1 and a dissolved oxygen level of 75% air saturation, have been conducted at 550, 700, and 1000 rpm. These agitation speeds were chosen to cover a range of specific power inputs (2.2 to 12 kW m-3) from realistic industrial levels to much higher values. The use of a constant mass chemostat linked to a gas blender allowed variation of agitation speed and hence gas hold-up without affecting the dilution rate or the concentration of dissolved oxygen. The morphology of both the freely dispersed mycelia and clumps was characterized using image analysis. Statistical analysis showed that it was possible to obtain steady states with respect to morphology. The mean projected area at each steady state under growing conditions correlated well with the 'energy dissipation/circulation" function, [P/(kD3tc)], where P is the power input, D the impeller diameter, tc the mean circulation time, and k is a geometric constant for a given impeller. Rapid transients of morphological parameters in response to a speed change from 1000 to 550 rpm probably resulted from aggregation. Protein production (alpha-amylase and amyloglucosidase) was found to be independent of agitation speed in the range 550 to 1000 rpm (P/V = 2.2 and 12.6 kW m-3, respectively), although significant changes in mycelial morphology could be measured for similar changes in agitation conditions. This suggests that mycelial morphology does not directly affect protein production (at a constant dilution rate and, therefore, specific growth rate). An understanding of how agitation affects mycelial morphology and productivity would be valuable in optimizing the design and operation of large-scale fungal fermentations for the production of recombinant proteins. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号