首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Report from the in vitro micronucleus assay working group   总被引:13,自引:0,他引:13  
At the Washington "2nd International Workshop on Genotoxicity Testing" (25-26 March 1999) current methodologies and data for the in vitro micronucleus test were reviewed. As a result, guidelines for the conduct of specific aspects of the protocol were developed. Agreement was achieved on the following topics: choice of cells, slide preparation, analysis of micronuclei, toxicity, use of cytochalasin-B, number of doses, and treatment/harvest times [Environ. Mol. Mutagen. 35 (2000) 167]. Because there were a number of important in vitro micronucleus validation studies in progress, it was not possible to design a definitive, internationally harmonized protocol at that time. These studies have now been completed and the data were reviewed at the Plymouth "3rd International Workshop on Genotoxicity Testing" (28-29 June 2002). Data from studies coordinated by the French Society of Genetic Toxicology, Japanese collaborative studies, European pharmaceutical industry validation studies, along with data from Lilly Research Laboratories were used to prepare conclusions on the main aspects of the in vitro micronucleus protocol. In this paper, the consensus agreements on the protocol for performing the in vitro micronucleus assay are presented. The major recommendations concern: 1. Demonstration of cell proliferation: both cell lines and lymphocytes can be used, but demonstration of cell proliferation in both control and treated cells is compulsory for the acceptance of the test. 2. Assessment of toxicity and dose range finding: assessment of toxicity should be performed by determining cell proliferation, e.g. increased cell counts (CC) or population doubling (PD) without cytochalasin-B, or e.g. cytokinesis-block proliferation index with cytochalasin-B; and by determining other markers for cytotoxicity (confluency, apoptosis, necrosis) which can provide valuable additional information. 3. Treatment schedules for cell lines and lymphocytes. 4. Choice of positive controls: without S9-mix both a clastogen (e.g. mitomycin C or bleomycin) and an aneugen (e.g. colchicine) should be included as positive controls and a clastogen that requires S9 for activity when S9-mix is used (e.g. dimethylnitrosamine, or cyclophosphamide in those cell types that cannot activate this agent directly). 5. Duplicate cultures and number of cells to be scored. 6. Repeat experiments: in lymphocytes, for each experiment blood from 2 different healthy young and non-smoking donors should be compared. In cell lines, the experiments need only to be repeated if the first one is negative. 7. Statistics: statistical significance should not be the sole factor for determining positive results. Biological meaning should serve as a guideline. Examples of statistical analyses are given.  相似文献   

2.
At the Washington “2nd International Workshop on Genotoxicity Testing” (25–26 March 1999) current methodologies and data for the in vitro micronucleus test were reviewed. As a result, guidelines for the conduct of specific aspects of the protocol were developed. Agreement was achieved on the following topics: choice of cells, slide preparation, analysis of micronuclei, toxicity, use of cytochalasin-B, number of doses, and treatment/harvest times [Environ. Mol. Mutagen. 35 (2000) 167]. Because there were a number of important in vitro micronucleus validation studies in progress, it was not possible to design a definitive, internationally harmonized protocol at that time. These studies have now been completed and the data were reviewed at the Plymouth “3rd International Workshop on Genotoxicity Testing” (28–29 June 2002). Data from studies coordinated by the French Society of Genetic Toxicology, Japanese collaborative studies, European pharmaceutical industry validation studies, along with data from Lilly Research Laboratories were used to prepare conclusions on the main aspects of the in vitro micronucleus protocol. In this paper, the consensus agreements on the protocol for performing the in vitro micronucleus assay are presented. The major recommendations concern:
1. Demonstration of cell proliferation: both cell lines and lymphocytes can be used, but demonstration of cell proliferation in both control and treated cells is compulsory for the acceptance of the test.
2. Assessment of toxicity and dose range finding: assessment of toxicity should be performed by determining cell proliferation, e.g. increased cell counts (CC) or population doubling (PD) without cytochalasin-B, or e.g. cytokinesis-block proliferation index with cytochalasin-B; and by determining other markers for cytotoxicity (confluency, apoptosis, necrosis) which can provide valuable additional information.
3. Treatment schedules for cell lines and lymphocytes.
4. Choice of positive controls: without S9-mix both a clastogen (e.g. mitomycin C or bleomycin) and an aneugen (e.g. colchicine) should be included as positive controls and a clastogen that requires S9 for activity when S9-mix is used (e.g. dimethylnitrosamine, or cyclophosphamide in those cell types that cannot activate this agent directly).
5. Duplicate cultures and number of cells to be scored.
6. Repeat experiments: in lymphocytes, for each experiment blood from 2 different healthy young and non-smoking donors should be compared. In cell lines, the experiments need only to be repeated if the first one is negative.
7. Statistics: statistical significance should not be the sole factor for determining positive results. Biological meaning should serve as a guideline. Examples of statistical analyses are given.
  相似文献   

3.
5-(2-chloroethyl)-2'-deoxyuridine (CEDU) had been developed for the treatment of herpes simplex infections. In the Salmonella reverse mutation test, the compound was found to be mutagenic in strains TA1535 and TA102 at very high concentrations (> or =2500 micro g/plate), both with and without S9-mix. The mutagenic potential of CEDU was further investigated in vivo and in vitro. It did not induce DNA repair in rat hepatocyte primary cultures, and was negative in the micronucleus test in V79 cells and in the comet assay in human leukocytes. In vivo, CEDU was negative in the bone marrow micronucleus test in CD1 mice. The mouse spot test provided a clearly positive result. Treatment of mice on day 9 of pregnancy with 2000 mg/kg resulted in 5.9% of the F1 animals having genetically relevant spots, whereas the corresponding vehicle control group had a spot rate of 1.9%. Since these data clearly identified CEDU as an inducer of gene mutations in vivo, this potential was further investigated in lacZ transgenic Muta Mouse. Six female animals were treated daily on five consecutive days with 2000 mg/kg/day and sacrificed, after a treatment-free sampling time, 14 days later. The data showed a clear increase in the mutant frequency in the bone marrow, the lung and in the spleen. CEDU is an exception in the group of nucleoside analogues, because it was found to be a strong gene mutagen and, in contrast to the other compounds of this group investigated so far, had no considerable clastogenic effects.  相似文献   

4.
In this report, are presented the results of an international collaborative study on the in vitro micronucleus assay, using CHL cells. Fourteen laboratories participated in this study which was coordinated by an organizing committee supported by the SFTG (the French branch of the European Environmental Mutagen Society). Nine coded substances, having different modes of action and at different levels were assessed in the in vitro micronucleus test, using a common protocol. Mitomycin C was used as a positive control. In order to help to define a standard protocol on CHL cells, short and long treatment periods followed by various recovery times, with or without cytochalasin B, were compared. After an evaluation of the acceptability of the assays, the tested chemicals were classified as negative, positive or equivocal. Mannitol and clofibrate were judged as negative in all treatment schedules. Bleomycin was positive in all the treatment schedules, with an increase in the number of micronucleated cells in both mononucleate and binucleate cells when using cytochalasin B. This was also shown for the aneugens colchicine, diethylstilboestrol and griseofulvin, as expected. Urethane was judged as equivocal only after long treatment with cytochalasin B, and negative in all other treatment schedules. In any case, no genotoxic compound would have been missed with schedules including a short and a long treatment time, whether the treatment was followed by a recovery period or not and whether cytochalasin B was used or not. Thus, these results show that CHL cells were suitable for accurately detecting clastogenic and aneugenic compounds of various types in the in vitro micronucleus test.  相似文献   

5.
S Sato  N Inui  Y Ikeda  Y Hiraga 《Mutation research》1989,223(4):387-390
Intraperitoneal (i.p.) injection and oral (p.o.) gavage were evaluated in the mouse micronucleus test with mitomycin C (MMC). The tests were carried out in 2 laboratories with the MS/Ae and CD-1 mouse strains. On the basis of a small-scale acute toxicity study and a pilot experiment, the full-scale micronucleus test was performed with a 24-h sampling time at doses of 1, 2, 4, and 8 mg/kg for both treatment routes. In both strains, a clear positive dose-response relation was shown by both routes. Although the frequency of micronucleated polychromatic erythrocytes (MNPCEs) was higher with i.p. on a mg/kg basis, this tendency was reversed when dose was expressed as a percentage of the LD50.  相似文献   

6.
The in vivo micronucleus test using mouse colonic epithelial cells was evaluated as the 11th collaborative study organized by the Collaborative Study Group on the micronucleus test (CSGMT) with three model chemicals that were known to induce chromosome damage in mouse colonic cells. Five laboratories participated in this validation study. All three model chemicals, i.e. 1,2-dimethylhydrazine dihydrochloride (1,2-DMH), N-methyl-N-nitrosourea (MNU), and mitomycin C (MMC), induced micronucleated colonic epithelial cells in a 4-day exposure protocol in all participating laboratories. We confirmed that the present single cell suspension method could be used to detect the model chemicals as micronucleus inducers in mouse colonic epithelial cells. Advantages of this method are that experiments are easy to perform and that intact cells can be analyzed. The present study suggested that the colon micronucleus assay proposed here is useful for mechanistic studies of colon carcinogenesis.  相似文献   

7.
Naturally occurring substances were tested for genotoxicity using a modified laboratory protocol of the Escherichia coli PQ37 genotoxicity assay (SOS chromotest) in the presence and in the absence of an exogenous metabolizing system from rat liver S9-mix. Aristolochic acid I, II, the plant extract aristolochic acid and psoralene were genotoxic; cycasine, emodine, monocrotaline and retrorsine were classified as marginal genotoxic in the SOS chromotest in the absence of S9-mix. In the presence of an exogenous metabolizing system from rat liver S9-mix aristolochic acid I, the plant extract, beta-asarone, cycasin, monocrotaline, psoralen and retrorsine showed genotoxic effects; aristolochic acid II marginal genotoxic effects. Arecoline, benzyl acetate, coumarin, isatidine dihydrate, reserpine, safrole, sanguinarine chloride, senecionine, senkirkine, tannin and thiourea revealed no genotoxicity in the SOS chromotest either in the presence or in the absence of an exogenous metabolizing system from rat liver S9-mix. For 17 of 20 compounds, the results obtained in the SOS chromotest could be compared to those obtained in the Ames test. It was found that 12 (70.6%) of these compounds give similar responses in both tests (6 positive and 6 negative responses). The present investigation and those reported earlier, the SOS chromotest, using E. coli PQ37, was able to detect correctly most of the Salmonella mutagens and non-mutagens.  相似文献   

8.
A collaborative study with 10 participating laboratories was conducted to evaluate a test protocol for the performance of the in vitro micronucleus (MN) test using the V79 cell line with one treatment and one sampling time only. A total of 26 coded substances were tested in this study for MN-inducing properties. Three substances were tested by all 10 laboratories and 23 substances were tested by three or four laboratories in parallel. Six aneugenic, 7 clastogenic and 6 non-genotoxic chemicals were uniformly recognised as such by all laboratories. Three chemicals were tested uniformly negative by three laboratories although also clastogenic properties have been reported for these substances. Another set of three clastogenic substances showed inconsistent results and one non-clastogenic substance was found to be positive by one out of three laboratories. Within the study, the applicability of the determination of a proliferation index (PI) as an internal cytotoxicity parameter in comparison with the determination of the mitotic index (MI) was also evaluated. Both parameters were found to be useful for the interpretation of the MN test result with regard to the control of cell cycle kinetics and the mode of action for MN induction. The MN test in vitro was found to be easy to perform and its results were mainly in accordance with results from chromosomal aberration tests in vitro.  相似文献   

9.
Cyracure UVR 6105 is a cycloaliphatic epoxy monomer and has both carboxylate and epoxy groups, with the potential for rapid polymerization. It is widely used in industry for the preparation of inks, resins, coatings, and was proposed for incorporation into dental composites. The objective of this study was to determine the mutagenic potential of this chemical related to its metabolite products. Several doses of Cyracure UVR 6105 were dissolved in DMSO and subjected to the Ames Salmonella mutagenicity assay. A metabolic activation system (S9-mix) was used consisting of Arochlor-induced liver S9 homogenate enriched with NADP and glucose-6-phosphate cofactors. In contrast to studies without S9-mix, Cyracure UVR 6105 exhibited enhanced genotoxic activities with strains TA100 and TA1535 in the presence of liver S9-mix. From in vitro metabolism of Cyracure UVR 6105 with S9-mix, as used in the Ames assay, several metabolites were identified. The alcohol metabolite, 3,4-epoxycyclohexylmethanol, containing intact epoxy group was identified in the organic solvent extract. This metabolite was synthesized and proved to be mutagenic against TA100 when assayed in the presence and absence of S9-mix. Results showed that the increased mutagenicity of Cyracure UVR-6105 in the presence of liver enzymes is due to the formation of the mutagenic metabolite 3,4-epoxycyclohexylmethanol.  相似文献   

10.
A comparative study of three in vitro metabolising systems was performed in combination with Chinese hamster V79 cells, at which point mutation to 6-thioguanine resistance was scored. The three metabolising systems used were: (1) rat liver microsomal fraction (S9-mix); (2) feeder layer of primary embryonic golden hamster cells, according to Hubermann's system; (3) in vitro perfusion of rat liver according to the system of Beije et al. As model substances dimethylnitrosamine (DMN) and benzo[a]pyrene (BP) was used. The liver perfusion was more efficient than S9-mix as an activating system of DMN, while the feeder layer of embryonic cells was unable to activate this compound. The activation of DMN with S9-mix was dependent on the presence of NADP. By exposing the target cells in the liver perfusion at different distances from the liver the biological half life of the active metabolite of DMN could be estimated to less than 5 s. With BP the three metabolising systems showed reversed results as compared with DMN--both the feeder layer cells and S9-mix activated BP, the feeder layer cells being most efficient. With liver perfusion, the perfusate itself was totally negative. Only the bile showed a week mutagenic effect. These results are in accordance with the notion that intact liver cells perform both an activation and a subsequent deactivation of BP. Because of the importance of hepatic bio-transformation in chemical mutagenesis and carcinogenesis it is emphasied that a liver perfusion system could be used in a testing protocol for genotoxic effects as a valuable tool in order to analyse the mechanism of action of mutagenic and carcinogenic compounds detected in other test systems, for instance bacterial/microsomal tests.  相似文献   

11.
The genotoxic potential of the natural neurotoxin Tetrodotoxin (TTX) was evaluated in a battery of in vitro and in vivo genotoxicity assays. These comprised a bacterial reverse-mutation assay (Ames test), an in vitro human lymphocyte chromosome-aberration assay, an in vivo mouse bone-marrow micronucleus assay and an in vivo rat-liver UDS assay. Maximum test concentrations in in vitro assays were determined by the TTX limit of solubility in the formulation vehicle (0.02% acetic acid solution). In the Ames test, TTX was tested at concentrations of up to 200 microg/plate. In the chromosome-aberration assay human lymphocytes were exposed to TTX at concentrations of up to 50 microg/ml for 3 and 20 h in the absence of S9, and for 3h in the presence of S9. For the in vivo assays, maximum tested dose levels were determined by the acute lethal toxicity of TTX after subcutaneous administration. In the mouse micronucleus assay TTX dose levels of 2, 4 and 8 microg/kg were administered to male and female animals, and bone-marrow samples taken 24 and 48 h (high-dose animals only) after administration. In the UDS assay, male rats were given TTX on two occasions with a 14-h interval at dose levels of 2.4 and 8 microg/kg, the last dose being administered 2h before liver perfusion and hepatocyte culturing. Relevant vehicle and positive control cultures and animals were included in all assays. TTX was clearly shown to lack in vitro or in vivo genotoxic activity in the assays conducted in this study. The results suggest that administration of TTX as a therapeutic analgesic agent would not pose a genotoxic risk to patients.  相似文献   

12.
Evaluation of an automated in vitro micronucleus assay in CHO-K1 cells   总被引:1,自引:0,他引:1  
In this paper, we describe the evaluation of an automated in vitro micronucleus assay using CHO-K1 cells in 96-well plates. CHO-K1 cells were pre-loaded with a cell dye that stains the cytoplasm, after which the cells were treated with the test compounds for either 3h (for the +S9 condition) or 24h (for the -S9 condition). A total of 10 concentrations were tested, of which the top five concentrations were scored (limited by either cytotoxicity or solubility). At the end of the incubation period the cells were fixed and their DNA was stained with Hoechst. The visualization and scoring of the cells was done using an automated fluorescent microscope coupled with proprietary automated image analysis software provided by Cellomics (Pittsburg, PA). A total of 46 compounds were used in this evaluation, including 8 aneugens and 25 clastogens with varied mechanisms of action. Thirteen non-genotoxic compounds were also included. The automated scoring had a sensitivity of 88% and a specificity of 100%, with a predictive value positive of 100% and a predictive value negative of 76%, compared to data from the literature that was obtained with manual scoring. We also describe the incorporation of a metabolic activation system using rat liver S9 homogenates, and the use of cell number counts as a cytotoxicity index which is complementary to the CBPI- (cytokinesis-block proliferation index) based index. Finally, we also discuss the potential for artefactual findings due to fluorescent precipitate, which should be carefully monitored to prevent false positive results. In conclusion, the automated in vitro micronucleus scoring is a valid alternative to the manual scoring of slides, and it has the advantage of generating data in a rapid and consistent manner, and with low compound requirements, which makes it well suited as a screening assay in the early stages of compound development.  相似文献   

13.
In a number of adverse drug reactions leading to hepatotoxicity drug metabolism is thought to be involved by generation of reactive metabolites from nontoxic drugs. In this study, an in vitro assay was developed for measurement of the impact of metabolic activation of compound on the cytotoxicity toward a human hepatic cell line. HepG2 cells were treated for 6 h with compound in the presence or absence of rat liver S9-mix, and the viability was measured using the MTT test. The cytotoxicity of cyclophosphamide was substantially increased by S9-mix in the presence of NADPH. Three NADPH sources were tested: NADPH (1 mmol/L) or NADPH regenerating system with either NADP+/glucose 6-phosphate (G6P) or NADP+/isocitrate. All three NADPH sources increased the cytotoxicity of cyclophosphamide to a similar extent. Eight test compounds known to cause hepatotoxicity were tested. For these, only the cytotoxicity of diclofenac was increased by S9 enzymes when an NADPH regenerating system was used. The increased toxicity was NADPH dependent. Reactive drug metabolites of diclofenac, formed by NADPH-dependent metabolism, were identified by LC-MS. Furthermore, an increase in toxicity, not related to enzymatic activity but to G6P, was observed for diclofenac and minocycline. Tacrine and amodiaquine displayed decreased toxicity with S9-mix, and carbamazepine, phenytoin, bromfenac and troglitazone were nontoxic at all tested concentrations, with or without S9-mix. The results show that this method, with measurement of the cytotoxicity of a compound in the presence of an extracellular metabolizing system, may be useful in the study of cytotoxicity of drug metabolites.  相似文献   

14.
Quinacrine has been used for voluntary female non-surgical sterilization for its ability to produce tubal occlusion. Safety issues regarding quinacrine have been raised because it has been shown to intercalate with DNA. Therefore, safety issues need to be resolved by appropriate toxicology studies to support a review for human transcervical use. Such toxicology studies include mutagenicity assays. Here we report an evaluation of the genotoxicity of quinacrine dihydrochloride dihydrate (QH) using a battery of assays. In the bacterial mutagenicity assay, QH was strongly positive in Salmonella typhimurium tester strain TA1537 with and without S9-activation and in S. typhimurium tester strain TA98 with S9-activation; QH was also strongly positive in Escherichia coli WP2 uvrA without S9-activation. QH was not mutagenic in S. typhimurium tester strains TA100 and TA1535 with and without S9-activation. QH was mutagenic in the mouse lymphoma assay in the absence of S9-activation. QH was clastogenic in Chinese hamster ovary (CHO) cells, with and without S9-activation. QH was negative for polyploidy in the same chromosome aberration test. Using a triple intraperitoneal injection treatment protocol in both male and female mice, QH was negative in the in vivo mouse micronucleated erythrocyte (micronucleus) assay. These results confirm that QH is mutagenic and clastogenic in vitro and suggest a potential risk to human health due to QH exposure after intrauterine exposure.  相似文献   

15.
Reference genotoxic compounds 2-aminoanthracene, diethylstilboestrol and vinblastine were tested in the in vitro micronucleus assay using Chinese hamster V79 derived cells in the laboratories of British American Tobacco in the UK. The work was conducted in support of the cytotoxicity measures recommended in the 2007 version of the OECD Test Guideline 487. The three compounds were positive in the assay in the presence and absence of the cytokinesis blocking agent cytochalasin B at concentrations that did not exceed the recommended cytotoxic limits determined by relative population doubling, relative increase in cell counts, relative cell counts and cytokinesis block proliferation index. Consequently, this work supports the hypothesis that relative population doubling, relative increase in cell counts and relative cell counts are appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay.  相似文献   

16.
The following organophosphates were tested for their ability to induce DNA damage in a rec-type repair test with Proteus mirabilis strains PG713 (rec- hcr-) and PG273 (wild-type) and point mutations in the his- strain TA100 of Salmonella typhimurium: O,O-dimethyl-O-(1,2-dibromo-2,2-dichloroethyl)-phosphate (NALED); trichlorfon-O-methyl ether (TCP-O-ME), O,O-dimethyl-(1-methoxy-2,2,2-trichlorethyl)-phosphonate; trichlorfon-O-methyl ether vinyl derivative (TCP-O-MEVD), O,O-dimethyl-(1-methoxy-2,2-dichlorovinyl)-phosphonate. All compounds were negative in the repair test but induced base pair substitutions in S. typhimurium. The mutagenicity of NALED is due to the direct alkylating ability of the parental molecule and to mutagenic metabolites generated by enzymatic splitting of the side chain. Glutathion-dependent enzymes in the S9-mix eliminate the mutagenic activity of NALED completely. Mutation induction by TCP-O-ME and TCP-O-MEVD is predominantly caused by the reactive O-methyl ether configuration of the side chain and is resistant to metabolic inactivation by NADPH- or glutathion-dependent enzymatic pathways in the S9-mix of mice.  相似文献   

17.
In the present study, the wastewater sample collected from the Dongming discharging river in Shijiazhuang city was analysed using both chemical analysis and biological assays including the Salmonella mutagenicity test, micronucleus test and single-cell gel electrophoresis. Chemical analysis of the sample was performed using gas chromatography mass spectrometry and inductively coupled plasma mass spectrometry. The Salmonella mutagenicity test was performed on Salmonella typhimurium TA97, TA98, TA100 and TA102 strains with and without S9 mixture. The mice received the wastewater in natura through drinking water at concentrations of 25%, 50%, and 100%. One group of mice was exposed for 2 consecutive days, and the other group of mice was exposed for 15 consecutive days. To establish the levels of primary DNA damage, single-cell gel electrophoresis was performed on treated mouse liver cell. The concentrations of chromium and lead in the sample exceeded the national standard (GB20922-2007) by 0.78 and 0.43-fold, respectively. More than 30 organic compounds were detected, and some of the detected compounds were mutagens, carcinogens and environmental endocrine disrupters. A positive response for Salmonella typhimurium TA98 strain was observed. Mouse exposure via drinking water containing 50% and 100% of wastewater for 15 consecutive days caused a significant increase of MN frequencies in a dose-response manner. Mouse exposure via drinking water containing 50% and 100% of wastewater for 15 consecutive days caused a significant increase of the Olive tail moments in a dose-response manner. All the results indicated that the sample from the Dongming discharging river in Shijiazhuang city exhibited genotoxicity and might pose harmful effects on the local residents.  相似文献   

18.
Rhesus monkeys (Macaca mulatta) were used to determine their effectiveness as experimental animals for different cytogenetic tests with mitomycin C (MC). The micronucleus test (MNT) and/or chromosome analysis of blood and bone marrow were made before and/or after the treatment with mitomycin C. Thus, the controls data and treated data were obtained from the same animals. With the employed methology, the micronucleus test could not be performed on living animals. Less chromosomal damage was detected in the micronucleus test of post-mortem samples than in the chromosome analysis of bone marrow. No influence by the mutagen could be observed in lymphocyte chromosomes at any of the different times of analysis. In contrast to this, bone-marrow chromosomes seemed to be highly affected by mitomycin C at day 1, 2 and 3 after injection. However, before treatment and at day 14, 16 and 17 after treatment there was no visible increase in chromosomal aberration in bone marrow.  相似文献   

19.
Currently, the cosmetics industry relies on the results of in vitro genotoxicity tests to assess the safety of chemicals. Although the cytokinesis-block micronucleus (CBMN) test for the detection of cells that have divided once is routinely used and currently accepted by regulatory agencies, it has some limitations. Reconstituted human epidermis (RHE) is widely used in safety assessments because its physiological properties resemble those of the skin, and because it allows testing of substances such as hydrophobic compounds. Thus, the micronucleus test is being adapted for application in RHE-reconstructed tissues. Here we investigated whether two different reconstructed epidermis models (EPI/001 from Straticell, and RHE/S/17 from Skinethic) are suitable for application of the micronucleus test. We found that acetone does not modify micronucleus frequency, cell viability, and model structure, compared with non-treated RHE. Treatment of the EPI/001 model with mitomycin C and vinblastine resulted in a dose-dependent increase of micronucleus frequency as well as a decrease of tissue viability and of binucleated cell rate, while no changes of the epidermal structure were observed. The number of binucleated cells obtained with the RHE/S/17 model was too small to permit micronucleus testing. These results indicate that the proliferative rate of the tissue used is a critical parameter in performing the micronucleus test on a 3D model.  相似文献   

20.
The usefulness of the acridine orange (AO) supravital staining technique for the mouse peripheral blood reticulocyte micronucleus test was investigated independently by three laboratories using the known clastogens procarbazine hydrochloride (PCZ) and mitomycin C (MMC). In all three laboratories the highest frequencies of micronucleated peripheral blood reticulocytes were observed 48 h after treatment of mice with a single dose of either MMC or PCZ. The animals responded to both chemicals in a dose-dependent manner. Although similar qualitative results were observed, mean micronucleus frequencies induced by a particular dose of a given test chemical did vary quantitatively among the three laboratories. This was most probably due to the use of slightly different scoring criteria by each examiner. This aspect needs special attention. To minimize inter-laboratory variability, therefore, we recommend establishing unequivocal criteria to distinguish the subclass of reticulocytes. These should then be used consistently by all investigators using this method. The most striking advantages of the AO supravital staining technique were the ease of slide preparation, the ease with which reticulocytes and mature erythrocytes could be distinguished by the examiners, and the occurrence of numerous scorable reticulocytes in each microscopic field, which greatly speeded up the manual counting process. The disadvantages of the staining technique were the limited scoring time due to the rapid fading of the fluorescence stain, the degradation of the cells with time, and the frequent need to search for adequate scoring areas within a microscopic field. Based on the data of this study the authors conclude that the AO supravital staining technique is highly suitable for the micronucleus assay in erythrocytic cells of mouse peripheral blood. In addition, we consider the mouse peripheral blood reticulocyte micronucleus test to be a useful tool with which to investigate the clastogenic potential of chemicals in vivo. As pretreatment of mice with Aroclor 1254 markedly increased the effect of PCZ on micronucleus induction, we suggest that the inclusion of inducers of drug metabolizing enzymes in the micronucleus test would be useful for the detection of the clastogenic potential of promutagenic chemicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号