首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developmental stability and fitness: the evidence is not quite so clear   总被引:5,自引:0,他引:5  
  相似文献   

2.
A. P. Møller 《Oecologia》2000,123(2):149-157
A number of different insect species (ranging from Diptera, Lepidoptera and Coleoptera to Hymenoptera) have been shown to discriminate between small degrees of asymmetry when visiting flowers or flower-like models. Such preferences for symmetry may have an innate basis. Small degrees of bilateral or radial asymmetry of flowers are considered to represent a measure of developmental instability, since deviations from perfect symmetry reflect the inability to maintain developmental precision during ontogeny. Environmental factors causing increased asymmetry in leaves and flowers include radioactive radiation, ultraviolet radiation, excess artificial fertilizer, various pollutants, extreme saline conditions, herbivory and competition. Genetic factors that contribute to increased asymmetry in plants include homozygosity, hybridization, mutation and quantitative genetic differences among individuals. Insect preferences for symmetric flowers increase reproductive success of both pollen donors and recipients by affecting seed set and embryo abortion. The ability of insects to discriminate between flowers of superior and inferior quality is hypothesized to depend on the level of developmental instability of the perceptive apparatus of insects. Hence, asymmetry of insects may have consequences for plant reproductive success and mating patterns. Received: 18 November 1999 / Accepted: 15 December 1999  相似文献   

3.
The uropygial gland is a holocrine complex exclusive to birds that produces an oleaginous secretion (preen oil) whose function is still debated. Herein, I examine critically the evidence for the many hypotheses of potential functions of this gland. The main conclusion is that our understanding of this gland is still in its infancy. Even for functions that are considered valid by most researchers, real evidence is scarce. Although it seems clear that preen oil contributes to plumage maintenance, we do not know whether this is due to a role in reducing mechanical abrasion or in reducing feather degradation by keratinophilic organisms. Evidence for a function against pathogenic bacteria is mixed, as preen oil has been demonstrated to act against bacteria in vitro, but not in vivo. Nor is it clear whether preen oil can combat pathogenic bacteria on eggshells to improve hatching success. Studies on the effect of preen oil against dermatophytes are very scarce and there is no evidence of a function against chewing lice. It seems clear, however, that preen oil improves waterproofing, but it is unclear whether this acts by creating a hydrophobic layer or simply by improving plumage structure. Several hypotheses proposed for the function of preen oil have been poorly studied, such as reduction of drag in flight. Similarly, we do not know whether preen oil functions as repellent against predators or parasites, makes birds unpalatable, or functions to camouflage birds with ambient odours. On the other hand, a growing body of work shows the important implications of volatiles in preen oil with regard to social communication in birds. Moreover, preen oil clearly alters plumage colouration. Finally, studies examining the impact of preen oil on fitness are lacking, and the costs or limitations of preen‐oil production also remain poorly known. The uropygial gland appears to have several non‐mutually exclusive functions in birds, and thus is likely to be subject to several selective pressures. Therefore, future studies should consider how the inevitable trade‐offs among different functions drive the evolution of uropygial gland secretions.  相似文献   

4.
Inbred mouse strains and genetic stability: a review   总被引:1,自引:0,他引:1  
Inbred mice were essential animal models for scientific research during the 20th century and will contribute decisive results in the current and next centuries. Far from becoming an obsolete research tool, the generation of new inbred strains is continuing and such strains are being used in many research fields. However, their genetic properties have been overlooked for decades, although recent research has revealed new insights into their genetic fragility and relative instability. Contrary to what we usually assume, inbred mice are far from being completely isogenic and both single-gene major mutations and polygenic mutational variability are continuously uploading into inbred populations as new sources of genetic polymorphisms. Note that several inbred strains from new major mutations are released every year, whereas small mutations can accumulate up to accounting for a significant percentage of the phenotypic variance (e.g. 4.5% in a recent study on C57BL/6J mice). Moreover, this genetic heterogeneity can be maintained for several generations by heterozygote selection and, if fixed instead of dropping off, genetic drift must be anticipated. The contribution of accidental genetic contamination in inbred strains must also be considered, although its incidence in current breeding stocks should be minimal, or even negligible. This review revisits several relevant topics for current inbred strains, discussing the latest cutting-edge results within the context of the genetic homogeneity and stability of laboratory mice. Inbred mice can no longer be considered as completely isogenic, but provide a remarkably homogeneous animal model with an inevitable moderate-to-low degree of genetic variability. Despite a certain degree of genetic heterogeneity becoming inescapable, inbred mice still provide very useful animal models with evident advantages when compared with outbred, that is, highly variable, populations.  相似文献   

5.

Background

Cardiorespiratory fitness (CRF) is a major factor influencing health and disease outcomes including all-cause mortality and cardiovascular disease. Importantly CRF is also modifiable and could therefore have a major public health impact. Early life exposures play a major role in chronic disease development. Our aim was to explore the potential prenatal and childhood origins of CRF in later life.

Methods/Principal Findings

This sub-study of the HBCS (Helsinki Birth Cohort Study) includes 606 men and women who underwent a thorough clinical examination and participated in the UKK 2-km walk test, which has been validated against a maximal exercise stress test as a measure of CRF in population studies. Data on body size at birth and growth during infancy and childhood were obtained from hospital, child welfare and school health records. Body size at birth was not associated with adult CRF. A 1 cm increase in height at 2 and 7 years was associated with 0.21 ml/kg/min (95% CI 0.02 to 0.40) and 0.16 ml/kg/min (95% CI 0.03 to 0.28) higher VO2max, respectively. Adjustment for adult lean body mass strengthened these findings. Weight at 2 and 7 years and height at 11 years became positively associated with CRF after adult lean body mass adjustment. However, a 1 kg/m2 higher BMI at 11 years was associated with −0.57 ml/kg/min (95% CI −0.91 to −0.24) lower adult VO2max, and remained so after adjustment for adult lean body mass.

Conclusion/Significance

We did not observe any significant associations between body size at birth and CRF in later life. However, childhood growth was associated with CRF in adulthood. These findings suggest, importantly from a public point of view, that early growth may play a role in predicting adult CRF.  相似文献   

6.
Morphological consistency in metazoans is remarkable given the pervasive occurrence of genetic variation, environmental effects, and developmental noise. Developmental stability, the ability to reduce developmental noise, is a fundamental property of multicellular organisms, yet its genetic bases remains elusive. Imperfect bilateral symmetry, or fluctuating asymmetry, is commonly used to estimate developmental stability. We observed that Drosophila melanogaster overexpressing Cyclin G (CycG) exhibit wing asymmetry clearly detectable by sight. Quantification of wing size and shape using geometric morphometrics reveals that this asymmetry is a genuine-but extreme-fluctuating asymmetry. Overexpression of CycG indeed leads to a 40-fold increase of wing fluctuating asymmetry, which is an unprecedented effect, for any organ and in any animal model, either in wild populations or mutants. This asymmetry effect is not restricted to wings, since femur length is affected as well. Inactivating CycG by RNAi also induces fluctuating asymmetry but to a lesser extent. Investigating the cellular bases of the phenotypic effects of CycG deregulation, we found that misregulation of cell size is predominant in asymmetric flies. In particular, the tight negative correlation between cell size and cell number observed in wild-type flies is impaired when CycG is upregulated. Our results highlight the role of CycG in the control of developmental stability in D. melanogaster. Furthermore, they show that wing developmental stability is normally ensured via compensatory processes between cell growth and cell proliferation. We discuss the possible role of CycG as a hub in a genetic network that controls developmental stability.  相似文献   

7.
Developmental stability in plants: Symmetries,stress and epigenesis   总被引:4,自引:0,他引:4  
Plant developmental stability has received little attention in the past three or four decades. Here we review differences in plant and animal development, and discuss the advantages of using plants as experimental subjects in exploring developmental stability. We argue that any type of developmental invariant may be used to assess developmental stability and review the use of fluctuating asymmetry in studies of plant developmental stability. We also examine the use of deviations from translatory, radial, and self-symmetry as measures of developmental instability. The role of nonlinear dynamics and epigenesis in the production of the phenotype is also discussed.  相似文献   

8.
We investigated homogeneity of growth and development as indices of developmental stability in sibling tadpoles from two sampling regions of the common frog, Rana temporaria. One region is characterized by relatively warm breeding ponds with a short activity season (`north'), and one by relatively cool breeding ponds and a long activity season (`south'). Tadpoles from the two regions were raised in three different temperatures selected to mimic the natural variation throughout the range. The results show that (1) north tadpoles respond with a relatively greater increase in growth with increased temperature than south tadpoles, (2) mean growth rate and its coefficient of variation were negatively correlated in the temperature regime in which a population was primarily under selection in the wild, whereas no such correlation was found at temperatures more seldom encountered in the natural populations, (3) phenotypic and genetic correlations between morphological traits within individuals were positive and were relatively higher in north than south tadpoles in the warm treatment, but higher for south tadpoles in the cold treatment and (4) across thermal environments, south tadpoles showed significant genetic correlations, whereas the correlations for north tadpoles were not significantly different from zero. South tadpoles showed only positive genetic correlations (n=30), whereas 14 of 30 correlation coefficients were negative in north tadpoles. In conclusion, developmental stability for growth and morphometry was higher at `optimal' conditions and decreased at the tail ends of the reaction norms within regions, with marked differences reflecting selection history between regions.  相似文献   

9.
Environmental sex reversal (ESR) occurs when environmental factors overpower genetic sex-determining factors. The phenomenon of ESR is observed widely in teleost species, where it can be induced by exposing developing fish to endocrine disrupting chemicals (EDCs). EDC-induced ESR has been exploited by the aquaculture industry, while ecological and evolutionary models are also beginning to elucidate the potential roles that sex-reversed individuals play in influencing population dynamics. However, how EDC exposure affects individual fitness remains relatively unknown. To date, many experimental studies have induced sex reversal in fish and measured fitness-as indicated by related traits such as size, survival and gonadal somatic index (GSI), but the reported results vary. Here, we meta-analytically combine the results of 78 studies of induced ESR to gain insight into the fitness of sex-reversed individuals. Overall, our results suggest that the fitness of fish exposed to EDCs is reduced at the time of exposure, with exposed individuals having a smaller size and likely a smaller GSI. Given a period of non-exposure, fish treated with EDCs can regain a size equal to those not exposed, although GSI remains compromised. Interestingly, survival does not appear to be affected by EDC treatment. The published reports that comprise our dataset are, however, based on captive fish and the general small size resulting from exposure is likely to lead to reduced survival in the wild. Additionally, reduced fitness-related parameters are likely to be due to exposure to EDCs rather than ESR itself. We suggest that theoretical models of ESR should account for the fitness-related effects that we report. Whilst we are able to shed light on the physical fitness of EDC-exposed fish, the behaviour of such individuals remains largely untested and should be the focus of future experimental manipulation.  相似文献   

10.
Fluctuating asymmetry occurs when an individual is unable to undergo identical development of an otherwise bilaterally symmetric trait on both sides of its body. Since both sides of a bilaterally symmetric trait are the result of the actions of a single genome, fluctuating asymmetry represents an epigenetic measure of the sensitivity of development to stress. Different morphological traits may show a direct relationship between their functional importance and their degree of developmental canalization. This may explain why some characters show high degrees of fluctuating asymmetry, and why these characters more often become exaggerated secondary sexual ornaments. The degree of fluctuating asymmetry is generally larger in small marginal populations living in novel environments, and this will particularly lead to relatively large degrees of asymmetry in the least developmentally canalized traits. More stringent selection against heterozygotes in marginal populations may further break down developmental stability and linkage groups which would lead to increased genetic variance. Females may prefer to mate with males having large, but relatively symmetric morphological characters, because it is more difficult to make large traits (a good genes argument), a large trait is more easily perceived (a sensory bias preference), and because symmetry signals ability to cope with stress (a good genes argument). The low degree of developmental stability and the large amount of genetic variance in secondary sexual characters in small, marginal populations could set the scene for rapid development of divergence and speciation in marginal populations.  相似文献   

11.
12.
13.
Our planet is changing at paces never observed before. Species extinction is happening at faster rates than ever, greatly exceeding the five mass extinctions in the fossil record. Nevertheless, our lives are strongly based on services provided by ecosystems, thus the responses to global change of our natural heritage are of immediate concern. Understanding the relationship between complexity and stability of ecosystems is of key importance for the maintenance of the balance of human growth and the conservation of all the natural services that ecosystems provide. Mathematical network models can be used to simplify the vast complexity of the real world, to formally describe and investigate ecological phenomena, and to understand ecosystems propensity of returning to its functioning regime after a stress or a perturbation. The use of ecological-network models to study the relationship between complexity and stability of natural ecosystems is the focus of this review. The concept of ecological networks and their characteristics are first introduced, followed by central and occasionally contrasting definitions of complexity and stability. The literature on the relationship between complexity and stability in different types of models and in real ecosystems is then reviewed, highlighting the theoretical debate and the lack of consensual agreement. The summary of the importance of this line of research for the successful management and conservation of biodiversity and ecosystem services concludes the review.  相似文献   

14.
Insect host-parasitoid systems are often modeled using delay-differential equations, with a fixed development time for the juvenile host and parasitoid stages. We explore here the effects of distributed development on the stability of these systems, for a random parasitism model incorporating an invulnerable host stage, and a negative binomial model that displays generation cycles. A shifted gamma distribution was used to model the distribution of development time for both host and parasitoid stages, using the range of parameter values suggested by a literature survey. For the random parasitism model, the addition of biologically plausible levels of developmental variability could potentially double the area of stable parameter space beyond that generated by the invulnerable host stage. Only variability in host development time was stabilizing in this model. For the negative binomial model, development variability reduced the likelihood of generation cycles, and variability in host and parasitoid was equally stabilizing. One source of stability in these models may be aggregation of risk, because hosts with varying development times have different vulnerabilities. High levels of variability in development time occur in many insects and so could be a common source of stability in host-parasitoid systems.  相似文献   

15.
Summary The potential for changes in allele frequencies in yeast populations by selection was examined. Cells from the wine yeastSaccharomyces cerevisiae (strain Montrachet) were grown over a large number of generations using two different culturing techniques, each with two variations: serial transfers on WLN agar plates with and without UV irradiation, and continuous culture in autoclaved and in filter-sterilized grape must. A low frequency of variant isozyme patterns was found in samples taken at the end of the experiment. Growth rates in must and on agar plates were also examined, and it was found that all samples were faster-growing than the original strain, to varying degrees. Applications for the selection system developed are discussed.  相似文献   

16.
Early environments can profoundly influence an organism in ways that persist over its life. In reptiles, early thermal environments (nest temperatures) can impact offspring phenotype and survival in important ways, yet we still lack an understanding of whether general trends exist and the magnitude of impact. Understanding these patterns is important in predicting how climate change will affect reptile populations and the role of phenotypic plasticity in buffering populations. We compiled data from 175 reptile studies to examine, and quantify, the effect of incubation temperature on phenotype and survival. Using meta‐analytic approaches (standardized mean difference between incubation treatments, Hedges' g), we show that across all trait types examined there is, on average, a moderate to large magnitude of effect of incubation temperatures (absolute effect: |g| = 0.75). Unsurprisingly, this influence was extremely large for incubation duration, as predicted, with warmer temperatures decreasing incubation time overall (g = −8.42). Other trait types, including behaviour, physiology, morphology, performance, and survival experienced reduced, but still mostly moderate to large effects, with particularly strong effects on survival. Moreover, the impact of incubation temperature persisted at least one‐year post‐hatching, suggesting that these effects have the potential to impact fitness in the long term. The magnitude of effect increased as the change in temperature increased (e.g. 6°C versus 2°C) in almost all cases, and tended to decrease when temperatures of the treatments fluctuated around a mean temperature compared to when they were constant. The effect also depended on the mid‐temperature of the comparison, but not in consistent ways, with some traits experiencing the greatest effects at extreme temperatures, while others did not. The highly heterogeneous nature of the effects we observe, along with a large amount of unexplained variability, indicates that the shape of reaction norms between phenotype and temperature, along with ecological and/or experimental factors, are important when considering general patterns. Our analyses provide new insights into the effects of incubation environments on reptile phenotype and survival and allow general, albeit coarse, predictions for taxa experiencing warming nest temperatures under climatic change.  相似文献   

17.
Developmental biology of the pancreas: A comprehensive review   总被引:2,自引:0,他引:2  
Pancreatic development represents a fascinating process in which two morphologically distinct tissue types must derive from one simple epithelium. These two tissue types, exocrine (including acinar cells, centro-acinar cells, and ducts) and endocrine cells serve disparate functions, and have entirely different morphology. In addition, the endocrine tissue must become disconnected from the epithelial lining during its development. The pancreatic development field has exploded in recent years, and numerous published reviews have dealt specifically with only recent findings, or specifically with certain aspects of pancreatic development. Here I wish to present a more comprehensive review of all aspects of pancreatic development, though still there is not a room for discussion of stem cell differentiation to pancreas, nor for discussion of post-natal regeneration phenomena, two important fields closely related to pancreatic development.  相似文献   

18.
The developmental and reproductive fitness of the polyphagous predator Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) was compared on two factitious foods and four artificial diets. Adults fed factitious foods (Ephestia kuehniella Zeller eggs and Artemia franciscana Kellogg cysts) performed better than those fed artificial diets. Among the artificial diets, a diet composed of liver and ground beef scored better than meridic diets based on egg yolk. Within the egg yolk-based artificial diets, the developmental fitness varied proportionally with the amount of egg yolk present in the diet. A food switching experiment, in which nymphs and adults of the predator were fed either E. kuehniella eggs or an egg yolk-based artificial diet, showed that the impact of adult food on reproductive capacity was greater than that of nymphal food. An optimal adult food was able to wholly compensate for deficiencies incurred by an inferior artificial diet in the nymphal stage. A strong correlation was found between oocyte counts, lifetime oviposition, and the number of eggs laid after 8 d. A rapid dissection assay may thus be effective to reliably and economically assess the fitness of O. laevigatus as a function of the diet. This method also may prove useful as part of quality assurance procedure for commercially produced predators.  相似文献   

19.
Hamilton implicitly defined the inclusive fitness of an individual as the number of genomes, identical by descent to its own, but not in its own body, which owe their existence to expression of genes in said individual. Hamilton regarded inclusive fitness as the true metric of evolutionary success and the thin- maximized by selection. Williams, Stern and Orlove either claimed this property for mean reproductive success, or stated that expected reproductive success equals expected inclusive fitness. These statements are reconciled if a correcting term is added to Hamilton's inclusive fitness formula.This change completely accounts for inclusive fitness in personal fitness terminology. The use of ? in place of r renders the new formula exact. This has less numerical impact than the addition of the correcting term to begin with, but helps show inclusive fitness theory holds exactly.  相似文献   

20.
In recent years, progress in the fields of development and proteoglycan biology have produced converging evidence of the role of proteoglycans in morphogenesis. Numerous studies have demonstrated that proteoglycans are involved in several distinct morphogenetic pathways upon which they act at different levels. In particular, proteoglycans can determine the generation of morphogen gradients and be required for their signal transduction. The surface of most cells and the extracellular matrix are decorated by heparan sulfates which are the most common glycosaminoglycans, normally present as heparan sulfate proteoglycans. Considerable structural heterogeneity is generated in proteoglycans by the biosynthetic modification of their heparan sulfate chains as well as by the diverse nature of their different core proteins. This heterogeneity provides an impressive potential for protein-protein and protein-carbohydrate interactions, and can partly explain the diversity of proteoglycan involvement in different morphogenetic pathways. In this review, we summarize the current knowledge about mutations affecting heparan sulfate proteoglycans that influence the function of growth factor pathways essential for tissue assembly, differentiation and development. The comparison of data obtained in Drosophila, rodents and humans reveals that mutations affecting the proteoglycan core proteins or one of the biosynthetic enzymes of their heparan sulfate chains have profound effects on growth and morphogenesis. Further research will complete the picture, but current evidence shows that at the very least, heparan sulfate proteoglycans need to be counted as legitimate elements of morphogenetic pathways that have been maintained throughout evolution as determinant mechanisms of pattern formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号